
Electronic Communications of the EASST
Volume 11 (2008)

Proceedings of the
First International DisCoTec Workshop on
Context-aware Adaptation Mechanisms for

Pervasive and Ubiquitous Services
(CAMPUS 2008)

Towards Self-evolving Context-aware Services

M. Autili, P. Di benedetto, P. Inverardi and D. A. Tamburri

12 pages

Guest Editors: Romain Rouvoy, Mauro Caporuscio, Michael Wagner
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Towards Self-evolving Context-aware Services

M. Autili1, P. Di benedetto2, P. Inverardi3 and D. A. Tamburri4

1 marco.autili@di.univaq.it, 2 paolo.dibenedetto@di.univaq.it,
3 inverard@di.univaq.it, 4 damien.tamburri@di.univaq.it

Università dell’Aquila - Dipartimento di Informatica, Italy

Abstract:

The introduction of new communication infrastructures such as Beyond 3rd Gen-
eration (B3G) and the widespread usage of small computing devices are rapidly
changing the way we use and interact with technology to perform everyday tasks.
Ubiquitous networking empowered by B3G networking makes it possible for mobile
users to access networked software services across continuously changing heteroge-
neous infrastructures by resource-constrained devices. Heterogeneity and devices’
limitedness, create serious problems for the development and dynamic deployment
of mobile applications that are able to run properly on the execution context and
consume services matching with the users’ expectations. Furthermore, the ever-
changing B3G environment calls for applications that self-evolve according to con-
text changes. Out of these problems, self-evolving adaptable applications are in-
creasingly emerging in the software community. In this paper we describe how
CHAMELEON, a declarative framework for tailoring adaptable applications, is being
used for tackling adaptation and self-evolution within the IST PLASTIC project.

Keywords: Context-awareness, Self-evolution, Adaptation mechanisms

1 Introduction
The widespread usage of small computing devices and the introduction of new communica-
tion infrastructures are rapidly changing the ways we use and interact with technology to per-
form everyday tasks. Today’s networking infrastructures are typically made of mobile resource-
constrained devices, characterized by their heterogeneity and limitedness: e.g., ubiquitous net-
working, empowered by B3G networks, makes it possible for mobile users to access networked
software services across heterogeneous infrastructures through resource-constrained devices.
Mobility, inducing changes to the execution and network environments (and therefore changes
to the availability of resources), demands for self-evolving applications capable of coping with
resource scarcity and with the inherently faulty and heterogeneous nature of such environments.

In this paper we describe how CHAMELEON, a declarative framework for tailoring adaptable
applications for resource-constrained devices, is being used for tackling a form of self-evolution
and adaptation within the IST PLASTIC project whose goal is the agile development/deployment
of context-aware/self-adapting services for B3G networks. PLASTIC introduces the notion of
requested Service Level Specification (SLS) and offered SLS to deal with the (extra-functional)
preferences that will be used to establish the Service Level Agreement (SLA) between the service
consumer and the service provider.

1 / 12 Volume 11 (2008)

mailto:marco.autili@di.univaq.it
mailto:paolo.dibenedetto@di.univaq.it
mailto:inverard@di.univaq.it
mailto:damien.tamburri@di.univaq.it

Towards Self-evolving Context-aware Services

For the heterogeneous and ever-changing B3G environment, we propose a CHAMELEON-
based PLASTIC solution to address self-evolution of J2ME MIDlet applications by presenting:
• A programming model that allows for easily specifying, in a flexible and declarative way,
different adaptation alternatives for Java applications. The model is based on an agile and user-
friendly extension of the Java language;
• A mechanism that, based on the Over-The-Air (OTA) provisioning technique [OTA], allows
for dynamic deployment, un-deployment, and re-deployment of different alternatives of mobile
(client) applications able to (i) run properly on the execution context and (ii) consume services
matching with the users’ expectations. The mechanism will require the ability to reason, on
applications and environments alike, in terms of the resources they need and offer, respectively
(i.e., resource supply and resource demand), as well as the ability to suitably adapt the applica-
tion to the environment that will host it while meeting the requested SLS;
• A mechanism that, providing J2ME MIDlet applications with ad-hoc methods for saving and
restoring the (current) application state, enables applications’ evolution (against monitored con-
text changes and according to adaptation policies) by dynamically un-deploying the no longer
apt application alternative and subsequently (re-)deploying a new one with the desired aptitude.

CHAMELEON, whose foundations are presented in [IMN04, MI07], is based on a static anal-
ysis approach to the inspection of Java programs and their characterization w.r.t. their resource
consumption in a given execution environment. Explicitly targeting resource-constrained de-
vices, we implemented and instantiated all the needed machinery on the Java platform due to its
widespread availability on today’s mobile devices (e.g., smart phones, PDAs, etc.). The approach
uses a light extension of the Java language, a resource model, and an SLS model that constitute
the basis for a declarative technique that supports the development, deployment, and evolution
of adaptable applications. By leveraging this approach we are able to perform a quantitative
resource-oriented analysis of Java applications, further accounting for the user preferences spec-
ified through SLS model. In the context of such applications, our framework allows for evolution
by uniting un-deployment to dynamic re-deployment of appropriate adaptation alternatives.

The paper is structured as follows: Section 2 sets the “context” and Section 3 introduces
the PLASTIC development process model. Section 4 gives an overview of the CHAMELEON

framework. A running example will be presented all throughout the evolution of the paper until
Section 5 where a simple usage scenario is described. Related work is briefly discussed in
Section 6 and concluding remarks as well as future directions are given in Section 7.

2 Setting the “Context”
Context awareness and adaptation have become two key aspects to be considered while devel-
oping applications for B3G networks. As pointed out in [BEII06], while providing/consuming
services, applications need to be aware of and adaptive to their context, i.e., the combination of
user-centric data (e.g., information of interest for users according to their current circumstance)
and resource/computer-centric data (e.g., resource limits and conditions of devices and network).

Strictly concerning our own purposes, context awareness identifies the capability of being
aware of the user needs and of the resources offered by an execution environment (e.g., proces-
sor, memory, display, I/O capabilities, available radio interfaces), in order to decide whether that
environment is suited to receive and execute the application in such a way that end-users expec-
tations are satisfied. Adaptation identifies the capability of changing the application in order to

Proc. CAMPUS 2008 2 / 12

ECEASST

comply with the current context conditions. In order to perform an adaptation it is essential to
provide an actual way to model the characteristics of the application itself, of the heterogeneous
networking infrastructure, and of the execution environment, aiming at a high end-user degree
of satisfaction (depending on requested and offered SLS). Thus, while delivering services, it is
useful to be able to reason about the resources demanded by an application (and its possible
adaptation alternatives) and the ones supplied by the hosting environment. It is worth to note
that although a change of context is measured in quantitative terms, i.e., in terms of availability
of resources, an application can only be adapted by changing its behavior - i.e., its function-
al/qualitative specification.

In this setting, three different construction approaches towards adaptable applications might
be considered: (i) self-contained applications that embed the adaptation logic as a part of the
application itself and, therefore, are a-priori instructed on how to handle dynamic changes in the
environment hence reacting to them at runtime; (ii) tailored applications that are the result of an
adaptation process which has been previously applied on a generic version of the application; (iii)
middleware-based adaptable applications in which the middleware embeds the adaptation logic
in the form of meta-level information on how the applications can be adapted. Self-contained
adaptable applications are inherently dynamic in their nature but suffer the pay-off of the in-
evitable overhead imposed by the adaptation logic. On the contrary, tailored adapted applica-
tions have a lighter code that make them suitable also for limited devices, but are dynamic only
with respect to the environment at deployment time, while remaining static with respect to the
actual execution, i.e., they cannot self-adapt to runtime changes in the execution environment.
Considering the huge variety and limitedness of our target devices, and the complexity of B3G
networks would make unfeasible the deployment of a fully self-adaptive application (i.e., a po-
tentially huge-sized self-contained application) suitable for any resulting execution environment
and possible context in which the user can move.

The framework CHAMELEON is for tailored applications. In this paper we propose how it can
be used for tackling self-evolution (against context changes monitored through CHAMELEON

as supported by the PLASTIC B3G middleware) through dynamic (re)deployment of adapta-
tion alternatives and finally, in Section 7, we argue how, by means of (physical) mobility pat-
terns [MM07], it can be extended towards a compromise between self-contained and tailored
service applications aiming at a more seamless self-evolution.

3 Developing context-aware services
In this section we briefly introduce the PLASTIC development process model, that relies on the
PLASTIC Conceptual Model, by only focussing on specific details pertaining the CHAMELEON-
based approach to self-evolution we are going to present in following sections. For a complete
description (text and diagrams) of the conceptual model and for a detailed instantiation of the
PLASTIC development process model we entirely refer to [PLAb] and [ABC+07, PLAc], re-
spectively. The conceptual model will be textually described by emphasizing words that identify
conceptual model entities.

The conceptual model is a reference model formalizing the needed concepts to realize service-
oriented B3G applications. The central entity here is Service - abstract archetypical notion of a
real world service. In the context of B3G networking, we specifically focus on services con-
cretized by Adaptive Software Services, which are deployed and accessed in the specific network

3 / 12 Volume 11 (2008)

Towards Self-evolving Context-aware Services

of interest. Implemented by context adaptable Software Components, Adaptive Software Services
allow Service Consumer parties to access needed services anywhere over the B3G network, from
any device, as provisioned by Service Provider parties. In the light of our goal, an adaptive soft-
ware service might be provided/consumed by CHAMELEON-based adaptable applications that
are consequently able to run on resource-constrained PLASTIC-enabled devices.

A key feature of services for B3G networks is Context-aware Adaptation according to Consumer-
side, Network-side and Provider-side Contexts of service consumption. These various contexts
of service consumption impact upon the QoS of the service, also decomposing into Consumer-
side, Network-side and Provider-side QoSs. In particular, services may guarantee QoS properties
in a given context, possibly leading to service adaptation in broader contexts.

On one side, network-side context identifies the characteristics of the (multiple) network(s)
between consumer and provider such as number and type of networks, number of active users,
number of available services, security, transmission protocol, access policy, etc. This is of par-
ticular relevance, since the network context impacts upon the QoS represented by network-side
QoS (e.g., bitrate, transfer delay, packet-loss, network coverage). On the other side, considering
the mobile nature of a PLASTIC application deployed over heterogeneous PLASTIC-enabled
devices, the provider- and consumer-side contexts model device characteristics in terms of avail-
able resources (e.g., screen resolution, CPU frequency, memory size, available radio interfaces).

Figure 1: Plastic Development Process

In our setting, overall contextual informa-
tion is retrieved by CHAMELEON exploiting the
PLASTIC B3G middleware. The middleware
provides runtime support for the deployment and
access/consuption of services and is the key to
ease the management of B3G networking. Ex-
ploitation of this specific middleware then re-
lies upon the use of dedicated software com-
ponents, i.e., Consumer-side, Bridge-side and
Provider-side Middlewares, deployed on the ser-
vice’s consumer, bridge and provider, respec-
tively. The role of bridge is introduced in ad-
dition to the canonical roles for SOA, i.e., con-
sumer and provider. More specifically, bridges
are those (PLASTIC-enabled) devices which de-

ploy and run the bridge-side middleware component and act as mediators. They are in charge of
routing communication among independent networks making up B3G.

Introducing the notion of requested Service Level Specification (SLS) and offered SLS, PLAS-
TIC considers the (extra-functional) preferences that will be used to establish the Service Level
Agreement (SLA) between consumer and provider. The SLA is an entity modeling the conditions
on the QoS accepted by both consumer and provider. SLA represents a kind of contract that is
influenced by the requested SLS and the context where the service has to be provided/consumed.
When a new service request is formulated, the PLASTIC platform has to (possibly) negotiate the
QoS and upkeep it (possibly) through self-evolution. This contractual procedure may terminate
either with or without a QoS agreement between consumer and provider.

With reference to Figure 1, the service and the relative (potential) client models are specified

Proc. CAMPUS 2008 4 / 12

ECEASST

in terms of their functionalities and SLS (possibly along with demanded/supplied resources).
Model-to-model transformation is performed in order to derive models for different kinds of
analysis (e.g., for defining/estimating/refining SLSs). Some models (not necessarily different
from the previous ones) will be made available at deployment- and run-time to allow the adap-
tation of the service to the execution context, based on data retrieved by run-time analysis/moni-
toring and evolution policies (see the box “Self-Evolving/Adaptive Service” shown in Figure 1).
The SLS will drive the adaptation strategies through Model-To-Code transformation (right-hand
side of Figure 1) that is used to build both the core and the adaptive code of the application. The
core code is the frozen portion of the developed self-evolving/adaptive service and represents its
invariant semantics. The adaptive one is a “generic code”. A generic code embodies a set of
(preemptively envisioned) adaptation alternatives that will make the code capable of evolving.
This code portion allows for evolution in the sense that, from contextual information and pos-
sible changes of the user needs, a currently deployed alternative - that is no longer apt - can be
dynamically un-deployed and a new one - with the desired aptitude - subsequently (re-)deployed.
In fact, a particular alternative might be suitable for a particular execution context and specified
user needs. During service consumption, run-time analysis, monitoring and evolution policies
selection are performed and, basing on the results, a new alternative might be selected. The
generic code is written by using the extended Java within the Development Environment while
the alternatives’ selection is carried out through the Customizer, both part of the CHAMELEON

framework we are about to introduce.

4 The CHAMELEON framework
CHAMELEON allows the development and deployment of Java applications that, via the envi-
sioned adaptation alternatives, are generic and can be correctly adapted with respect to a dynam-
ically provided context. Figure 2 shows the components of the framework architecture.

Figure 2: Chameleon Architecture

. Development Environment. The Development
Environment is a standard Java development environ-
ment that provides developers with a set of ad-hoc ex-
tensions to Java for easily specifying, in a flexible and
declarative way, the generic code. Methods are the
smallest building blocks that can be adapted. Figure 3
shows a snippet of an adaptable MIDlet for consum-
ing an e-learning service that promotes effective stu-
dent/professor cooperation, providing a set of flexible
tools that aid the work of online learning communities.

The adaptable class e-learningMidlet contains four
adaptable methods: connect, getLesson, saveState
and restoreState (bearing the keyword adaptable).
Adaptable methods do not have a definition in the
adaptable class where they are declared but they are de-
fined within adaptation alternatives (see the keywords
alternative and adapts). It is possible to specify more
than one alternative for a given adaptable class pro-

vided that for each adaptable method there exists at least one alternative that contains a definition

5 / 12 Volume 11 (2008)

Towards Self-evolving Context-aware Services

for it. Such a generic code will be preprocessed and a set of standard Java application alternatives
will be derived by suitably combining the adaptable methods implementations provided in the
various alternatives. These are then compiled using standard Java compilers.

The CHAMELEON framework is used to adapt the e-learning service according to the execution-
and network-context of the student device and to his/her requested SLS. In particular, the adapt-
able e-learningMidlet has two alternatives, each one providing implementation for all the adapt-
able methods. The GPRS alternative connects via GPRS and, considering the limited speed of
this connection, allows for streaming (via the getLesson method) the lesson slides only. The WiFi
alternative connects via WiFi and, exploiting the higher connection speed, allows for streaming
the high-quality video lesson with all its multimedia content (slides plus other interactive mul-
timedia objects). Upon student request of the e-learning service, the suitable Midlet alternative
for consuming such a service will be delivered and deployed on the device with an On-The-Fly
fashion by using our suitable implementation of the Over-The-Air (OTA) provisioning tech-
nique [OTA] for automatic delivery and deployment of adapted applications.

adaptable public class e−l e a r n i n g M i d l e t extends MIDlet
implements CommandListener {

State s ta te ;
public e−l e a r n i n g M i d l e t (){ . . .}
/∗ l i f e−cyc le management methods ∗/
protected void pauseApp (){ . . .}
protected void s tar tApp (){ . . .}
protected void destroyApp (){ . . .}
/∗ CHAMELEON s p e c i f i c s t a te management methods ∗/
adaptable protected void saveState () ;
adaptable protected void r es to reS ta te () ;
/∗ e−l ea rn i ng s p e c i f i c methods ∗/
adaptable void connect () ;
adaptable void getLesson () ;. . .

}
/ /−−
a l te rna t ive class GPRS adapts e−l e a r n i n g M i d l e t {

void connect () {
Annotation . s l sAnno ta t ion (” Cost (low) , e−l Q u a l i t y (low) ”) ;
p las t i cM idd leware . connectViaGPRS () ;

}
void getLesson () { /∗ streaming of the lesson s l i d e s ∗/ }
protected void saveState () { /∗ save i n t o the s ta te the

number o f the cu r ren t s l i d e ∗/ . . .}
protected void r es to reS ta te () {/∗ r es to re the saved s ta te∗/}

}
/ /−−−
a l te rna t ive class WiFi adapts e−l e a r n i n g M i d l e t {

void connect () {
Annotation . s l sAnno ta t ion (” Cost (high) , e−l Q u a l i t y (high) ”) ;
p las t i cM idd leware . connectViaWiFi () ;

}
void getLesson () { /∗ streaming of the video lesson

wi th i t s mul t imedia content ∗/
Annotation . resourceAnnotat ion (” Ba t te ry (high) ”) ;. . .

}
protected void saveState () { /∗ save i n t o the s ta te the

cu r ren t frame of the video lesson ∗/ . . .}
protected void r es to reS ta te () {/∗ r es to re the saved s ta te∗/}

}

Figure 3: An adaptable Midlet

Given that CHAMELEON has to allow to dy-
namically un-deploy a running adaptation alter-
native and re-deploy a new alternative, it re-
quests that the two methods saveState and re-
storeState must be implemented, in addition
to the natively required MIDlet methods - i.e.,
pauseApp, startApp and destroyApp. Contextu-
alizing in our example, let us assume that the
WiFi alternative is no longer suitable for running
due to a change in context: it will have to be un-
deployed. Upon un-deployment CHAMELEON

will invoke the saveState method to save into the
state a number of key informations such as the
current frame of the video lesson, current slide
number, audio track offset and so on. Let us
now suppose that, entering the new context, the
GPRS alternative becomes more suitable, and
hence has to be (re-)deployed substituting the
previously running WiFi alternative. The GPRS
alternative will be dynamically deployed and,
since only slides can be now viewed, it will be
set to start from the slide saved into the state as
restored through the restoreState method.

Annotations may also add information about
particular code instructions (see the keyword Annotation). They are specified at the generic
code level by means of calls to the “do nothing” methods of the dedicated Annotation class.
In this way, after compilation, annotations are encoded in the bytecode through well recog-
nizable method calls to allow for easy processing. For instance, in Figure 3, the method call
Annotation.slsAnnotation (”Cost(high), e-lQuality(high)”), first line of the connect method in the
WiFi alternative, specifies that the WiFi connection, and hence the WiFi alternative, bears a high

Proc. CAMPUS 2008 6 / 12

ECEASST

cost, but provides a high quality e-learning lesson. On the other hand, the method call Annota-
tion.resourceAnnotation (”Battery(high)”), first line of the getLesson method, demands for a high
battery state-of-charge, since the streaming of the video lesson along with its multimedia content
calls for a considerable amount of energy to be consumed.

. Resource Model The Resource Model is a formal model that allows the characterization of
the computational resources needed to consume/provide a service. The Resource Model, enables
the framework to reason on the set of adaptation alternatives and allows it to decide the “best-fit”,
depending on execution context information.

Resource Definition
defineRES Bat te ry as {low , medium , high}
defineRES WiFi as Boolean
defineRES WiFiNet as Boolean
defineRES GPRS as Boolean
defineRES GPRSNet as Boolean

DemandGPRS={GPRS(true),GPRSNet(true)}
DemandWiFi={WiFi(true),WiFiNet(true),

Battery(high)}
Supply 1={GPRS(true),WiFi(true),GPRSNet(true),

WiFiNet(false),Battery(low)}
Supply 2={GPRS(true),WiFi(true),

GPRSNet(true),WiFiNet(true),Battery(high)}

Figure 4: Resource examples
Broadly speaking a resource is any item that is required to accomplish an activity or complete

a task. Some resources are subject to consumption (e.g., energy, heap space), while others, if
present, are never exhausted (e.g., function libraries, network radio interfaces). Thus, we model
a resource as a typed identifier that can be associated to Natural, Boolean or Enumerated values.
Natural values are used for consumable resources whose availability varies during execution.
Boolean values define resources that can be present or not (i.e. non-consumable ones). Enu-
merated values can define non-consumable resources that provide a restricted set of admissible
values (e.g. screen resolution, network type). Left-hand side of Figure 4 shows an example of
some resource definitions. A resource instance is an association res(val) where a resource res is
coupled to its value val∈typeo f (res) (e.g. WiFi(true)). A resource set is a set of resource
instances with no resource occurring more than once. It is used to specify both the resource
demand of an alternative and the resource supply of an execution environment.

Referring to the adaptable MIDlet in Figure 3, DemandWiFi (as shown in Figure 4) might
be a simple resource demand (automatically CHAMELEON-derived through ARA - see below)
associated to the WiFi alternative specifying that, to run correctly, the WiFi alternative will require
a device equipped with the WiFi radio interface (WiFi(true)), connected to a WiFi network
(WiFiNet(true)) and with a high battery state-of-charge (Battery(high)). On the same
figure, Supply 2 might be a resource set specifying the resource supply of a device equipped with
both GPRS and WiFi radio interfaces, connected to both GPRS and WiFi networks and with a
high battery state-of-charge.

The resource model also defines the notions of compatibility between two resource sets. Com-
patibility is used to decide if an application can run safely on a certain device: a resource supply
is compatible to a resource demand if for every resource demanded by the alternative, a “suffi-
cient amount” is supplied by the execution environment. For instance, in Figure 4, the Supply 1 is
only compatible with DemandGPRS (it neither has WiFiNet(true) nor Battery(high));
conversely, Supply 2 is compatible with both demands.

. SLS Model The SLS Model is a formal model that allows the specification of extra-functional
preferences that will be used to establish the SLA. Together with the Resource Model, the SLS
Model enables the framework to choose the “best” adaptation alternative depending on both ex-

7 / 12 Volume 11 (2008)

Towards Self-evolving Context-aware Services

ecution context information and consumer specific preferences. This model bases itself around
the same formalisms as the Resource Model. SLS Model is basically identical to the Resource
Model and, as shown in Figure 5 is used for specifying both requested and offered SLSs.

SLS Definition:

defineSLS Cost as {low , high} Requested (or Offered) SSSLLLSSS(GPRS)={Cost(low), e-lQuality(low)}

defineSLS e−l Q u a l i t y as {low , high} Requested (or Offered) SSSLLLSSS(WiFi) = {Cost(high), e-lQuality(high)}

Figure 5: SLS examples

Referring again to the adaptable MIDlet in Figure 3, O f f ered SLSGPRS (as shown in Figure 5)
might be a simple offered SLS (automatically CHAMELEON-derived through ARA - see below)
associated to the GPRS alternative, offering a low quality lesson at a low connection cost. It
must be noted that offered SLSs might also be specified, by the developer/provider, without
embedding them within the generic code. In addition to that of compatibility, the resource model
and the SLS model together allow to define the notions of goodness. Goodness is used for
comparing resource demands and offered SLSs associated to different alternatives of the same
application, and hence for choosing the best alternative among all its compatible ones. It is based
on a notion of priority among resources/SLSs and order between resource/SLSs’ instances. For
example, let’s assume that a student wishes to attend a full quality on-line lesson, even at a high
cost (i.e., Requested SLS:{e-lQuality(high),Cost(high)} in Figure 5). The notion of
goodness, combined with the notion of compatibility, permits to state that the WiFi alternative
(associated to DemandWiFi of Figure 4 and to O f f ered SLSWiFi of Figure 5) is, yes compatible,
but also better than the GPRS alternative (associated to DemandGPRS and to O f f ered SLSGPRS).
The framework encodes both resource and SLS sets into XML files, not shown for sake of space.

. Abstract Resource Analyzer The Abstract Resource Analyzer (ARA) is an interpreter that,
abstracting a standard JVM, is able to analyze Java applications and derive their resource con-
sumption also deriving, if specified, the offered SLSs. ARA is parametric with respect to the
characteristics of the execution environment as described through a resource consumptions pro-
file that expresses the impact that computational elements (i.e., the Java Bytecode Language
instructions) have on resources (see also the Execution Environment below). Specifically, re-
source consumption profiles associate resources consumption to particular patterns of Java byte-
code instructions specified by means of regular expressions 1. Basically, we can look at ARA as
a function that takes as input a Java application’s bytecode, a resource consumption profile and
gives as output a resource set that represents the resource demand of the application, and (op-
tionally) an SLS set that represents the offered SLS (i.e., the resources needed for that program
to be safely executed by the target execution environment with the offered SLS).

1) invokevirtual PlasticMiddleware.connectViaWiFi → {WiFi(true), WiFiNet(true)}
2) invokevirtual PlasticMiddleware.connectViaGPRS → {GPRS(true), GPRSNet(true)}

Figure 6: A resource consumption profile excerpt

Figure 6 shows an ex-
cerpt of a possible resource
consumption profile defined
over the resources of Fig-
ure 4 and possibly provided
by the student’s device in the

1 Resource consumption profiles can be created on the basis of experimental results based on benchmarking tools,
on informations provided by device manufacturers or network instruments.

Proc. CAMPUS 2008 8 / 12

ECEASST

e-learning scenario. For example, row “1)” states that to execute the bytecode instruction invoke-
virtual PlasticMiddleware.connectViaWiFi the JVM will require the device to have a WiFi radio
interface and a WiFi network within range. Note that this bytecode instruction is part of the WiFi
alternative’s connect method bytecode as derived from the compilation of the generic code after
this has been preprocessed to obtain a standard Java code. Analyzing this bytecode against the
provided profile, ARA will realize that for the WiFi alternative to be correctly executed on the stu-
dent’s device, the device itself must have the above mentioned resources. Consequently, the WiFi
alternative “asks” for those resources by means of the two entries WiFi(true) and WiFiNet(true)
within its resource demand. Finally, the resource demands and offered SLSs of the two MI-
Dlet alternatives of Figure 3 (derived by ARA on the base of the provided resource consumption
profile and the resource/SLS annotations) are those shown in Figure 4 and Figure 5, respectively.

. Execution Environment The Execution Environment can be any device that will host the
execution of the code. We target execution environments provided by PDAs, smart phones,
etc. The execution environment is not strictly part of our framework, however, it has to pro-
vide a declarative description of the resources it makes available to consume/provide the service
(i.e., the resource supply) and the resource consumption profile. In other words, it has to be a
PLASTIC-enabled device running a Consumer-side Chameleon component that, via the embed-
ded Consumer-side Middleware (see Section 3), is able to communicate with a Provider-side
Chameleon component.

. Customizer The Customizer takes in the resource supply, the provided profile, explores
the possible adaptation alternatives’ space and, according to compatibility and goodness (see
Resource and SLS Models in Section 4), defines the proper evolution policy and decides the
actual best alternative. It will deliver that alternative (i.e., standard bytecode) that can then be
eventually un-deployed and substituted by a new dynamically (re-)deployed alternative prop-
erly selected according to the defined evolution policy (see Section 3). User decisions will be
called up to choose among different alternatives that are “equally-suitable” from the Customizer
perspective and negotiation might possibly be performed.

CHAMELEON has been fully implemented in Java (although other languages are eligible) and
uses XML-based data encoding for the Resource and SLS Models. It is worth mentioning that,
even though both the ARA and the Customizer could be space and time consuming, they are
executed on the provider-side of the framework which does not suffer resource limitations.

5 Case Study
Damien is a student traveling from Italy to Canada. While on the train to the airport, he wants to
start an e-learning session through his stand-alone e-learning client, as deployed upon registration
to the e-learning service.

. Foreground: Damien takes up his smartphone and connects, through his e-learning client,
to the e-learning service and chooses to get the latest available lesson of the Computer Science
course. Since Damien wants to obtain a fully featured lesson, he is willing to invest considerably
in the process. When the e-learning client asks for the cost by displaying a multiple-choice form
with both high and low cost options, he will opt for a high cost solution delivering the fully
featured version. After processing the choice, the e-learning service will inform Damien, via a
pop-up message, that the fully featured lesson is not obtainable since a high-speed connection
cannot be established and his battery state-of-charge is insufficient to support the energy demands

9 / 12 Volume 11 (2008)

Towards Self-evolving Context-aware Services

for the duration of the fully featured solution. As an alternative, the e-learning service proposes
a low-cost version of the lessons in which only slides will be provided. The system also informs
Damien that as soon the conditions exist, it will automatically switch to the fully featured version.
Damien accepts, the SLA (see Section 3) is established, and the first slides appear. Damien also
recharges his smartphone. Upon reaching the airport Damien, after a slight hiccup, will be able
to enjoy video, audio and other multimedia content of the fully featured version.

. Behind the scenes: Damien’s smartphone is indeed a PLASTIC-enabled device. It em-
beds the Consumer-side Middleware and the Consumer-side Chameleon components (see Sec-
tion 3 and 4). Initially, the e-learning client will exploit the former to establish a GPRS con-
nection to the B3G network, and the latter to express its desired cost through the multiple-
choice form (i.e., Requested SLS ={Cost(high), e-lQuality(high)} as shown in Fig-
ure 5). After retrieving the Network-side Context and the Consumer-side Context, (i.e. device
context), once again through the Middleware and CHAMELEON facilities, the client will addi-
tionally send the supplied resources (i.e., Supply 1 = {GPRS(true), WiFi(true),
GPRSNet(true), WiFiNet(false), Battery(low)} as shown in Figure 4) as well
as the resource consumption profile (as shown in Figure 6). Processing Requested SLS, provider-
side CHAMELEON component will deliver, via OTA application provisioning [OTA], the GPRS
alternative. While not being the “highest-goodness” alternative, it is the only compatible one
(see Resource and SLS Models in Section 4). The established SLA states that, as soon as the
conditions rise, the fully featured version of the lesson has to be provisioned. To meet such an
agreement, the Consumer-side Chameleon component monitors the battery state-of-charge and
WiFi connection availability, since, via the predefined Evolution Policy, it knows that the “higher-
goodness” WiFi alternative is ready to be re-deployed when these two conditions are met. Upon
reaching the airport, the CHAMELEON monitor detects that the battery is fully charged and WiFi
networking is in range and, hence, immediately initiates the alternative switching previously
envisioned. The WiFi alternative, as selected by the Customizer (see Section 4), will be deliv-
ered on-the-fly to Damien’s device, the GPRS alternative will be un-deployed (after saving the
current state), and the newly acquired alternative will be dynamically re-deployed and put into
execution, immediately restoring the state.

6 Related work
For sake of space, we cannot address all the recent related work in the wide domain of the
PLASTIC project and in the CHAMELEON domain: we provide only some major references.

Current (Web-)service development technologies, e.g., [Ecl, Pro04, YKKP] (just to cite some),
address only the functional design of complex services, i.e., they do not take into account the
extra-functional aspects (e.g., QoS requirements) and context-awareness. Our process borrows
concepts from these well assessed technologies and builds on top of them to make QoS issues
clearly emerging in the service development as well as to take into account context-awareness of
services for self-adaptiveness purposes.

Our resource model and abstract resource analyzer can be related to other approaches to
resource-oriented analysis, such as [AM06, Bar05, AGZ07, SMM07]. All these approaches
use a resource model as we do and give an absolute over-estimation of resources’ consumption.
Differently from us, they do not use these models in the context of adaptation and they do not
provide a reasoning mechanism for selecting the proper alternative basing on estimations that

Proc. CAMPUS 2008 10 / 12

ECEASST

allow for a relative comparison of the alternatives.
In [PP] an interesting approach may be found which considers concerns separation between

application logic and adaptation logic. The approach makes use of Java annotations to express
metadata needed to enable dynamic adaptation. Stemming from the same idea of concerns sep-
aration, in [REF+08], supported by the MUSIC project 2, the authors propose the design of
a middleware- and architectural-based approach to support the dynamic adaptation and recon-
figuration of the components and service composition structure. They use a planning-based
middleware that, basing on metadata included in the available plans, enables the selection of
the right alternative architectural plan for the current context. Similarly to us, the idea for the
designed approach is based on requested and offered QoS, and supports SLA negotiation. Dif-
ferently from us, they do not tackle adaptability to the device execution context through resource
oriented analysis, parametric w.r.t. its resource consumption profile.

7 Conclusion and Future Work
In this paper we described how a declarative framework for tailoring adaptable services (called
CHAMELEON) [IMN04, MI07] is used within IST PLASTIC project [PLAa]. This framework
is at the basis of the PLASTIC process model for the development and deployment of adaptable
software applications targeted to mobile (resource-constrained) devices in the heterogeneous
B3G network. The specific deployed application is customized (i.e., tailored) with respect to
the context at deployment time but, at run time, it is frozen with respect to evolution. Evolution
(against context changes monitored through CHAMELEON as supported by the PLASTIC B3G
middleware) is realized by dynamically un-deploying the no longer apt application alternative
and subsequently (re-)deploying a new alternative with the desired aptitude.

Assuming that, upon service request, the user knows (at least a stochastic distribution of)
the mobility pattern [MM07] he will follow during service usage, an amount of determinism is
introduced permitting to identify the successive finite contexts the user can move along during
service usage. Following this approach, an enhanced version of CHAMELEON would be able
to generate code that is a compromise between self-contained and tailored adaptable code. The
code would embed all the adaptation alternatives that, associated to the specified mobility pattern,
are necessary to preserve the offered SLS. That is, the code would also embed some dynamic
adaptation logic which is able to recognize context changes, seamlessly “switching” among the
embedded adaptation alternatives. In this way, a seamless evolution is performed among the
embedded alternatives associated to the mobility pattern, while the un-/re-deployment evolution
we presented is performed when moving out of the mobility pattern’s context.

Ontology based specifications might be used to establish a common vocabulary and relation-
ships among resource/SLS types. This would allow to relate resource/SLS types and to predicate
about a common set of related types. For instance, a demand of {Energy(high)} could be
related to a supply of {Battery(high)}.

Moreover, the resource model and the SLS model might be described as Java types. These
types can then be used within Java5 annotations and our annotation mechanism might be im-
proved, accordingly. This would provide the developer with a solid means for describing fully
typed resource/SLS needs and offers, and static analysis tools (such as Spoon [Spo]) are then able

2 http://www.ist-music.eu/

11 / 12 Volume 11 (2008)

Towards Self-evolving Context-aware Services

to derive an XML-based representation of the models that are used to match service alternatives
to resource consumption profiles and requested SLS.

Acknowledgements: This work has been partially supported by the IST project PLASTIC.
We would like to acknowledge the anonymous reviewers for the valuable contributions in pro-
viding high-quality and constructive comments.

Bibliography

[ABC+07] M. Autili, L. Berardinelli, V. Cortellessa, A. D. Marco, D. D. Ruscio, P. Inverardi,
M. Tivoli. A Development Process for Self-Adapting Service Oriented Applications.
In ICSOC. 2007.

[AGZ07] E. Albert, S. Genaim, M. Zamalloa. Heap Space Analysis of Java Bytecode. In
ISMM’07. ACM Press, Oct. 2007.

[AM06] D. Aspinall, K. MacKenzie. Mobile Resource Guarantees and Policies. In Construc-
tion and Analysis of Safe, Secure, and Interoperable Smart Devices. 2006.

[Bar05] G. Barthe. MOBIUS, Securing the Next Generation of Java-Based Global Comput-
ers. ERCIM News, 2005.

[BEII06] A. Bertolino, W. Emmerich, P. Inverardi, V. Issarny. Softure: Adaptable, Reliable
and Performing Software for the Future. FRCSS, 2006.

[Ecl] Eclipse.org. Eclipse Web Standard Tools. http://www.eclipse.org/webtools.

[IMN04] P. Inverardi, F. Mancinelli, M. Nesi. A declarative framework for adaptable applica-
tions in heterogeneous environments. In SAC. 2004.

[MI07] F. Mancinelli, P. Inverardi. Quantitative resource-oriented analysis of Java (Adapt-
able) applications. In WOSP. 2007.

[MM07] A. D. Marco, C. Mascolo. Performance analysis and prediction of physically mobile
systems. In WOSP. 2007.

[OTA] Over-The-Air (OTA). http://developers.sun.com/mobility/midp/articles/ota/.

[PLAa] PLASTIC IST STREP Project. http://www.ist-plastic.org.

[PLAb] PLASTIC IST STREP Project. Deliverable D1.2: Formal description of the PLAS-
TIC conceptual model and of its relationship with the PLASTIC platform toolset.

[PLAc] PLASTIC IST STREP Project. Deliverable D2.2: Graphical design language and
tools for resource-aware adaptable components and services.

[PP] N. Paspallis, G. A. Papadopoulos. An Approach for Developing Adaptive, Mobile
Applications with Separation of Concerns. In COMPSAC. 2006.

[Pro04] A.-M. Project. Methodological Framework for Freeband Services Development.
2004. https://doc.telin.nl/dscgi/ds.py/Get/File-47390/.

[REF+08] R. Rouvoy, F. Eliassen, J. Floch, S. O. Hallsteinsen, E. Stav. Composing Components
and Services Using a Planning-Based Adaptation Middleware. In SC. 2008.

[SMM07] C. Seo, S. Malek, N. Medvidovic. An energy consumption framework for distributed
java-based systems. In ASE. 2007.

[Spo] Spoon project. http://spoon.gforge.inria.fr.

[YKKP] H. Yun, Y. Kim, E. Kim, J. Park. Web Services Development Process. In PDCS’05.

Proc. CAMPUS 2008 12 / 12

	Introduction
	Setting the ``Context''
	Developing context-aware services
	The CHAMELEON framework
	Case Study
	Related work
	Conclusion and Future Work

