
Electronic Communications of the EASST 
Volume 11 (2008) 

Guest Editors: Romain Rouvoy, Mauro Caporuscio, Michael Wagner 
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer 
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122 

 

Proceedings of the 
First International DisCoTec Workshop on  

Context-aware Adaptation Mechanisms for Pervasive and 
Ubiquitous Services (CAMPUS 2008) 

“InstantSocial” – Implementing a Distributed Mobile Multi-user 
Application with Adaptation Middleware  

 
Luís Fraga, Svein Hallsteinsen, and Ulrich Scholz 

 
6 Pages 



 
 
“InstantSocial” – Implementing a Distributed Mobile-user Application 

Proc. CAMPUS 2007                                                                                                1 / 7   

“InstantSocial” – Implementing a Distributed Mobile Multi-user 
Application with Adaptation Middleware 

 
Luís Fraga1, Svein Hallsteinsen2, and Ulrich Scholz3 

 
1MobiComp 

Rua do Parque Poente, Lote 37, 
Loteamento das Caldas - Sequeira, 

4705-629 Braga, Portugal 
lfraga@mobicomp.com 

 

2SINTEF ICT 
7465 Trondheim, 

Norway 
svein.hallsteinsen@sintef.no 

 

3European Media Laboratory GmbH 
Schloß-Wolfsbrunnenweg 33 
69118 Heidelberg, Germany 

scholzuh@eml.org 
 

Abstract: In this position paper we explore how new capabilities of mobile devices could 
be used to setup distributed multi-user mobile applications with potentially high interest 
for end users. We describe an example of such an application by transposing Internet 
social network trends and principles to a mobile ad hoc environment. Then we present a 
tentative design and implementation sketch of this application in terms of the MUSIC 
context-aware adaptation middleware we are currently developing. 

 
Keywords: adaptation middleware, service oriented architectures, social networks 

1 Introduction 
The widespread use of mobile devices combined with their evolving networking and 
computational capabilities is a continued source of inspiration for novel applications and use 
cases. Improved capabilities open new possibilities in the mobile world as devices are evolving 
from being pure service consumers to becoming able to also act as service providers (e.g., 
mobile devices are now powerful enough to run ports of Internet webservers such as Apache 
httpd [1]). Despite this, there has been a disappointing lack of compelling mobile applications 
not depending on central servers, even if it seems that most building blocks are in place. In this 
paper we explore how these new capabilities could facilitate multi-user applications hosted on 
the mobile devices carried by the users and cooperating through the exchange of services 
without requiring support from central servers, and we propose a solution relying on self-
adaptation and service level negotiation to balance the load between the devices according to 
their resources. Our approach resembles aspects of mobile grids [2] but differs in its focus on 
multi-user data-sharing applications; grids instead aim at the transparent execution of arbitrary 
applications. 

The paper starts with the presentation of a motivating example. Then we briefly present the 
self-adaptation middleware technology on which we build our solution and explain how our 
solution exploits this technology. As a preliminary validation we provide a walkthrough of 
how the proposed solution behaves in typical situations that occur during the use of the 
example application. 

2 Motivating Scenario 
To explore the idea of mobile multi-user applications providing typically centralized services, 
we identified what users carry on their mobile devices: phone contacts and media. Adding to 
this the premise that users are used to Internet content sharing (in social websites such as 



 
 

 ECEASST 

2 / 7                                                                                                     Volume 11 (2008) 

Flickr and YouTube), implementing a social media sharing platform with mobile devices could 
prove to be of interest to users while it is also an interesting technical case study. We named 
this sharing platform “InstantSocial” and it would be perceived by end users as ordinary 
simple HTTP/HTML website accessible via a PAN or WLAN. Users would access this site 
with modern, built-in browsers on mobile devices they are already familiar with. Instead of 
being based on a central Internet server, this site would be served by a composition of services 
scattered across nearby devices. As more users participate, the platform becomes more 
robust/redundant and the number of shared content items increases as well as potentially the 
overall interest for other users. As soon as a critical mass of users leaves, the site would 
disappear. Thus, both performance and relevance of this system may potentially increase as 
more users join in. The following scenario exemplifies how a user could experience the 
capabilities of such distributed mobile multi-user application. 
 

• Paul is visiting a large rock festival. During a Björk concert, he is not able to take a good 
shot, others could have done better.  

• Back at the tent, Paul is willing to share his pictures with others. He starts the InstantSocial 
application and his PDA notifies him about the presence of a media sharing group. He 
happily joins, gives high priority to this application, and a moment later his display shows 
a selection of pictures, each representing a collection of shots matching his interests. He 
browses through the content, selects the ones he likes, and begins to download. 

• When Paul is done with the browsing he lowers the priority of the application so he can 
listen to some MP3. He still leaves his media (and CPU power) available for others to 
engage in the InstantSocial platform.  

• Some songs later, he decides to save some battery for phone calls and indicates his wish to 
leave the group. The PDA asks him to wait a few seconds. After getting the OK, he quits. 

 

Although this application is simple from a functional point of view, it can also be used in 
various different contexts such as: conferences, classes, mall communities, traffic jams. All 
this contexts share the following base requirements: 
 

• As the society is based on a fully distributed architecture where nodes can cooperate using 
a moderately involved communication scheme (this is unlike the star-based architecture 
wherein all nodes communicate with a single server), we need mechanisms that allow 
nodes to discover and compose services hosted on other nodes. 

• As applications execute in an evolving environment and are subject to numerous 
unexpected changes of the execution context, dynamic self-adaptation is a central 
requirement.  

• This society of self-adapting application parts, cooperating through the exchange of 
services and the negotiation of Service Level Agreements (SLA) requires mature Service-
Oriented Architectures (SOA) composition mechanisms. These SLA negotiations also 
need to take into account that applications coexist on each participating device with other 
applications, and that their relative execution priorities inside devices vary dynamically 
depending on the situation. 

3 Introduction to MUSIC  
The MUSIC middleware [3,4] provides an execution environment for applications and services 
which facilitate adaptation to varying context. Based on a model of the adaptation capabilities 



 
 
“InstantSocial” – Implementing a Distributed Mobile-user Application 

Proc. CAMPUS 2007                                                                                                3 / 7   

and context dependencies of the software entities under its control, it automatically adapts the 
software to make the best of the current situation. The following features of MUSIC are central 
in the proposed realization of InstantSocial: 
 

• Context sensing: The middleware monitors the relevant context, including user preferences 
and available resources on the device. It also keeps track of other devices in the vicinity 
and the services they offer, using standard protocols like SLP and UPnP.  

• Dynamic reconfiguration of applications: The middleware has an architecture model of the 
applications running on the device in the form of a composition of cooperating abstract 
components (roles) which are (re)bound dynamically either to concrete component 
implementations instantiated locally, or to services available remotely.  

• Adaptation reasoning and decision making: The adaptation middleware reasons about 
what is the most suitable configuration in a given situation based on property predictors 
and utility functions. Property predictors are functions predicting the resource needs and 
varying properties of the entities they are associated to. Utility functions compare 
properties (obtained by invoking the appropriate predictor functions) to user needs and 
resource constraints (obtained from the context sensing subsystem) and computes the 
utility to the user of a given configuration. When binding to a public service, a service 
level agreement is established between the provider and the consumer. It is the 
responsibility of the provider to alert the consumer if the provided service level deviates 
significantly from the agreed one. 

4 InstantSocial design 
A partial and simplified MUSIC architecture model for the proposed design is shown in Figure 
1. The application is composed of three component types: BP (browser proxy), P 
(presentation) and CR (content repository). The content repository component is responsible 
to maintain an inventory of available content in all the participating devices and provide access 
to it. CR instances act both as consumers and providers of the membership (ms) service. When 
a new CR instance is created, it will use the membership service provided by an existing 
instance to become included in the common distributed content repository, and later it may 
provide this service to another new instance. CR instances also implement partial replication of 
content to ensure a certain stability of the federated repository even if participants leave. 
Presentation components monitor the content repository in search for relevant content 
elements, according to user preferences. They present lists of relevant contents and selected 
content elements to the BP component in XHTML form through the presentation (pn) service. 
Browser proxy components execute as demons and invoke the built-in browser to present the 
user interface when InstantSocial is in the foreground. 

The architecture model allows three alternative configurations for the application, labeled 
ISfull, ISmini and ISleech. Examples of possible configurations in compliance with this model 
are shown in Figure 2. The ISfull configuration instantiates all three components locally and 
advertises both the presentation service and the membership service for use by other 
participants. The ISleech configuration only runs the BP component locally and uses a 
presentation (pn) service provided by another participant. The ISmini configuration instantiates 
the BP and P components locally, but relies on a content access (ca) service provided by 
another participant to get access to the content repository. It offers the presentations service for 
use by others. 



 
 

 ECEASST 

4 / 7                                                                                                     Volume 11 (2008) 

 

= role

= implementation

CR

P

ISfull

BP

>ms

<ms

>pn

P

ISmini

BP

>pn

ISleech

BP

>s   = provided service of type s

<s   = required service of type s

<ca

{avy =  P.>pn.avy,  rut = C.rut}

>ca

>pn

<pn

>ca {avy = S (<ms.noi+1), rut = C.rut}

Pimpl:
P

CRimpl: 
CR <ms

>ms {noi = <ms.noi+1, rut = C.rut}

{avy = P.pn.avy, rut = max(C.rut, <ca.rut)}

>pn {avy = <ca.avy, rut = <ca.rut}

<ca

>pn

{ , , }     = property annotation

{avy = P.pn.avy, rut = pn.rut)}

C  = current context
S (x)  == 0 | x=0, 0.3 | x=1, 0.7 | x=2, 0.9 | x=3, 1 | x>3

>ca

 
Figure 1. InstantSocial partial architecture model 

 
If the application runs on a device that does not have the resources to run its own content 
repository and there is no other participant that offers the content access service, there is a 
fourth possibility not shown in the architecture model. In this case the application is 
configured with a variant of the Browser proxy component which will return to the browser a 
friendly page informing that there is currently no content repository available. 

Please note that we forced the inclusion of the web browser in this design to later explore 
mashups of PAN services with Internet based services and even going from Internet to local 
websites back and forth seamlessly. For the sake of simplicity, in this paper we do not go into 
detail on how the presentation component selects relevant contents. In the ongoing 
implementation, the Presentation component has an internal structure with many more 
variation capabilities, that for example take into account friendship relations and 
tag/preferences based filtering. 

4.1. Adaptation modelling 
The annotations in the model provide property predictors needed by the adaptation middleware 
to reason about what is the most suitable configuration in each situation: There are three 
properties used in the model, avy (availability) which is a measure of the likelihood that 
content continues to be available, rut (resource utilisation), which is a measure of how much of 
the available resources are utilised, and noi (number of instances) which is the number of 
instances of the content repository component currently constituting the shared repository. Avy 
and rut are numbers between 1 and 0 while noi is a positive integer. Property predictors, which 
are associated with ports, predict the properties of the service provided through the port, and 
property predictors, which are associated with the alternative configurations of the application, 
predict the properties of the application. 

Relevant resources are memory, CPU and network bandwidth. The resource needs of 
components and compositions must also be specified with property predictors in a similar way, 
but this is not shown here. Based on the specified resource needs, the middleware computes 
the resource utilisation on the device and makes it available as context information. 



 
 
“InstantSocial” – Implementing a Distributed Mobile-user Application 

Proc. CAMPUS 2007                                                                                                5 / 7   

The utility function must be constructed to ensure that a collection of devices each running 
the self-adapting InstantSocial application will converge towards an overall configuration with 
sufficient redundancy of components to ensure stable operation when devices leave and a fair 
distribution of load among the devices taking into account their resources. This is achieved by 
balancing the availability and the overall resource utilisation as follows,  

utility = (c1 * avy + c2 * (1 – rut)) / (c1+c2) 

where c1 and c2 are constants expressing the relative weights of the availability and the 
resource utilisation. 

An always evolving environment, such as this, demands for the advanced planning 
mechanism MUSIC provides. Additionally, MUSIC lends itself very well to solving hard 
problems like these. Note that by declaring an utility function, a developer is instructing the 
middleware to keep looking for more interesting combinations/compositions of the services 
that are being made available by nearby devices, with no further need to explicitly hard coding 
which service composition is better than the other as is usual in other approaches. 

Pimpl:
P

Pimpl: 
P

DeviceX

CRimpl:
CR

DeviceY

Pimpl:
P

a) Paul has just joined

DeviceX

CRimpl:
CR

DeviceY Paul’s dev

CRimpl:
CR

BPimp: 
BP

BPimp: 
BP 

Pimpl:
P

b) Paul is done, listening to MP3

DeviceX

CRimpl: 
CR

DeviceY Paul’s dev

BPimp: 
BP

BPimp: 
BP

BPimp: 
BP

BPimp: 
BP

BPimp: 
BP

c) X active and Paul quit

Pimpl: 
P

CRimpl:
CR

BPimp: 
BP

 
Figure 2 Configurations of InstantSocial 

4.2. Informal Demonstration 
Assuming the mapping onto the MUSIC technology outlined above, we have achieved a 
system of collaborating self-adapting peers that forms dynamically, where adaptation is 
coordinated through the SLA negotiation protocol. Below we try to justify this claim by 
explaining how the system behaves throughout the scenario presented in Section 2. 
 

1. When Paul launches the application on his device, there is already a virtual website with 
two other devices X and Y. Y is configured with the ISfull configuration running all 
components locally, while X is a “leech” running only the remote proxy locally and relying 
on the presentation service of Y Paul is not running any other application on his device, so 
InstantSocial has all resources to itself. In this situation the adaptation middleware 
configures Paul’s device as an ISfull configuration. This configuration gives a higher 
availability and therefore higher utility than other possible configurations, because the 
content is now replicated on two devices. The situation after Paul has joined is shown in 
Figure 2a. 

2. After Paul has found the pictures he wants and starts listening to music, the priority of 
InstantSocial drops and it can not use as much memory as before. Therefore the 



 
 

 ECEASST 

6 / 7                                                                                                     Volume 11 (2008) 

middleware reconfigures it to the ISleech configuration. As a result, X and Y will notice a 
drop in availability. 

3. In the meantime X has completed his resource demanding task and is focusing on Instant 
Social and therefore has more resources for it. Together with the drop in availability, this 
causes his adaptation middleware to reconfigure to the ISfull configuration. This brings 
availability and hence his utility back up again, and now he has enough resources for this 
configuration. 

4. When a user hosting components serving other users leaves the community, other Instant 
Social platforms detect the disappearance of the service and adapt. Either they find an 
alternative service provider or instantiate the necessary component locally.  

5 Conclusions and future work 
In this paper we have introduced “InstantSocial” as an example of a value-added service 
provided by a distributed, multi-user, mobile application. This application delivers a platform 
for finding and retrieving shared content in an ad hoc manner and tries to keep user interaction 
models as familiar and friendly as possible. We designed it using a well known interaction 
model — i.e., a browser accessing a social website — to make sure we keep differences to 
other environments at a minimum. Furthermore, its base concept can potentially be applied in 
a variety of different scenarios ranging from football stadiums to personal home sites.  

We have proposed an implementation as a collection of self adapting individual 
applications collaborating through the exchange of services where each member applications 
chooses between instantiating components locally or using services provided by another 
member. The proposed implementation is based on the MUSIC adaptation middleware where 
this choice is handled by the middleware directed by a utility function constructed to ensure 
sufficient replication of data for stable operation when members join and leave dynamically, 
and to fair distribution of load among member devices according to their capabilities.  

As future work we plan to realise and evaluate the proposed implementation and to evalu-
ate and compare it with a series of other technologies that could also enable this example 
application, in particular ongoing efforts on mobile grid and the possibility that InstantSocial 
could be implemented as a presentation service layer on top of pure P2P networks. 
 
Acknowledgements: 
This work was funded by the European Commission under the contract number 035166 for the 
MUSIC project. The authors would like to thank Romain Rouvoy for his helpful comments. 

References 
1. Mobile Web Server. http://research.nokia.com/research/projects/mobile-web-server/  
2. S. Isaiadis and V. Getov, “Evaluation of Dynamic Clustering Architecture for Utilising 

Mobile Resources”, in IASTED International Conference on Parallel and Distributed 
Computing and Networks (PDCN), Innsbruck, Austria, pp. 117-125, 2008 

3. R. Rouvoy, F. Eliassen, J. Floch, S. Hallsteinsen, and E. Stav. “Composing Components 
and Services using a Planning-based Adaptation Middleware”. International Symposium 
on Software Composition (SC), vol. 4954, pp. 52–67, Springer, LNCS, 2008 

4. J. Floch, S. Hallsteinsen, E. Stav, E. Eliassen, K. Lund, and E. Gjørven: Using 
Architecture Models for Runtime Adaptability. IEEE Software, 23, 2 (2006), 62-70.  


