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Abstract: Using state of the art tools, context-aware applications are notified of
relevant changes in their environment through event handlers which are triggered
by dedicated middleware. The events signalled by the middleware should percolate
through the entire application, requiring a carefully crafted network of observers
combined with complex synchronization code to address the inherent concurrency
issues. This paper proposes the adoption of reactive programming techniques to
bridge the gap between the event-driven middleware and the application.

Keywords: Fact Spaces, Reactive Programming, AmbientTalk

1 Introduction

The rapidly increasing capabilities of popular mobile computing devices such as cellular phones
and PDAs herald a future where computing power has truly become ubiquitous. Using a present-
day cellular phone, a user can interact with other proximate devices using e.g. Bluetooth or
Wireless Ethernet. The introduction of near-field communication (NFC) additionally provides
cellular phones a means to interact with disposable computers (such as passive and active RFiD
tags) that can be attached to consumer goods.

Paralleling the hardware evolutions, various middleware approaches have been proposed to
ease the development of context-aware applications which reap the benefits of being surrounded
by a cloud of small interconnected devices. Certain approaches focus primarily on providing
reusable abstractions to interact with sensors (e.g. the CONTEXT TOOLKIT [DSA01]), while
other middleware focusses on the ability to communicate in networks with a fluid topology
and transient connectivity. In the latter category, we encounter coordination languages such
as LIME [MPR01] as well as publish/subscribe middleware such as STEAM [MC03].

Context-aware applications can respond to changes in their environment by registering event
handlers with one of these middleware systems. Such an event handler is triggered whenever the
middleware detects a relevant change in the current context. Relying on explicit event handlers
has a number of severe consequences on the design of the context-aware application, which we
describe in the remainder of this section. In this paper, we propose using reactive programming
techniques to deal with context change events. We illustrate by means of a concrete case study
(described in section 2) which abstractions are required to be able to write context-aware ap-
plications without resorting to an explicit event-driven style. An overview of these abstractions
is provided in section 3. Before concluding, section 4 discusses the overall architecture of the
proposed reactive context-aware programming system and highlights relations to related work.
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1.1 Motivation: Impact of Event Handlers on Application Design

Relying on explicit event handlers to notify the application of changes to its context introduces
a number of problems. A first important issue is that the event handlers are triggered by the
middleware, which implies that they may be executed concurrently with the application code.
In a programming language with shared state concurrency (such as Java), this implies that the
application programmer is responsible to avoid race conditions on the application’s state. In other
words, if the event handler accesses application data structures, all accesses in the application
code (including those in event handlers) should be explicitly protected with locks.

Another corollary of the fact that the middleware triggers the event handlers is that perform-
ing long-lasting computations in the event handler may render the middleware unresponsive. A
well-known example of this restriction is found in the documentation of the Java Swing GUI
framework, which recommends that event handlers should finish as soon as possible. This par-
ticular recommendation provides further encouragement for a programming style where event
handlers rely on side effects to signal context changes to the application.

When context changes are signalled by modifying shared variables, it is the responsibility
of the application programmer to manually keep track of how the different pieces of applica-
tion code depend on the state of these variables. This implies keeping an explicit network of
computations to be notified when changes to these variables are observed.

Having observed these three problems, we propose the use of reactive programming tech-
niques to establish an expressive binding between context-aware applications and the underlying
middleware which avoids these problems altogether. This proposal is based on our experience
combining CRIME, a middleware implementing the Fact Space model [MSP+07] with AMBI-
ENTTALK, a dynamically typed, object-oriented, concurrent language [VMG+07].

2 Case Study

This section presents the concrete case study we have performed to uncover how to establish an
expressive binding between a context-aware application and the underlying middleware in such
a way that the event-driven style employed by the middleware does not percolate through the
entire design of the application. As the context-aware middleware, we have opted for CRIME,
an implementation of the Fact Space coordination model [MSP+07]. This model provides ap-
plications with a logic coordination language to reason about information and services provided
by nearby devices. While the adoption of a logic coordination language is novel, the binding
between CRIME and the application is established by means of explicit event handlers to be sup-
plied by the application programmer. In this regard, the Fact Space model is similar to conven-
tional context-aware middleware such as the CONTEXT TOOLKIT [DSA01], publish/subscribe
middleware such as STEAM [MC03] or coordination languages such as LIME [MPR01].

In our case study, we have established a binding between CRIME and AMBIENTTALK, an
experimental object-oriented language which was explicitly conceived as a language laboratory
[MVTT07]. Due to its conception as a language laboratory, AMBIENTTALK provides many of
the required tools to allow a natural embedding of a domain-specific language (such as the logic
coordination language offered by CRIME).
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The remainder of this section describes the concrete case study we have developed in more
detail. First, we provide a brief overview of CRIME, its federated fact space in which applications
can publish context information and its logic coordination language which allows triggering
application-level reactions to context changes. Subsequently, we provide a bird’s eye overview
of AMBIENTTALK and we conclude this section by describing a straightforward integration of
CRIME rules in AMBIENTTALK which relies on explicit event handlers.

2.1 Fact Space Model

The Fact Space model [MSP+07] is a coordination model which provides applications with a
federated fact space: a distributed knowledge base containing logic facts which are implicitly
made available for all devices within reach. Consequently, when an application asserts a fact in
the federated fact space, other devices that are within earshot can see the fact and react to its
appearance. To react to the appearance of facts in the federated fact space, applications specify
logic rules. These logic rules describe the causal relation between (a combination of) context
observations and the application’s reaction. In summary, the Fact Space model combines the
notion of a federated fact space with a logic coordination language. In the remainder of this
section we will discuss each of these components in slightly more detail.

2.1.1 Federated Fact Space

The Fact Space model equips every application with a private fact space in which application-
specific facts can be stored. Additionally, applications may use an arbitrary amount of (named)
interface fact spaces. Facts which are asserted in these interface fact spaces are transparently
shared by the underlying implementation (CRIME) which aggregates all reachable interface fact
spaces with the same name into a federated fact space. Hence, when interacting with its own
interface fact space, the application can transparently access facts published by other devices in
its immediate environment.

In essence, the distribution semantics of the federated fact space in the Fact Space model are
largely similar to those of the federated tuple space of LIME [MPR01]. One notable difference
is that whereas tuple spaces are based on the notion of a blackboard where messages can be
published, read and removed, fact spaces are conceived as knowledge bases. This implies that
in the Fact Space model both the assertion and retraction of a fact are meaningful events which
may trigger reactions.

The fact that applications can respond to both the assertion and the retraction of facts is of
particular importance when devices go in and out of earshot. For instance, when a new device is
discovered, its interface fact space will be engaged. This implies that all its facts will be atomi-
cally and transparently asserted in the federated fact space. Conversely, when a device goes out
of communication range, its interface fact space is said to be disengaged which implies that all
facts that it contained are retracted. Since retraction is reified by the Fact Space model, appli-
cations which reacted to the appearance of a fact published in the disengaged space (possibly in
combination with other facts) are provided with the opportunity to recover from the disappear-
ance of that fact. This mechanism provides the Fact Space model with fine-grained support for
the handling of disconnections [MSP+07].
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2.1.2 Logic Coordination Language

The Fact Space model provides applications with a logic coordination language to cherry pick
the relevant context information from the federated fact space. For instance, consider a cellular
phone that wants to adapt its sound profile according to its current location. First of all, such
an application would contain a set of preferences which detail which sound profile needs to be
adopted in various room types. In the example application in listing 1, these preferences are
encoded as facts published in the private fact space.

Listing 1: Facts and rules to change the profile of a cellular phone.
preference(meetingRoom, silent).
preference(office, default).

:Switch(?profile) :-
location -> detected(myID, ?room),
preference(?room, ?profile).

Subsequently, a CRIME rule is defined which has two preconditions. First of all, it requires
that there is a detected fact in a public fact space (named location), which denotes that
the cellular phone is located in a room of a particular kind. The kind of room will be bound to
the logic variable ?room. Additionally, a preference should be defined which determines
the sound profile to be adopted for the given kind of room. When both conditions are met, the
profile to adopt will be bound to the logic variable ?profile and the rule will be triggered.
When the rule is triggered, it will invoke the application-specific action :Switch to ensure the
cellular phone adopts the correct sound profile.

Applications can supply application-level actions (such as :Switch) by providing a Java
class which implements the Action interface. Such classes need to implement two methods:
First of all, the activate method which is invoked whenever a rule is triggered which lists the
action in its rule head. Second, the deactivate method which is invoked when one of the
facts that caused the rule to trigger is retracted. In the example, the deactivate method can
be used to make the cellular adopt a loud sound profile.

2.2 AmbientTalk

As part of our case study, we have allowed CRIME rules to be embedded into context-aware
applications written in AMBIENTTALK [VMG+07]. Before discussing this embedding in detail,
we provide a bird’s eye overview of the AMBIENTTALK language, which inherits most of its
standard language features from Self, Scheme, Smalltalk and E. From Scheme, it inherits the
notion of true lexically scoped closures. From Self and Smalltalk, it inherits an expressive block
closure syntax, the representation of closures as objects and the use of block closures for the
definition of control structures. Inspired by Self, AMBIENTTALK features classless slot-based
objects. The concurrency model of the language was adopted from the E programming language.

2.2.1 AmbientTalk Objects

AMBIENTTALK is a dynamically typed, object-based language. Computation is expressed in
terms of objects sending messages to one another. Objects are not instantiated from classes.
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Rather, they are either created ex-nihilo or by cloning and adapting existing objects. The code
excerpt in listing 2 defines such an ex-nihilo object and binds it to a variable named CellPhone.
This object serves as a prototypical cellular phone object and can be used to create clones, as
shown on the last line. Every object understands the message new, which clones the receiver
object and initializes the clone by invoking its init method with the arguments passed to new.

Listing 2: AMBIENTTALK definition of the prototypical behavior of a cellular phone.
def CellPhone := object: {
def inbox := []; // defines a field ’inbox’
def state := profiles.withName("default");
// this method serves as the "constructor"
def init(aProfile) {

inbox := [];
state := aProfile;

};
// method to prepend incoming messages to the inbox
def receive(aShortMessage) {

state.signalMessageReceipt(aShortMessage);
inbox := [aShortMessage] + inbox; };

}
def myPhone := CellPhone.new(profiles.withName("silent"));

The cellular object object has a state field which is used to determine the sound profile of
the cellular phone. For instance, when a short message (SMS) is received, the state is consulted
to signal the receipt of the message (by e.g. vibrating, blinking or playing a particular ring tone).

2.2.2 Concurrent Programming in AmbientTalk

In AMBIENTTALK, concurrency is not spawned by means of threads but rather by means of
actors [Agh86]. AMBIENTTALK actors are not conceived as active objects, but rather as com-
municating event loops which encapsulate a suite of objects [MTS05]. Objects encapsulated by
a single actor can communicate by either invoking one another’s methods synchronously or by
sending asynchronous messages to one another. Communication with objects encapsulated by
another actor is only possible by sending them asynchronous messages.

When an asynchronous message is sent to an object, it is enqueued in the message queue
of the actor that encapsulates that object. The actor’s event loop dequeues such asynchronous
messages one by one and invokes the corresponding method of the object denoted as the receiver
of the message. By processing messages serially, race conditions on the mutable state of the
encapsulated objects are avoided.

2.2.3 Embedding Languages in AmbientTalk

AMBIENTTALK is conceived as a language laboratory and hence provides mechanisms which
make it straightforward to make both syntactic and semantic extensions to the language. For
instance, built-in control structures (e.g. while:do:) and language constructs (e.g. object:)
are not conceived to be special. Instead, they exploit the fact that AMBIENTTALK supports
both canonical syntax and keyworded syntax for method definitions and message sends. Since
language constructs can be defined as ordinary functions, albeit ones using keyworded syntax,
new language constructs can be introduced in a natural way.
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AMBIENTTALK provides support for block closures reminiscent of those in Self and Smalltalk.
A block closure is an anonymous function object that encapsulates a piece of code and the bind-
ings of lexically free variables and self. Block closures are used to represent delayed com-
putations, such as the branches of an if:then:else: control structure. Block closures are
constructed by means of the syntax {|args| body}, where the arguments are optional.

2.3 Embedding Crime into AmbientTalk

Having briefly introduced both CRIME and AMBIENTTALK, we now describe how CRIME rules
can be embedded in a context-aware application written in AMBIENTTALK. Embedding the
rules in the context-aware application allows directly passing an AMBIENTTALK object which
will implement the application-specific action. As before, objects which are to be used as an
application-specific action should implement an activate and a deactivate method. The
activatemethod will be invoked when the rule is triggered, which the deactivatemethod
allows responding to the retraction of facts which led to a previous activation.

Listing 3 defines a Switch object which implements both methods. Upon activation it mod-
ifies the sound profile of the cellular phone to correspond to the preference derived by the rule.
When the object is signalled that the previously adopted profile is no longer relevant (e.g. because
the user has changed location), it will adopt a loud sound profile.

Listing 3: Symbiotically changing the profile of a cellular phone.
def Switch := object: {

def activate(p) { myPhone.state:= profiles.withName(p); };
def deactivate(p) { myPhone.state:= profiles.withName("loud"); }; };

publish: { preference(meetingRoom, silent) };
publish: { preference(office, default) };

trigger: Switch whenInContext: {
public -> location(myID, ?room);
preference(?room, ?p); };

Interacting with the underlying CRIME engine is achieved through the introduction of new
dedicated language constructs. First of all, a publish: construct is provided which expects
a block closure. The body expression of this closure will be interpreted as a CRIME fact which
is published privately by the underlying engine1. Second, a trigger:whenInContext:
construct is provided to register an AMBIENTTALK object as the application-level action to be
performed whenever a set of context conditions (described in a block closure) are met.

Whenever an embedded rule is triggered, the CRIME engine will invoke the activate
method of the AMBIENTTALK object that was designated to be the corresponding application-
level action. However, rather than invoking the method directly on the AMBIENTTALK object,
CRIME interacts with a dynamically generated proxy object, which implements the Action in-
terface. This proxy object translates method invocations from a Java thread into asynchronous
messages [VMD07]. This translation step ensures that context event handlers can never be run
in parallel with application code. Moreover, since the proxy can determine that the thread of the
reasoning engine is not awaiting a result, it can resume immediately [VMD07].

1 Similarly a publish:in: construct is provided which allows publishing a fact in a named public fact space.
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One remaining issue is that dependencies on the context-dependent part of the application
need to be managed manually. Managing such dependencies requires the programmer to resort to
registering observers and firing events manually. The next section discusses how this issue can be
addressed in a structured fashion through the introduction of reactive programming techniques.

3 Reactive Context-Aware Programming

Reactive programming is a programming paradigm built around the notion of time-varying val-
ues (called dataflows or signals). Changes to the values of these signals are automatically propa-
gated to a network of dependent computations. Reactive programs construct this network either
by explicitly wiring signals, or implicitly by calling lifted functions which operate on signals
rather than ordinary values [EH97, CK06].

Whether one can apply a lifted function on a signal depends on whether the signal is continu-
ous, i.e. whether it has a value at each point in time. Continuous signals (called behaviors) form
the crux of the reactive programming model: by applying lifted functions on them, a dependent
behavior is constructed transparently. Subsequent changes of the behaviors that were passed
as arguments to the lifted function will be propagated transparently to the dependent behavior,
allowing its value to be recomputed.

Signals which only carry events at discrete points in time are called event sources. These
need to be manipulated using explicit operations (e.g. filter, merge and map). Event sources
provide a natural mechanism to interact with the real world, where events can be generated by
input/output devices such as mice or keyboards. A contribution of this paper is that it maps the
events generated by context-aware middleware onto event sources in a reactive program.

3.1 Reactive Programming in AmbientTalk

Since AMBIENTTALK is an object-oriented programming language, we have explored an object-
oriented reactive programming style to ease the transition from context-aware middleware to
application-level code. We adopt the embedding strategy proposed in FRTIME [CK06], where
reactive programming concepts are embodied in a host language. This implies that evaluating
method invocations can be used to implicitly construct a network of dependent computations.

Consider for instance a behavior that denotes the current temperature in the room (tempBeh)2.
When we compare the temperature behavior to a constant (tempBeh < 18), the receiver of the
<method is a behavior. Hence, the <method is implicitly lifted and a dependent behavior (which
will alternate between true and false) is created. The initial value of the dependent behavior is
computed by comparing the current value of tempBeh to 18. Whenever tempBeh changes,
the dependent behavior will be recomputed as well.

Methods are not only lifted implicitly when their receiver is a behavior, but also when one
or more behaviors are passed as arguments. For instance, if we invert the above comparison
(18 > tempBeh), the receiver of the > method is a plain AmbientTalk object (the number 18).
However, since the argument of the method is a behavior (tempBeh), the method will still be
lifted and yield a dependent behavior which alternates between true and false.

2 How to create such a behavior from a context query is illustrated in listing 5.
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3.2 Mapping Context Events to Behaviors

Having introduced support for reactive programming in AMBIENTTALK, it is possible to con-
sider a more expressive embedding of CRIME rules in the language. Since CRIME essentially
fires events whenever an interesting context change occurs, it seems natural to provide a con-
struct which installs a rule and returns an event source which may be used in the context-aware
application. The contextQuery: construct does just that: it takes a block closure as an ar-
gument and installs a CRIME rule with the content of this block as its precondition. The head of
the rule, which is supplied implicitly, is a built-in action which will emit an event to the event
source that is returned by the construct.

As an example, consider a context-aware application which displays the current room temper-
ature on a gauge user interface component. Listing 4 contains an excerpt of the required code
to build such an application. The contextQuery: construct is used to create an event source
which carries events containing the current room temperature. These events are AMBIENTTALK

objects which define corresponding fields for all variables bound by the query, to wit ?room and
?temperature. To distinguish between events which signal activation and deactivation of the
rule, events are tagged with the Activated or Deactivated type tag3.

Listing 4: Representing the outcome of a context query as an event source.
def gauge := GaugeWidget.new(...);

def tempSrc := contextQuery: {
public -> location(myID, ?room);
public -> temperature(?room, ?temperature); };

tempSrc.foreach: { | event |
if: (is: event taggedAs: Activated) then: {

gauge.setHeight(event.temperature);
} else: { // deactivated

gauge.setHeight(nil); } }

Listing 4 illustrates the fallacies of having to directly interact with event sources: the pro-
grammer still has to manually construct a network of dependent computations using dedicated
operators (e.g. foreach: which is used in the example). As we have already mentioned ear-
lier in this section, the chief expressive gain of reactive programming is obtained when applying
lifted functions to behaviors. To appreciate the difference between both styles, consider the code
in listing 5, which uses a behavior to represent the current temperature. This behavior is created
using the mostRecent:fromContext: construct which extracts one of the variables bound
in the query, to wit the ?temperature.

Listing 5: Constructing a behavior from a context query.
def tempBeh := mostRecent: ?temperature fromContext: {
public -> location(myID, ?room);
public -> temperature(?room, ?temperature); };

gauge.setHeight(tempBeh);

3 Type tags are introduced as a strictly nominal type system in AMBIENTTALK to allow for the classification of
objects. They are best compared to empty ‘marker’ interfaces such as Cloneable and Serializable in Java.
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Using such a behavior, the setHeight method needs to be invoked only once (as if to
initialize the gauge). Since the argument is a behavior, the method is implicitly lifted, such that
it will be invoked again whenever the temperature changes. In this setup, retraction is handled
by the mostRecent:fromContext: construct by setting the value to nil.

3.3 Reactive Context-Aware Collections

When converting an event source into a behavior, keeping track of the last propagated event
seems to be an intuitive solution. However, this particular type of conversion is rarely the most
appropriate one in a context-aware application. Consider for example, context queries to detect
nearby users, context-aware reminders to be delivered to you, or nearby products which are on
your shopping list. Each of these queries conceptually returns a group of results which are not
adequately represented by only keeping track of the last event fired by the middleware.

Modelling the results of such context queries is achieved through the introduction of reactive
context-aware collections. These collections allow abstracting over the events fired by CRIME

such that the programmer who can work directly with the results of the query in a collection.
Since the collection is modelled as a behavior, updates to the collection are implicitly propa-
gated through the application. Listing 6 illustrates how to construct such a collection using the
collect:fromContext: language construct.

Listing 6: Constructing a reactive context-aware collection.
def nearbyBeh := collect: ?user fromContext: {

public -> location(myID, ?room);
public -> location(?user, ?room);
?user != myID; };

The example in listing 6 accumulates all bindings for the ?user variable in the given query.
The resulting context-aware collection hence contains all collocated users. Note that the accuracy
of the reactive context-aware collections hinges on the fact that CRIME reifies both the assertion
and retraction of information. Without proper support for fine-grained reactions to the retraction
of facts, context-aware collections would grow monotonously. Since retraction is properly rei-
fied, results can be deleted from the collection such that it always provides an up-to-date view
on the current context.

3.4 Summary

Having presented an overview of the binding we have developed between AMBIENTTALK and
CRIME, the characteristics of a reactive context-aware programming system can be clearly iden-
tified. First of all, the programming language should provide support for reactive programming,
such that it is possible to apply lifted methods to behaviors. This is essential to abstract over the
underlying propagation of (context change) events in the system.

Secondly, the programming language should adopt an event loop concurrency model, which
ensures that reactive computation (propagating events and performing the dependent compu-
tations) can never be performed in parallel with application code. Since race conditions are
avoided, methods which perform side effects can be safely lifted to be applied on behaviors.
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Thirdly, to cater to the fact that context queries may report more than a single result, we
advocate the introduction of reactive context-aware collections. These collections provide the
reactive program with a collection of valid results, which is assembled by interpreting the events
sent by the underlying middleware.

Finally, to uphold the consistency of the reactive context-aware collections, the underlying
middleware should not only reify the appearance of new information but also the disappearance
of information. The latter is a cue for removing the corresponding result of the context query
from the associated collection.

4 Discussion

Context Management

Reify 
Disappearance 
of Information

Reactive Programming

Reactive 
Context-Aware

Collections

Event-loop Concurrency

Figure 1: A Reactive Context-Aware Architecture

This paper proposes reactive context-
aware programming, a paradigm which
allows context-aware applications to ab-
stract from the underlying events that
result from interacting with the real
world. Figure 1 provides an architectural
overview of a reactive context-aware pro-
gramming system. The system relies
on the adoption of an event-loop con-
currency model which ensures that con-
currency within an event loop can be
avoided. Underneath, a reactive pro-
gramming system is provided to abstract
over the events produced by the context
management layer.

The introduction of reactive programming techniques avoids having to design context-aware ap-
plications using explicit event handlers. The use of reactive programming techniques to model
context-aware application raises the level of abstraction at which the programmer reasons about
the problem. The expressive power of using reactive programming has previously been illus-
trated in the context of user interface interaction [EH97]. In this field, application design was
similarly sprinkled with event handlers, using side effects to communicate, and requiring manu-
ally managed dependencies.

When moving from user interface interaction to context-aware applications, an important ob-
servation is that the occurrence of a new event no longer automatically invalidates previous
events. Many context-aware queries conceptually return a group of results, such as the collection
of all collocated users. Reactive context-aware collections were proposed as a mechanism to
capture the results of such queries, while still allowing for a reactive programming style. The
idea of using context-aware collections to bridge the gap between context-aware applications
and the underlying middleware was originally proposed by Payton et al. [PRJ04]. However, the
collections they proposed could only be accessed using synchronous operations such as get
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and remove. Hence, to be notified of interesting context changes, applications have to poll the
collection regularly. This pattern makes it cumbersome to develop applications which react to
changes in their environment. The introduction of reactive context-aware collections reconciles
the notion of context queries yielding multiple results with a reactive programming style.

When accumulating the results of a context query, being able to determine when a result is no
longer valid is crucial. For this purpose, the underlying context management layer should reify
not only the appearance of new information (which may add new results to the collection) but
also the disappearance of information (which causes results to become invalid). CRIME is able
to signal the disappearance of information since its forward chaining infrastructure intrinsically
stores which (implicit) event handlers need to be notified when a particular fact is removed
[MSP+07]. In spite of the fact that middleware approaches such as FACTS [TWS06], SENTIENT

OBJECTS [BC04] and GAIA [RC03] provide a similar model based on distributed facts, rules
and functions, these functions are only called when the corresponding rule is triggered by the
appearance of new information. As such they cannot be directly used as a substrate on which a
reactive context-aware programming system can be built.

5 Conclusion

Writing context-aware applications involves reacting to changes in the environment to adopt or
fire the correct behavior. Using state of the art middleware, applications are required to register
event handlers which will be triggered when context changes occur. Relying on explicit event
handlers has effects which percolate throughout the entire design of the application, as access to
shared data needs to be protected from race conditions and context dependencies in the program
need to be encoded manually by registering observers.

In this paper we have advocated the use of reactive programming techniques to abstract from
the propagation of events in a context-aware application. The adoption of reactive programming
introduces some hurdles to overcome. First of all, classic reactive programming approaches
introduce a second independent thread which propagates events and executes dependent compu-
tations. Since reactive programming is traditionally employed in a purely functional language,
the introduction of a parallel process is not deemed harmful. In our case study, we have shown
that it is possible to reconcile reactive programming with an imperative object-oriented language,
provided that objects are properly encapsulated in an event loop. Adopting such an event loop
concurrency model ensures that an object’s methods are only invoked by the owning event loop
and allows the safe interleaving of reactive computation with application behavior.

Much of the expressive gain when using reactive programming stems from the ability to apply
lifted methods to behaviors, such that the result of the method will be recomputed implicitly
whenever the value of the behavior changes. When mapping events generated by context-aware
middleware to such behaviors, we observe that context queries often return a collection of in-
teresting values. Therefore, we advocate in favor of the adoption of reactive context-sensitive
collections which accumulate all relevant context information returned by a single context query.
To keep these collections up to date, the context-aware middleware should have a mechanism to
detect obsolete context information, such that it can be removed from the collection.
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Based on these observations, we propose a model for reactive context-aware programming
which entails 1) a context middleware with support to detect the invalidity of context information,
2) a programming language with an event loop concurrency model, 3) language-level support for
reactive programming and 4) a library of reactive context-sensitive data structures which provide
the programmer the necessary abstractions to model and react to context changes.
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