
Electronic Communications of the EASST
Volume 11 (2008)

Proceedings of the
First International DisCoTec Workshop on
Context-aware Adaptation Mechanisms for

Pervasive and Ubiquitous Services
(CAMPUS 2008)

Survey: Agent-based Middlewares for Context Awareness

Nabil Sahli

12 pages

Guest Editors: Romain Rouvoy, Mauro Caporuscio, Michael Wagner
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Survey: Agent-based Middlewares for Context Awareness

Nabil Sahli

nabil.sahli@telin.nl, http://www.telin.nl/
Telematica Instituut, Postbus 589, 7500 AN Enschede, The Netherlands

Abstract: In the last few years, many middlewares for context awareness have
claimed to be agent-based. In this paper, we make a survey on the most known
frameworks. We classify them according to their level of conformity to the agent
paradigm and we discuss the usefulness of agents in these frameworks. Based on
this survey, we enumerate several advantages of using agents in context-aware mid-
dlewares and give illustrative examples. We also point to the weakness of existing
frameworks and identify challenges to be addressed.

Keywords: Agent paradigm, middleware, context awareness

1 Introduction

Context-aware systems can be implemented in many ways. The approach depends on special
requirements and conditions such as the location of sensors (local or remote), the amount of
possible users, the available resources of the used devices (PCs or small mobile devices) or the
facility of a further extension of the system. Chen [Che04] presents three different approaches on
how to acquire contextual information: Direct sensor access, Context server, Middleware infras-
tructure. In this paper we focus on the third type. The middleware-based approach introduces
a layered architecture to context-aware systems with the intention of hiding low-level sensing
details. Compared to direct sensor access, this technique eases extensibility since the client code
has not to be modified anymore.

Several architectures for these middlewares have been proposed. The most common design
approach for distributed context-aware frameworks is a classical hierarchical infrastructure with
one or many centralized components using a layered architecture. This approach is useful to
overcome memory and processor constraints of small mobile devices but provides one single
point of failure and thereby lacks robustness. Gaia [Gai] is an example of such type of archi-
tecture. The Context Toolkit [SDA99], another context-aware framework, takes a step toward a
peer-to-peer architecture but it still needs a centralized discoverer where distributed sensor units
(called widgets), interpreters and aggregators are registered in order to be found by client appli-
cations. Many layered context-aware systems and frameworks have thus evolved during the last
years. Most of them differ in functional range, location, and naming of layers. However, other
middleware solutions have proposed an agent-based system as an alternative approach, which
brings more decentralization.

According to the definition proposed by Maes [Mae94] ”Autonomous agents are computa-
tional systems that inhabit some complex dynamic environment, sense and act autonomously in
this environment, and by doing so realize a set of goals or tasks for which they are designed”,
there are important aspects of software agents and their environment which are necessary for

1 / 12 Volume 11 (2008)

mailto:nabil.sahli@telin.nl
http://www.telin.nl/

Survey: Agent-based Middlewares for Context Awareness

any (autonomous) action. An agent has then to be: (i) autonomous: acts on its own Com-
pulsory, (ii) reactive: responds timely to changes in its environment, (iii) proactive: initiates
actions that affect its environment, and (iv) communicative: exchanges information with users
and other agents. The aforementioned characteristics need to be there for all agents. However,
some agents may have optional properties such as mobility (migrating from one site to another)
or adaptability (mainly learning) capabilities. We will see through the state of the art which
properties researchers use in their frameworks. We also use the aforementioned properties to
classify different middlewares according to their conformity to the agent paradigm.

The remaining paper is organized as follows: Section 2 presents several agent-based frame-
works for context awareness. These frameworks are classified according to their level of con-
formity to the agent paradigm. The usefulness of agents in these frameworks is also discussed
in this section. Section 3 enumerates the advantages of using agents in context awareness. Sec-
tion 4 discusses the challenges (mainly quality of context, learning, and security aspects) the
agent-based approach has to cope with in order to implement better context-aware middlewares.
Finally, Section 5 concludes this paper.

2 State of the art

In order to study the different existing agent-based middlewares for context awareness, we clas-
sify frameworks into three main classes according to their level of conformity to the agent
paradigm and more particularly to the agent’s properties: (i) class 1: Agents are only com-
municative, (ii) class 2 : Agents are also autonomous, reactive and proactive, and (iii) class 3:
Agents are also mobile. A fourth class could have been considered (class 4: agents also learn),
but none of the middlewares addressed in this report really supports learning.

2.1 Class 1: agents are only communicative

In this class of middlewares, “agents” (or more likely “processes”) communicate between each
other in order to fulfill the required tasks. The use of agents in these middlewares is merely
an implementation choice that offers modularity and adaptability. For example, in BerlinTain-
ment [WCRS04], CAMPS [QSS06] and [WW07], “agents” represent different modules that
provide functionalities for mobile services but do not behave as autonomous and reactive agents.
Agents in StarCCM [ZWH+06] are only used to collect data from sensors. An agent acts as the
mediator between the context collector and the sensors, and it reports the context to the Context
collector periodically. In [SDSP07], part of (CHIL) project which is one of the most prominent
European research initiatives in the areas of pervasive computing and multi-modal interfaces,
authors use an agent-based architecture to take advantage of the JADE platform.

2.2 Class 2: agents are also autonomous, reactive and proactive

In this class of middlewares, communicative agents are also autonomous, reactive, and proactive.
Consequently, frameworks presented in this section could be named agent-based approaches
since they fulfill the minimum set of required properties of an agent. Nevertheless, not all of
these middlewares address the three properties with the same level of importance. Actually,

Proc. CAMPUS 2008 2 / 12

ECEASST

each proposed system focuses more or less on each of these properties depending on the middle-
ware’s objectives. In [PL07], by using the BDI (Belief-Desire-Intention) concept, the framework
takes advantage of two important properties of agents: autonomy and pro-activeness. Agents,
representing users are capable to perform tasks and solve conflicts while taking into account cur-
rent context and goals of their users. AMUSE [TSS05] is based on the agentification (process
of making a target entity workable as an agent by adding knowledge processing mechanism to
the entity) of each entity of the environment. The agent-based approach takes advantage of the
reasoning and cooperative interaction capabilities of agents. Agents organize themselves into
groups to provide the required service. A service is then constructed by a combination of entities
controlled by agents. Stu21 [SC06] and ACAI [KK05] are examples of middlewares which take
advantage of agents’ capabilities to design agents which are highly aware of context (able to
perform advanced operations on context, see farther).

2.3 Class 3: agents are also mobile

In this third class, middlewares propose a mobile-agent-based approach. They try to take advan-
tage of one of the optional property of agents (mobility). Even if still in its infancy, the composite
research area of context-aware mobile-agent-based middlewares tends to exhibit some common
guidelines for the integration of mobile agents and context-specific functions. AMASE [KRS99]
is a good example which takes full advantage of agents’ mobility in order to provide users with
better context-aware services. It enables users of mobile handheld devices to access value-added
services over wireless networks. In [HK05], the authors go one step farther by assigning a per-
sonalized profile and a specific role to mobile users at visited sites.

2.4 Discussion and Analysis

In this sub-section, we aim at refining the previous classification in order to make better compar-
ison between the different middlewares. According to the above state of the art, we notice that
software agents are used within context-aware middleware for different purposes. We enumerate
these purposes in what follows:

• Implementation: agent-based approach is used as a way of implementing distributed sys-
tems (since it guarantees more modularity and adaptability).

• Context awareness: agents are aware of the context and have their own context model.

• Reasoning: agents can reason about the context, user’s requests and plans, etc. in order to
make good decisions.

• Negotiation: agents negotiate resources within a dynamic environment.

• Service customization and adaptability: agents provide users with more customized and
adaptable services.

• Connectivity: agents cope with connectivity problems (disconnection, low-bandwidth).

• Security/Privacy: agents are used for security or privacy purposes.

3 / 12 Volume 11 (2008)

Survey: Agent-based Middlewares for Context Awareness

We propose to classify the middlewares according to the above criteria. Table 1 shows for
what reason(s) each middleware has used the agent paradigm. Now, if a certain criterion (e.g.,
“Context awareness”) is not marked with √ (in Table 1), this does not mean that the middleware
does not support this feature (here context awareness). It only means that the middleware does
not use the agent paradigm to achieve that purpose. (+) and (-) correspond to our qualitative
and subjective judgments on the achievement of a given property by a framework. Table 1 also
indicates which properties (of agents) are used for these purposes (last column). Agents can
be: Autonomous (Aut), Reactive (R), Proactive (P), Communicative (Com), Mobile (M), and
Adaptive (Adap). From this benchmark, we reach the following conclusions:

 Implementation Context
awareness

Reasoning Negotiation Service
customization

&
adaptability

Connectivity Security/
Privacy

Context
QoS

Agent
properties

BerlinTainment
(2004)

√ √ (-) (S1) Com

Wang & Wang
(2007)

√ √ (-) (C1) Com, M

CAMPS
(2006)

√ Com

StarCCM
(2006)

√ √ (-) (S2) Com

CHIL
(2007)

√ Com

Plesa & Logrippo
(2007)

√ √ (-) (CA1) √ (++)
(R1)

√ (+) (N1) √ (+) (SCA1) Aut, R, P,
Com

AMUSE
(2005)

√ √ (+) (CA2) √ (-) (R2) √ (++) (SCA2) √ (+) (S3) √ (+)
(Q1)

Aut, R, P,
Com

Stu21
(2006)

√ √ (++)
(CA3)

√ (+) (R3) Aut, R, P,
Com, Adap

ACAI
(2005)

√ √ (+++)
(CA4)

√ (++)
(R4)

√ (+) (N2) Aut, R, P,
Com

Harroud &
Karmouch (2005)

√ √ (+) (CA5) √ (+) (SCA3) √ (+) (C2) √ (+) (S4) Aut, R, P,
Com, M

AMASE
(1999)

√ √ (+) (N3) √ (+) (SCA4) √ (++) (C3) √ (++)
(S5)

 Aut, R, P,
Com, M

Table 1: Classification according to different purposes of using agents, the 3 classes are separated
by thick lines (see Figure 1 for captions)

• Many frameworks (mainly those of Class 1) use agents as a means of implementing a
distributed system. Indeed, agents offer some interesting features which make the imple-
mentation easier. This is discussed in Section 3.

• The agent paradigm offers a significant support for context-aware middlewares and es-
pecially in the following areas: context awareness (modeling and processing), reasoning,
negotiation, customization and adaptability for services, and network connectivity. These
will be also presented as eventual advantages of using agents for context-aware middle-
wares (see Section 3).

• Aspects like Security/Privacy and Context Quality of Service (QoS) are less addressed by
the agent-based approach. Such aspects constitute potential future challenges for agent-
based context-aware middlewares (see Section 4).

Proc. CAMPUS 2008 4 / 12

ECEASST

(CA1) The choice of plans must take into account the current context of the user and decisions are made
based on the most recent information about the environment. The plans that drive the system’s behavior are
expressed in terms of user context, which makes new plans more adaptive and flexible.
(CA2) AMUSE proposes context management ability and cooperation ability to resolve context conflict to
the agents. Moreover, it embeds long-term-context maintenance ability to the agents to accumulate
cooperation history and experiences.
(CA3) Stu21 proposes context aware agents which offer several features concerning context awareness:
keeps a model of context, listens to context changes, uses RDF/XML to interact with other agents about
context, tec.
(CA4) ACAI proposes agents which fulfill several requirements of context awareness (e.g. context
composition, inferring, inter-domain context invocation, etc.).
(CA5) The framework uses context policies in order to ensure that the context is relevant at each visited
site (for mobile agents).
(R1) Agents in this middleware are based on the Belief-Desire-Intension (BDI) concept.
(R2) Agents in AMUSE employ an inference mechanism to perform interaction with other agents and
control the entities they represent.
(R3) The context aware agent in Stu21 has reasoning capabilities (based in rules inference) to reason about
the context (e.g., reasons over its own context to deduce beliefs and goals).
(R4) A Reasoner agent RA contains a new hybrid inference system that integrates logical reasoning, fuzzy
reasoning and semantic rule representation into one system. The RA uses data captured from sensors and
from users’ and services’ profiles to deduce new context information and to trigger actions. The RA uses
logic-reasoning mechanisms to ensure that instances of captured context are consistent both with each other
and with arguments defined in the ontology.
(N1) Communicating agents negotiate preferences for users in order to avoid possible conflicts.
(N2) Autonomous agents representing entities in the environment negotiate context specifications.
(N3) Agents negotiate resources during their migration.
(SCA1) The planning mechanism offers a certain level of customization and adaptability (agents choose
appropriate plans and also retract properly and select an alternative plan in case of plan failure).
(SCA2) The organization and re-organization mechanism processed by different agents guarantees
customized and adaptable services.
(SCA3) This is handled by context policies
(SCA4) Mobile agents in AMASE are pro-active and run autonomously in the network, they can collect
information and deliver it to their users as soon as the requested information becomes available.
(C1) Even if they mentioned that some agents could be mobile, the authors did not use this feature in the
proposed middleware.
(C2) Agents are mobile, they move from one site to another. A site assistant at the visited site establishes a
negotiation process with the site assistant at the home site to determine the visiting user profile and the
authorized services.
(C3) Agents are mobile and their migration depends on the current network QoS. Mobile agents can also
load remote codes. Through this dynamic code loading mechanism at creation time, the used mobile agents
are automatically updated to newer versions.
(S1) The FIPA-compliant MAS-architecture Java Intelligent Agent Componentware (JIAC) used by the
middleware, offers components realizing security functionality (preventing unauthorized service usage and
prohibiting agents from attacking other agents or platforms).
(S2) This is provided by CORBA (the model component used by StarCCM).
(S3) AMUSE has an agent Security Manager (part of the agent platform) which allows the enforcement of
access policies for agent migration and resources.
(S4) Both security and privacy are handled by the policy mechanism.
(S5) AMASE contains security features for user authentication, agent signing and access control. When the
user sends an agent, constant parts of the agent are signed using the private key of the user. The agent
system of course needs the public key of the user. This key is stored as a X509 certificate either in the agent
or it can be retrieved from an AMASE directory. AMASE supports access control lists. A service agent can
create access control lists and define which rights a user will be granted.
(Q1) To realize QoS-aware ubiquitous service construction, while considering multiple contexts, AMUSE
proposes contract-based service construction scheme of agents. QoS awareness of the system is also
measured. AMUSE investigates how much the QoS awareness is improved. To measure the QoS
awareness, a User Request Achievement level is deployed. Using this metrics, the system can measure how
much the user requirement is fulfilled with provided quality of service.

Figure 1: Captions

5 / 12 Volume 11 (2008)

Survey: Agent-based Middlewares for Context Awareness

• An important property of agents (Adaptability, which includes learning) is hardly used.
Integrating learning mechanism could however be a good value-added for the next gener-
ation of agent-based context-aware middlewares (see Sections 3 and 4).

3 Advantages

Based on the state-of-the-art and on the conclusions drawn from the comparative table (Table 1),
we identify five main advantages of using an agent-based approach for context-aware middle-
wares. These advantages are related to the five following aspects: implementation, reasoning,
negotiation, scalability and adaptability, context awareness, and mobility.

3.1 Implementation

One of the main advantages of using agents in implementing distributed systems is modular-
ity. In fact, agent-based applications are mainly configured by selecting and defining the par-
ticipating agents. Therefore different modules made up by groups of agents may be changed
easily. These systems can also take advantages of the communication facilities offered by agents
(e.g. standardized Foundation for Intelligent Physical Agents FIPA). This explains why several
context-aware middlewares use agents in the service layer. JADE is probably one of the most
used platforms to build an agent-based system.

3.2 Reasoning

Thanks to their autonomy and pro-activity, agents are well suited for reasoning. In a context-
aware middleware, this capability is useful to achieve several goals, such as to:

• Plan: agents are able to make a choice between different plans (in case there are a number
of alternative plans for achieving the same goal) and apply appropriate decision proce-
dures. If a plan fails, agents are able to retract properly and select an alternative plan.
Finally, when the user has a number of goals that cannot be achieved simultaneously,
agents are able to make a decision about which goals to try to achieve. All these features
are useful in context awareness systems as suggested by [PL07].

• Derive behaviours from context: reasoning takes place when an agent needs to make sense
out of the contextual information that is captured from the sensing infrastructure or other
agents, and when an agent needs to determine its subsequent behaviour. When a piece
of contextual information is captured, agents are able to provide their own interpretation
of the contextual information and to determine their subsequent behaviours. Chen et al.,
developed a proof-of-concept agent system called CoolAgent [CTS+01] that demonstrates
the significance of logical reasoning and ontology sharing in a context-aware distributed
computing environment.

• Reason about uncertain context: agents can have fuzzy-logic based inference capability
that allows them to reason about uncertain context, and to provide actions that are not
explicitly defined [KK05].

Proc. CAMPUS 2008 6 / 12

ECEASST

3.3 Negotiation

In context-aware systems, negotiation can be necessary to solve conflicts. Agents are largely
used for negotiation within the Artificial Intelligence community. Similarly, agents can also
be used to support context-aware middlewares with negotiation process. In what follows three
examples of agents negotiating in a context-aware system (drawn out of the state of the art of
this paper):

• Contexts collected from different sources can be contradictory or conflicting. Agents
(holding conflicting contexts) are able to negotiate (here, cooperatively) to solve context
conflicts [PL07].

• When agents are mobile, negotiation between the resource manager and the agent that
represents a service must take place to make sure that the necessary resources are available
at the time the service is requested by the mobile user [HK05].

• Resource availability tends to be poor and unstable in ubiquitous environment. Conse-
quently, not only user context, but also resource context of hardware, network and software
should be considered. In addition, multiple users would be given the ubiquitous services
simultaneously, thus problems of effective resource sharing and assignment should be ad-
dressed. In [PL07], agents negotiate in order to cope with these problems.

3.4 Scalability and Adaptability

Agent-based approach offers two other advantages, namely adaptability and scalability.

• Scalability: context-aware applications must be scaled to different users and devices. Scal-
ability should also be given according to different kinds of networks showing different QoS
characteristics. This can be achieved by agents either through re-configuration, dynamic
adaptation of the runtime behaviour, duplication (duplicating the agents responsible for
critical tasks, thus distributing the load between multiple identical agents and removing
bottlenecks), or mobility [HK05, KRS99] (mobile agents can negotiate their resource re-
quirements with the host systems to ensure a certain QoS). In [HK05], the authors demon-
strate how, by using policies, they can enable dynamic changes in the behaviour of the
system in a flexible and scalable manner.

• Adaptability: By using mobile agents, applications can provide value-added features which
are based upon the adaptation of services. Since agents are pro-active and run autonomously
in the network, they can collect information and deliver it to their users as soon as the re-
quested information becomes available. Besides, agent environment may be reconfigured
at runtime, i.e. agents may be added or removed to adapt the functionality provided (when
offering a new service for example) [KRS99]. Finally, through the notion of Inter-agent
Relationship IAR (which consists on grouping agents in cooperative clusters) [TSS05],
the authors give an interesting example of how autonomous agent configuration can bring
more adaptability to context-aware services.

7 / 12 Volume 11 (2008)

Survey: Agent-based Middlewares for Context Awareness

3.5 Context awareness

By using these capabilities, mentioned above, agents can achieve better context awareness.
Stu21 [SC06] shows a good example of how an agent can be aware of the context. The Stu21’s
context agent is able to keep a model of context, reason over its own context to deduce beliefs
and goals, communicate changes in its own context to other agents, listen to context changes in
pees as input to its own decision-making, and initiate, execute, and terminate behaviours in re-
sponse to context changes. Another example is given in [KK05] where agents are able to achieve
context representation unification, context composition, inference and dissemination, context-
sensitive communication protocol, and context management.

3.6 Mobility

Usefulness of mobile agents has been debated since early 90s. After a fall of interest in the last
decade, the interest to mobile agents is again on the rise [Zas04]. This is motivated by advances in
enabling technologies, including wireless networks, diverse devices, portable platforms, sensor
networks.

Code mobility can improve the traditional client/server paradigm along two different and or-
thogonal lines [BBC+04]: (a) allowing the dynamic decision of where the service should be
located; (b) allowing the dynamic decision of which host provides the needed resources. In addi-
tion, mobile agents benefit from the additional flexibility of moving code together with the state
modified during the already performed computation. Mobile agents offer several advantages to
context-aware middlewares. Indeed, they:

• reduce communication: as a result of today’s wireless telecommunication networks charg-
ing for the connection time, mobile users try to minimize the connection time to the net-
work. To enable a mobile user to work with a device while not being connected to the
network, one approach consists on decoupling the mobile computer and its applications
from the network [KRS99]. Here, agent systems are very well suited. The mobile agent
paradigm does not need continuous network connectivity because connections are required
only for the time needed to inject agents from mobile terminals to the fixed network infras-
tructure. Since these agents are also autonomous, they can carry on services even when
their users are disconnected and deliver service results back at their reconnection.

• are easily updated: a code can be located (and updated) in any remote server. Mobile
agents can then load this code and get automatically updated to newer versions. AMASE
uses these concepts [KRS99].

• take into account the network’s QoS: depending on the available bandwidth, agents may
decide to migrate to another host or to stay at their host site. For example, the migration of
an agent across a low-bandwidth GSM connection requires considerable time and there-
fore cost. As a result, an agent can delay its migration until a faster connection becomes
available.

• reduce complexity: A virtual pervasive world is characterized by large number of de-
vices with limited resources and software services. A user’s request may need to navi-

Proc. CAMPUS 2008 8 / 12

ECEASST

gate through complex heterogeneous networks, often crossing boundaries of multiple dis-
tributed systems. Mobile agents can make use of dynamically available resources and
make decisions according to changing situations, which reduces the complexity of sup-
porting context-aware services. Mobile agents use standards (e.g., RDF/OWL Ontology,
FIPA message protocol) in order to cope with the heterogeneity of distributed systems.

• guarantee more adaptability: being both intelligent (autonomous, reactive, and pro-active)
and mobile, allows agents to perform adaptation in pervasive systems. Their dynamic
behaviour (based on up-to-date information that could not have been otherwise acquired
in a pre-planned or more static manner) offers a better context-aware service [Zas04].

4 Challenges

The agent-based technology has also some drawbacks, often identified in the associated security
issues (especially for mobile-agent-based systems). These potential weaknesses have challenged
researchers to investigate and provide rich mechanisms, tools and strategies for security. How-
ever, according to our survey, most of existing context-aware middlewares seem not to care a lot
about this aspect. Besides, none of the studied middlewares has addressed the Quality of Con-
text (QoC). This section formulates these two drawbacks as future challenges for agent-based
context-aware middlewares. In addition and as previously mentioned, our survey shows that
most existing middlewares do not take advantage of the learning capabilities of agents. We thus
suggest the integration of this propriety in order to build more efficient context-aware agents.

4.1 Security and privacy

Security is an important issue in agent-based applications since code and data can move between
different systems. Besides, the agent-based computing itself must be secured. This involves
protecting agents against code modifications and malicious agents. Moreover, privacy of data
must be guaranteed. Agents carrying this data have to be protected against unauthorized reading.

Current agent-based applications already support some security and privacy features. For
instance, some middlewares presented in our state-of-the-art address these requirements:

• in security: few architectures include security features preventing unauthorized service
usage and prohibiting agents from attacking other agents or platforms. For example,
AMASE [KRS99] contains security features for user authentication, agent signing, and
access control. When the user sends an agent, constant parts of the agent are signed using
the private key of the user. The agent system of course needs the public key of the user.

• in privacy: in [WCRS04], privacy aspects regarding personal information are addressed
by encapsulating sensitive information within dedicated personal user agents. In AMASE
[KRS99], agents support access control lists. A service agent can create access control
lists and define which rights a user will be granted.

Nevertheless, most of these security and privacy features (except in AMASE) are offered by
the tools of implementation (e.g., JADE), which support generic security features. Security and

9 / 12 Volume 11 (2008)

Survey: Agent-based Middlewares for Context Awareness

privacy should rather be more considered. Agent-based middlewares should propose security
and privacy features which are more suitable for context awareness, instead of only relying on
security facilities offered by agent-based environments.

4.2 Quality of Context

Over the past decade, many context-aware applications have been built. However, few of them
have been deployed in real life. According to [BGT+06], the quality of context is one main
reason. QoC is either ignored or not well addressed in the existing context-aware systems. Agent-
based middlewares do not make exception. The authors also claim that systems are often unable
to guarantee an acceptable QoC because of two main reasons:

• Different sensors may produce different sensed data values which will lead to the incon-
sistency of sensor-based applications.

• Most sensors usually send sensed data periodically so that it is very difficult for computers
to know what happens in the time interval between two sensor signals.

Nevertheless, multi-agent system paradigm seems to be well suited to solve, at least, the first
problem. Indeed, agents can take advantage of their capabilities of negotiation, communication,
cooperation, learning, and reasoning in order to solve inconsistence conflicts. As for the sec-
ond problem, agents can also be useful. For example, they may learn which sensors are most
likely to sense a change between two successive signals and then adapt their behaviour toward
these sensors (for example, by imposing a more frequent monitoring). They may also reason
about uncertain contexts and use an advanced learning mechanism in order to predict context
changes. Since such processes may require more intelligence (which suggests more complex-
ity), a distributed solution (multi-agent system) is inevitable. Finally, and given a set of QoC
measurements, agents can learn (from these measurements) in a distributed way how the context
quality is evolving and then make appropriate decisions in order to enhance the QoC (since they
are autonomous and able to reason).

4.3 Learning

Learning is one important property of agents. However, according to our benchmark (no “Adap-
tive” instance mentioned in the last column of Table 1), most agent-based middlewares do not
integrate learning capabilities to their agents (except Stu21 [SC06] which implements a simple
learning mechanism dedicated to a very specific task), and yet it could be very useful. Indeed,
learning can be used by agents to: (i) improve the QoC (see the previous section), (ii) make
applications more adaptable to users’ needs, (iii) make predictions about context and anticipate
potential problems, and (iv) address context conflicts in a more intelligent way.

5 Conclusion and Future Work

In this paper we made a survey on existing agent-based context-aware middlewares. We classi-
fied them according to their conformity to the agent paradigm. We thus noticed that in most pro-
posed architectures, the use of agent-based approach is merely an implementation choice. Other

Proc. CAMPUS 2008 10 / 12

ECEASST

sorts of distributed systems also could have been used as well. Nevertheless, others middlewares
take more advantage of the agent paradigm. Then we refined the classification according to 8
different purposes of using agents (implementation, reasoning, context awareness, QoS, Secu-
rity/privacy, connectivity, service customization and adaptability, and negotiation). We compared
the targeted middlewares according to these criteria. Based on this caparison, three more con-
clusions were reached: (a) the agent paradigm offers a significant support for context-aware
middlewares in different areas (context awareness, reasoning, negotiation, customization and
adaptability for services, and network connectivity); (b) aspects like Security/Privacy and Con-
text QoS are less considered; (c) one capability of agents (adaptability, which includes learning)
is hardly used. Given these observations, we enumerated several advantages of using agents
in context-aware middlewares and select illustrative examples from the studied systems. We
also pointed to the weakness of existing systems and identify three challenges to be addressed
(security/privacy, QoC, and learning) by such systems.

In conclusion, agents seem to be very suitable to fulfill the main requirements [WCRS04]
(modularity, scalability, adaptability, and distributedness) of middlewares for context awareness.
However, the achievement of all these requirements will depend on the use of the agent paradigm
as a central paradigm in the considered systems.

This paper was motivated by our research group’s current work on a middleware for context
awareness called Context Management Framework (CMF) [KBIP06], part of the Dutch project
program Freeband. Even if CMF (which is already implemented and successfully tested) is
highly distributed, it does not rely on an agent-based architecture. We thus made this survey
to see if agents could be a value-added for CMF. Indeed, our study shows that an agent-based
approach, apart of being an implementation choice, can bring other benefits if the agent paradigm
is fully used. We expect that the “agentification” of CMF, which has a strong focus on the QoC,
would enhance the adaptability of context-aware services.

Bibliography

[BBC+04] P. Bellavista, D. Bottazzi, A. Corradi, R. Montanari, S. Vecchi. Mobile Agent Mid-
dlewares for Context-aware Applications. CRC Press, 2004.

[BGT+06] Y. Bu, T. Gu, X. Tao, J. Li, S. Chen, J. Lu. Managing Quality of Context in Pervasive
Computing. In Proc. of the 6th Int. Conf. on Quality Software. Pp. 193–200. IEEE,
2006.

[Che04] H. Chen. An Intelligent Broker Architecture for Pervasive Context-Aware Systems.
PhD dissertation, University of Maryland, 2004.

[CTS+01] H. Chen, S. Tolia, C. Sayers, T. Finin, A. Joshi. Creating Context-Aware Software
Agents. First GSFC/JPL Workshop on Radical Agent Concepts, September 2001.

[Gai] Gaia Project http://gaia.cs.uiuc.edu/ last visited Sept. 2007.

[HK05] H. Harroud, A. Karmouch. A Policy Based Context-Aware Agent Framework to
Support Users Mobility. In Proc. of AICT-SAPIR-ELETE. Pp. 177–182. IEEE, 2005.

11 / 12 Volume 11 (2008)

Survey: Agent-based Middlewares for Context Awareness

[KBIP06] H. van Kranenburg, M. Bargh, S. Iacob, A. Peddemors. A Context Management
Framework for Supporting Context-Aware Distributed Applications. IEEE Commu-
nications Magazine, pp. 767–74, August 2006.

[KK05] M. Khedr, A. Karmouch. ACAI: agent-based context-aware infrastructure for spon-
taneous applications. J. Netw. Comput. Appl. 28(1):19–44, 2005.

[KRS99] E. Kovacs, K. Röhrle, B. Schiemann. Adaptive Mobile Access to Context-Aware
Services. In Proc. of the 1st Int. Symposium ASAMA. P. 190. IEEE, 1999.

[Mae94] P. Maes. Agents that reduce work and information overload. Commun. ACM
37(7):30–40, 1994.

[PL07] R. Plesa, L. Logrippo. An Agent-Based Architecture for Context-Aware Commu-
nication. In Proc. of the 21st Int. Conf. on Advanced Information Networking and
Applications Workshops. Pp. 133–138. IEEE, 2007.

[QSS06] W. Qin, Y. Suo, Y. Shi. CAMPS: A Middleware for Providing Context-Aware Ser-
vices for Smart Space. LNCS 3947, pp. 644–653. Springer, 2006.

[SC06] A. Singh, M. Conway. Survey of Context aware frameworks - Analysis and Criti-
cism. Technical report, University of North Carolina, 2006.

[SDA99] D. Salber, A. K. Dey, G. D. Abowd. The context toolkit: aiding the development
of context-enabled applications. In Proc. of the SIGCHI conf. on Human factors in
computing systems. Pp. 434–441. ACM, 1999.

[SDSP07] J. Soldatos, N. Dimakis, K. Stamatis, L. Polymenakos. A breadboard architecture
for pervasive context-aware services in smart spaces: middleware components and
prototype applications. Personal Ubiquitous Comput. 11(3):193–212, 2007.

[TSS05] H. Takahashi, T. Suganuma, N. Shiratori. AMUSE: An Agent-based Middleware
for Context-aware Ubiquitous Services. In Proc. of the 11th Int. Conf. on Parallel
and Distributed Systems. Pp. 743–749. IEEE, 2005.

[WCRS04] J. Wohltorf, R. Cissee, A. Rieger, H. Scheunemann. BerlinTainment: An Agent-
Based Serviceware Framework for Context-Aware Services. In 1st Int. Symposium
on Wireless Communication Systems. 2004.

[WW07] C. Wang, X. Wang. Multi-agent Based Architecture of Context-aware Systems. In
Int. Conf. on Multimedia and Ubiquitous Engineering. Pp. 615–619. 2007.

[Zas04] A. Zaslavsky. Mobile Agents: Can They Assist with Context Awareness? In Proc.
of IEEE Int. Conf. on Mobile Data Management. Pp. 304–305. IEEE, 2004.

[ZWH+06] D. Zheng, J. Wang, W. Han, Y. Jia, P. Zou. Towards A Context-Aware Middleware
for Deploying Component-Based Applications in Pervasive Computing. In Proc. of
the 5th Int. Conf. on Grid and Cooperative Computing. Pp. 454–457. IEEE, 2006.

Proc. CAMPUS 2008 12 / 12

	Introduction
	State of the art
	Class 1: agents are only communicative
	Class 2: agents are also autonomous, reactive and proactive
	Class 3: agents are also mobile
	Discussion and Analysis

	Advantages
	Implementation
	Reasoning
	Negotiation
	Scalability and Adaptability
	Context awareness
	Mobility

	Challenges
	Security and privacy
	Quality of Context
	Learning

	Conclusion and Future Work

