
Electronic Communications of the EASST
Volume 11 (2008)

Proceedings of the
First International DisCoTec Workshop on
Context-aware Adaptation Mechanisms for

Pervasive and Ubiquitous Services
(CAMPUS 2008)

Learning-based Coordination of Distributed Component Deployment

Yves Vanrompay Peter Rigole Yolande Berbers

6 pages

Guest Editors: Romain Rouvoy, Mauro Caporuscio, Michael Wagner
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Learning-based Coordination of Distributed Component
Deployment

Yves Vanrompay Peter Rigole Yolande Berbers

Department of Computer Science, K.U.Leuven
Celestijnenlaan 200A,
3001 Leuven, Belgium

{Yves.Vanrompay, Peter.Rigole, Yolande.Berbers}@cs.kuleuven.be

Abstract: Self-organizing and resource-aware component deployment is an impor-
tant feature of mobile pervasive systems. Distributed resources must be dynamically
allocated to software components to ensure QoS demands and not distracting the
user. In this paper, we propose a Reinforcement Learning technique to optimize dis-
tributed component deployment and migration. We argue that the approach meets
some main requirements demanded by applications running on mobile systems. A
motivating scenario is presented in which a distributed application server allows
users to share content and run applications in mobile ad-hoc networks.

Keywords: Distributed component deployment, Reinforcement Learning

1 Introduction

The vision of autonomic computing [2] leads to self-organizing systems that deploy their com-
ponents taking into account current resource availability. A pervasive computing environment is
mainly composed of resource-constrained mobile devices. Mobility also means that user needs
on the one hand and availability of memory and bandwidth on the other hand are varying. There-
fore it is a challenge to adapt and deploy applications to optimize offered QoS while minimizing
user distraction. We propose a distributed adaptation reasoning and decision making approach to
deploy a set of application components in a distributed, optimal and resource-aware manner on
a set of nodes (Figure 1). Components (C1 to C5) forming applications (S1 to S7) are distributed
on a number of nodes n1 to n4 in the environment to make a balanced use of available resources.
At runtime, components can be redeployed or migrated in case of a change in resources. The
planning algorithm for distributed component deployment (DiComPloy) is based on Collabo-
rative Reinforcement Learning (CRL) [4] and takes into account the cost of instantiating and
executing components. We focus primarily on communication and computation cost in terms of
bandwidth and memory since these are critical resources in a mobile environment.
This paper is organized as follows. The next section gives an overview of the requirements
we derived as important for adaptive mobile systems. Also, a real-life scenario motivating the
need for resource-aware distributed component deployment is presented. Section 3 explains how
we applied the learning algorithm as an optimization strategy for component deployment. The
next section evaluates the proposed mechanism against the requirements and scenario. Section 5
compares our proposal with related work. Finally, we draw some conclusions and elaborate on
ongoing and future work.

1 / 6 Volume 11 (2008)



Learning-based Coordination of Distributed Component Deployment

n1

n3

n4

n2

Deploy
S1

S2

S3

S6

S4

S5

c1

c2

c3

c5
c4

S7

Figure 1: Distributed component deployment

2 Requirements and motivating scenario

Our work focuses on a middleware system [7] which supports the development and deployment
of context-aware, adaptive applications. With the emphasis on distributed adaptation and deploy-
ment mechanisms, we identified the following requirements:

• Adaptation mechanisms and the associated strategies should be reusable and evolvable in
large set of applications, contexts, and users.[R01]

• A ubiquitous planning process should take into account the dynamic dimension of ubiqui-
tous environments.[R02]

• Component deployment and migration should take into account the limited resources on
targeted mobile devices.[R03]

• Component deployment and migration should consider limited or costly bandwidth situa-
tions and should support mobile agent mechanisms to offload costly tasks.[R04]

• AI planning can be applied during the reconfiguration of an application to divide the re-
configuration process and delegate reconfiguration tasks.[R05]

• The modelling approach should provide a support for resource-based quality contracts.[R06]

• Models used at run-time should include QoS properties of both software and hardware
components.[R07]

In the following, we describe a scenario showing how mobile, context-aware adaptive applica-
tions may need distributed component deployment and migration. The scenario also motivates
the requirements we discussed above.

Proc. CAMPUS 2008 2 / 6



ECEASST

We envision a distributed platform for sharing content, gaming, chat, etc. formed by devices
joining a federation in an ad-hoc manner. Users perceive an InstantSocial cloud as an ordinary
site offering services. However, these services are scattered across nearby devices and integrated
by a distributed application server running on top of our middleware. The server consists of a
dynamic composition of components like an ontology server, a video server, a presentation layer
and so on. This composition is distributed and replicated which means the distributed server is a
combination of different implementations on nearby devices forming an ad-hoc network. Users
get notified of topics they are possible interested in or multiplayer games that can be joined.
DiComPloy is used to adapt and configure the ad-hoc server infrastructure needed for InstantSo-
cial. Server components can be deployed, redeployed or migrated across the different available
devices taking into account the resource availability of each individual device. Users can also
specify a maximum amount of resources they want to reserve for the distributed server com-
ponents. While devices come and leave and the ad-hoc network evolves, components can be
dynamically redeployed to ensure the QoS for the users, balance the use of resources and mini-
mize user distraction. Whenever fixed infrastructure is available, this can be used as a backup and
for deployment components that use a lot of resources. A way of using InstantSocial is on metro
trips where instant sites could appear out of nothing just by travelers having their applications
turned on. Other usages include conferences, concerts, festivals and sports events.

3 Collaborative Reinforcement Learning

CRL is an unsupervised learning method that derives a way of behaving from interaction with
an uncertain environment. It discovers which actions produce the best results by trying them.
The algorithm learns to choose the actions that optimize the rewards in the longer term. Actions
that give a poor immediate pay-off may be taken in the anticipation of a higher return in the
longer term. Action selection is probabilistic and depends on a trade off between exploration
and exploitation. Exploitation means that actions are preferred that are deemed to result in an
optimal behaviour, while exploration ensures that the learned experience covers all actions. This
combination is a powerful way to deal with dynamic environments that are subject to frequent
changes in their behaviour. CRL enables collaborating hosts to solve optimization problems in
dynamic decentralized networks, in this case optimal component deployment. The deployment
mechanism is controlled by the middleware and transparent for the application. Components
can be deployed remotely and relocated at runtime in order to respect the resource quality re-
quirements. Thus, the deployment is resource-driven, concentrating on memory and bandwidth.
DiComPloy is a decentralized component choreography approach. Choreography indicates the
shared coordination technique across multiple instances of the middleware to develop a solution
for a resource-aware deployment problem. DiComPloy is able to:

• Find an optimal deployment: Deployment of the optimal amount of functionality whenever
possible on the host that matches the deployment’s resources needs best.

• Perform redeployment: The ability to change the existing deployment when the configu-
ration of the computing environment changes with respect to resource availability.

• Exhibit self-organizing deployment behaviour: User distraction should be avoided in the

3 / 6 Volume 11 (2008)



Learning-based Coordination of Distributed Component Deployment

deployment process. Cooperating middleware instances need to be able to agree upon
distributed application deployment.

A cost function is introduced that takes into account memory and bandwidth, and can be extended
with other resources. The cost for a successful deployment of a component on a node is the cost
of the memory needed by the component on that host (depending on the current available amount
of memory on that host) and the bandwidth cost in case the component has to be migrated to that
node. The advantage of specifying a cost function for each host is that the weights for each
resource dimension in the cost formula can be host-dependent. The bandwidth cost on a host
operating on battery power, for example, will be much higher than the bandwidth cost on a host
that is powered by the power net.

4 Evaluation

As this paper discusses some early results of our research, this section investigates whether and
how the proposed approach satisfies the requirements and scenario needs that were identified in
Section 2. The first requirement refers to scalability and evolvability in large sets of applications,
contexts and users. DiComPloy is a scalable and self-organizing way to deal with component
deployment and migration. Applications can be distributed over a potentially large set of nodes
belonging to different users. DiComPloy is also generic in the sense that it can take into account
different types of context information. Not only memory and bandwidth can be part of the cost
function, but the function can be extended with battery power, type of network connectivity, user
preferences, etc. The cost function can be part of a more general utility function. The current
version of DiComPloy optimizes deployment with respect to memory and bandwidth, which are
especially limited resources on mobile devices [R03]. Deploying a large component on a device
with little memory will be more costly than deploying it on a device with large memory [R04].
Models used at run-time include QoS properties of both software and hardware components
[R07]. Both the QoS that can be provided by a node as the resources needed by a component are
used in the decision process due to the cost function. Resource-based quality contracts option-
ally can be incorporated in the coordination process since memory and bandwidth cost can be
expressed as a contract a host has to adhere to for the component deployment to be optimal[R06].
The balance of exploration and exploitation of CRL takes into account the dynamics of a ubiqui-
tous environment [R02]. Changes in the hardware environment are detected by exploration after
which a redeployment or migration of components can take place. DiComPloy enables collab-
orating hosts to reconfigure the deployment setting and delegate reconfiguration tasks amongst
them since it is by nature a decentralized coordination technique [R05].
The InstantSocial scenario clearly shows the need for distributed component deployment in a
real-life application. An application server that is distributed in an evolving mobile ad-hoc net-
work consisting of resource-constrained hosts must be (re)deployed in a self-organizing way.
DiComPloy provides a mechanism to orchestrate efficient deployment (re)configuration.

Proc. CAMPUS 2008 4 / 6



ECEASST

5 Related work

Classic techniques for distributed adaptation and deployment typically use a centralized ap-
proach. Brute force algorithms explore the whole search space and evaluate all alternative config-
urations [8]. While they guarantee to find an optimal deployment, they do not support scalability
to a large number of variants and nodes.
Mikic-Rakic et al. [6] have developed a centralized approach to deploy components. While
the approach is shown to work well for small deployment problems, it does not scale well to
large problems. Moreover, only memory and network connection reliability are taken as crite-
ria for deployment cost. Scholz et al. [1] propose a Divide and Conquer (DnC) approach to
achieve a balanced and resource-aware deployment of multiple applications that is flexible in
case of changes in the device topology. Large applications are divided into smaller units (packs)
that can be adapted and deployed separately on available resources. DiComPloy is complemen-
tary to DnC. By first applying DnC applications can be divided into packs. After this optional
clustering step, DiComPloy can be used to deploy the packs in an optimal way. Rigole [5]
presents a decentralized component choreography approach based on CRL that is extended to
solve multidimensional optimization problems in a distributed way. It is shown that this is a
fully scalable technique to deploy components on a set of nodes. Dowling et al. [3] evaluate
CRL as a technique that enables groups of agents to solve optimization problems online in dy-
namic decentralized networks. They have implemented CRL in a routing protocol for mobile
ad-hoc networks and argue it is a suitable approach for environments where topology, resources
and node availability are subject to frequent and unpredictable changes.

6 Conclusions and future work

In this paper, we presented a self-organizing learning technique to optimize distributed com-
ponent (re)deployment in a dynamic environment. This optimization problem is solved in a
distributed way by coordination amongst the several nodes. We argued how DiComPloy meets
requirements that are important for mobile adaptive systems and motivated this with an example
application. Decentralization prevents the adaptation mechanism from having a single point of
failure and represents a scalable approach to distributed deployment of applications on nodes.
A code base that works in a simulation environment currently exists, but has yet to be deployed
on and experimented with in a real-life distributed environment. Future work includes the adap-
tation and integration of the existing code into the middleware platform, after which a thorough
evaluation can be carried out. While for the moment we only take into account memory and
bandwidth to decide on optimal deployment, we plan to extend our approach to other resources
like battery power and user preferences.

Acknowledgements: The authors of this paper would like to thank their partners in the
MUSIC-IST project and acknowledge the financial support given to this research by the Eu-
ropean Union (6th Framework Programme, contract number 35166).

5 / 6 Volume 11 (2008)



Learning-based Coordination of Distributed Component Deployment

References

[1] Scholz U., Rouvoy R., Divide and Conquer - Scalability and Variability for Adaptive Mid-
dleware In: Proceedings of the International Workshop on the Engineering of Software
Services for Pervasive Environments (ESSPE’07), pp. 35-39, Dubrovnik, Croatia, ACM.
AICPS.

[2] Kephart J., Chess D., The Vision of Autonomic Computing, Computer Magazine, Jan. 2003

[3] Dowling J., Curran E., Cunningham R., Cahill V., Using feedback in collaborative rein-
forcement learning to adaptively optimise manet routing. IEEE Transactions on Systems,
Man and Cybernetics (Part A), Special issue on Engineering Self-Organized Distributed
Systems, 35(3): 360-372, May 2005.

[4] J. Dowling. The Decentralised Coordination of Self-Adaptive Components for Autonomic
Distributed Systems. PhD thesis, Trinity College, Dublin, Ireland, October 2004.

[5] P. Rigole. Task- and Resource-Aware Component Deployment in Ambient Intelligence En-
vironments. PhD thesis, K.U.Leuven, Leuven, Belgium, November 2006.

[6] M. Mikic-Rakic and N. Medvidovic. Architecture-level support for software component
deployment in resource constrained environments. In Proceedings of the First International
IFIP/ACM Working Conference on Component Deployment (CD02), Berlin, Germany,
June 2002.

[7] http://www.ist-music.eu

[8] IST MADAM project. Theory of Adaptation. Deliverable 2.2. December 2006. p. 4449.
www.ist-madam.org

Proc. CAMPUS 2008 6 / 6


	Introduction
	Requirements and motivating scenario
	Collaborative Reinforcement Learning
	Evaluation
	Related work
	Conclusions and future work

