
Electronic Communications of the EASST
Volume 10 (2008)

Proceedings of the
Seventh International Workshop on

Graph Transformation and Visual Modeling Techniques
(GT-VMT 2008)

A Graph-Based Type Representation for Objects

Cong-Cong Xing

16 pages

Guest Editors: Claudia Ermel, Reiko Heckel, Juan de Lara
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

ECEASST

A Graph-Based Type Representation for Objects

Cong-Cong Xing1

1 cmps-cx@nicholls.edu
Department of Mathematics and Computer Science

Nicholls State University
Thibodaux, LA, USA

Abstract: Subtyping and inheritance are two major issues in the research and devel-
opment of object-oriented languages, which have been traditionally studied along
the lines of typed calculi where types are represented as a combination texts and
symbols. Two aspects that are closely related to subtyping and inheritance – method
interdependency, and self type and recursive object type – have either been over-
looked or not received sufficient/satisfactory treatments. In this paper, we propose a
graph-based notation for object types and investigate the subtyping and inheritance
issues under this new framework. Specifically, we (1) identity the problems that
have motivated this paper; (2) propose an extension to Abadi-Cardelli’s ς -calculus
towards fixing the problems; (3) present definitions of object type graphs followed
by examples; (4) define subtyping and inheritance using object type graphs; (5)
show how the problems can be easily resolved under object type graphs; and (6)
summarize the contributions of this paper.

Keywords: Object type, graph transformation

1 Introduction

As pointed out by Markku Sakkinen in [Sak05], although in recent years the emphasis of the re-
search and development in object-oriented programming (OOP) has shifted from programming
languages (themselves) to larger entities such as components, environments, and manipulating
tools, it does not mean that the existing object-oriented languages are perfect and no improve-
ment is needed. In particular,typing is still a critical issue and a problem-prone area in the formal
study of object-oriented languages, especially when type-related subjects, such as subtyping and
inheritance, are considered.

One aspect related to subtyping is object method interdependencies: the invocation relation-
ship among methods. The failure of keeping track of this invocation structure in object types
can cause elusive programming errors which will inevitablyoccur, undermine the program re-
liability, and burden the program verification. One aspect related to inheritance is self type vs.
recursive object type: which one is thetrue type of the self variable (in the context of inheritance).
The failure of not distinguishing these two types sufficiently can lead to some well-known fun-
damental problems. While the former aspect has been overlooked in the literature, the latter
has not received sufficient attentions and/or satisfactorytreatments, in either theoretical studies
(e.g., [AC96, FHM94, LC96, Liq98, BL95]) or mainstream practice (e.g., Java and C++) of OOP.
In the next section, we present concrete examples to illustrate this point.

1 / 16 Volume 10 (2008)

A Graph-Based Type Representation for Objects

2 Motivations

We present two problems that have motivated the writing of this paper.

2.1 Method Interdependency

We call a rectanglefree if its two sides (height and width) are independent,constrained other-
wise. In conventional type systems, the type of a free rectangle and the type of a constrained
rectangle are not distinguished. We show, in this subsection, that this type confusion opens the
door to let the different semantics of free rectangles and constrained rectangles be mixed, which
is serious enough to be able to cause a programnot to perform to its specification and thus
weakens its reliability.

Using Abadi-Cardelli’s first-orderς -calculus notation [AC96], we can construct a free rectan-
gle fRect, a constrained rectanglecRect, and their typesFR, CR as follows:

FR
def
= µ(Self)

h : int
w : int
mvh : int→ Self
mvw : int→ Self
geth : int
getw : int

, fRect
def
= ς(s :FR)

h = 1
w = 2
mvh = λ (i : int)(s.h⇐s.h+ i)
mvw = λ (i : int)(s.w⇐s.w + i)
geth = s.h
getw = s.w

,

CR
def
= µ(Self)

h : int
w : int
mvh : int→ Self
mvw : int→ Self
geth : int
getw : int

, cRect
def
= ς(s :CR)

h = 1
w = 2(s.h)
mvh = λ (i : int)(s.h⇐s.h+ i)
mvw = λ (i : int)(s.w⇐s.w + i)
geth = s.h
getw = s.w

.

Informally, FR denotes the (data) type of the objectfRect (explained below) which contains
the following fields/methods:h,w,mvh,mvw,geth,getw. Also, the types ofh,w,geth,getw are all
int, signifying that when these fields/methods are called, theywill return an integer. The types of
mvh,mvw are bothint→ Self , where the variableSelf is bound by the standard recursion binder
µ . In other words, we can understand the types ofmvh and mvw as int → FR, meaning that
these methods take an integer and returns an object of typeFR. The typeCR can be understood
similarly. (Actually, we can see thatFR andCR specify the same type here.)

fRect denotes an object which consists of fields/methodsh,w,mvh,mvw,geth,getw. The values
of h andw are 1 and 2 respectively. Methodgeth, when being called, returns the value ofh. (The
symbols in s.h represents the hosting object in such a way that we can regards.h as this.h in
Java.) getw is similar togeth. Methodmvh is a function that takes an integeri, adds it to the
current value ofh, updates/overrides the current value ofh by the sum, and returns the newly
updated object. Methodmvw is similarly tomvh.

While objectcRect works in a similar fashion to objectfRect, note their difference: infRect,
the height (h) and the width (w) are independent, whereas incRect, the widthdepends on the

Proc. GT-VMT 2008 2 / 16

ECEASST

height (w = 2(s.h)). Also note thatFR = CR, that is, the types of these two rectangles are
confused (in conventional type systems).

Now, suppose we would like to have a function with the following specification (contract):

This function takes a rectangle and then doubles both its height and its width.

With little effort, such a function can be written as:

ds
def
= λ (r : FR)(r.mvh(r.geth)).mvw(r.getw).

It is easy to check thatds will double its argument’s both sides when taking a free rectangle as
argument. However, whends takes a constrained rectangle as argument, for exampleds(cRect)
(due to the factCR = FR, cRect will type-check), it will fail to do so, as it is supposed to (by the
specification). In detail,

ds(cRect) = (cRect.mvh(cRect.geth)).mvw(cRect.getw)

= ς(s :CR)

h = 2
w = 6
. . .no change . . .

 .

Clearly, the height ofcRect is doubled, but its width istripled (not doubled)! The reason for this
is the interdependency between the height and the width incRect: when the height ofcRect is
changed to 2, its width isimplicitly changed to 4 due to the width’s dependence on the height.

Considering that the widely-agreed notion of program reliability refers to (e.g. [Seb07]) “pro-
gram performs to its specification under all circumstances”and that the fact thatds does not live
up to its specification when takingcRect as its argument, we argue that the reliability ofds, in the
environment of conventional type systems, is substantially low. Furthermore, such elusive com-
putation fault may be hard-to-detect whends is embedded in large software systems. To resolve
this problem effectively,ds should be written in such a way that it only takes free rectangles, that
is, ds(cRect) should be caught by the type checker. This observation callsfor the separation of
the type of free rectangles from that of constrained ones.

2.2 Self Type and Recursive Object Type

The notion of self type is coined to describe the type of the self variable in an object, especially
when the object contains a self returning method. Then the question is: What is the (semantics of)
self type? Is it just the (recursive) object type or something else? For example, using the notation
of ς -calculus again, an object which consists of two methods, one returning the constant 1 and
one returning the hosting object itself can be coded asa

def
= [l1 = 1, l2 = ς(s : X)s], wheres is

the self variable andX is the type ofs – the self type. How do we interpretX? One “natural”
way is thatX is just the object type itself (recursively defined), that is, X = µ(Y)[l1 : int, l2 : Y].
As this interpretation works to some extent but runs into substantial problems (see, e.g., [AC96]
for details), other explanations of the self type have been sought. For example, the second-order
self quantifier [AC96] and the MyType [Bru94] are proposed. Nevertheless, no mater how self
type is interpreted, an object type has always been managed to be a subtype of the associated

3 / 16 Volume 10 (2008)

A Graph-Based Type Representation for Objects

self type. This setup, combined with inheritance and dynamic dispatch of methods, leads to the
well-known “method-not-found” error as illustrated below(adapted from [Bru94]).

PT
def
= Ob jectType(MyType){x : int,eq : MyType→ Bool}

CPT
def
= Ob jectType(MyType){x : int,c : color, eq : MyType→ Bool}

pt0
def
= ob ject(self : MyType){x = 0,eq = f un(p : MyType)(p.x = self .x)}

pt
def
= ob ject(self : MyType){x = 1,eq = f un(p : MyType)(p.x = sel f .x)}

cpt
def
= inherited f rom pt with {c = red, eq = f un(p : MyType)[(p.x = sel f .x)∧ (p.c = sel f .c)]}

F
def
= f un(p : PT)(p.eq(pt0))

Given these definitions, it is easy to check thatpt0 : PT , pt : PT , andcpt :CPT . Note that
in the definition ofF, we actually have assumed (as [Bru94] does) that the type ofpt0, PT ,
is a subtype of the self type associated withPT , MyType in this case, so thatp.eq(pt0) type-
checks. Now, if inheritance implies subtyping (as we have been practicing in C++ and Java),
thencpt : CPT <: PT andF(cpt) will type check. However,F(cpt) will crash and produce a
“method-not-found” error becausecpt.eq(pt0) expects its argument,pt0, to have a color field and
uses that color field in the body ofeq of cpt, but pt0 does not have the color field.

Traditionally, it is this kind of problem that has prompted us to claim that “inheritance is not
subtyping” [CHC90]. However, “inheritance implies subtyping” is a strongly desirable property
in OOP. Without it, the software hierarchy build through inheritance will be much less useful
since in this case a subobject (object from a subclass) cannot be regarded as having the same
type with its superobject (object from the superclass), andcannot use any existing programs that
have been written for superobjects. Program reusability will thus be greatly reduced. Towards
keeping this hierarchy useful and resolving the method-not-found problem at the same time, we
propose that an object type should not only be treated differently from its associated self type,
but not be regarded as a subtype of its associated self type either.

3 Enhancing Object Types

In order to address the problems outlined in the previous section, we extend Abadi-Cardelli’s
ς -calculus by adding a mechanism called links that capture the method interdependencies in
objects, and by distinguishing (recursive) object types from their associated self types. The
terms (M) and types (σ) of this extended calculus are as follows.

M ::= x | λ (x :σ).M |M1M2 |M.l |M.l⇐ς(x :S (A))M′ | [li = ς(x :S (A))Mi]
n
i=1

σ ::= κ | t | σ1→ σ2 | µ(t)σ | A |S (A)

A ::= ι(t)[li(Li) :σi]
n
i=1 Li ⊆ {l1, . . . , ln} for eachi

x, λ (x :σ).M, andM1M2 are the standardλ -terms, wherex is a variable,λ (x :σ).M stands for
a function with parameterx of typeσ and bodyM, andM1M2 denotes the function application

Proc. GT-VMT 2008 4 / 16

ECEASST

(M1 is applied toM2). [li = ς(x :S (A))Mi]
n
i=1 represents an object consisting ofn methods, with

namesli and bodiesMi for eachi. ς is the self-binder.M.l means the invocation of methodl
in M. M.l⇐ ς(x :S (A))M′ is the updating operation which evaluates to an object obtained by
replacing methodl in M by M′. (See section 2.1 for more detailed explanations.)

κ , t, σ1→ σ2, andµ(t)σ are ground types, type variables, function types, and recursive types
respectively. Object types are represented byι(t)[li(Li) :σi]

n
i=1 where each methodli has typeσi,

andLi is the set oflinks of li (defined below).ι is the self-type binder. An alternative way to
represent self type isS (A) which denotes the self type associated with the object typeA. The
two notations are related byA = ι(t)[li(Li) : σi(t)]ni=1 = [li(Li) : σi(S (A))]ni=1. Terms that can
be of a self type are restricted to self (variable) or a modified self (for the sake of self variable
specialization during inheritance).

Definition 1 Given an object[li = ς(s :S (A))Mi]
n
i=1. The only terms that are of typeS (A) are

s or s.li⇐ς(s :S (A))M for someM.

The set of links, which is a part of the newly proposed object types, is defined as follows.

Definition 2 (Links) Given an objecta = [li = ς(s :S (A))Mi]
n
i=1, (1) li is said to bedependent

on l j(i 6= j) if there exists aM such thata.li and(a.l j⇐ς(s:S (A))M).li evaluate to different val-
ues. (2)The set oflinks of li in objecta (or equivalently, ofMi with respect to objecta), denoted
by La(li) (or equivalently, byLa(Mi)), contains exactly all suchl j on whichli is dependent.

Remarks: The idea behind “methodli is dependent on methodl j in objecta” is the following:
if we can make some change to the body ofl j, and that change affects the evaluation ofli
(compared with the evaluation ofli before the change is made tol j), then we say that “li is
dependent onl j”. Taking the collection of all suchl j ’s on whichli is dependent forms the set of
links of li in objecta — La(li).

4 Object Type Graphs

The notion of links introduces new structures into object types. Object types are thus enriched
but also become more complicated. To effectively analyze and reason about the structure of the
new object types, we present a graph-based representation for object types – object type graphs
(OTG).

4.1 Definitions

Definition 3 (Directed Colored Graph) A directed colored graph G is a 6-tuple(GN ,GA,C,sr, tg,c)
consisting of: (1) a set ofnodes GN , and a set ofarcs GA; (2) acolor alphabet C; (3) asource
map sr : GA → GN , and atarget map tg : GA → GN , which return the source node and target
node of an arc, respectively; and (4) acolor map c : GN ∪GA→C, which returns the color of a
node or an arc.

5 / 16 Volume 10 (2008)

A Graph-Based Type Representation for Objects

Definition 4 (Ground Type Graph) A ground type graph is a single-node colored directed
graph which is colored by a ground type.

Definition 5 (Function Type Graph) A function type graph (s,G1,G2)(GN ,GA,C,sr,tg,c) is a di-
rected colored graph consisting exactly of astarting node s ∈ GN , and two type graphsG1 and
G2, such that, (1)c(s) =→; (2) there are two arcs associated with the starting nodes, left arc
l ∈ GA andright arc r ∈ GA, such thatc(l) = in, c(r) = out; l connectsG1 to s by sr(l) = sG1,
tg(l) = s, andr connectss to G2 by sr(r) = s, tg(r) = sG2, wheresG1 andsG2 are the starting
nodes ofG1 andG2, respectively; (3)G1 andG2 are disjoint; (4) if there is an arca ∈ GA with
c(a) = rec, thensr(a) = sGi , tg(a) = s, c(sGi) =→, i = 1,2.

Definition 6 (Object Type Graph) An object type graph (s,A,R,L,S)(GN ,GA,C,sr,tg,c) is a directed
colored graph consisting exactly of astarting node s ∈GN , a set ofmethod arcs A⊆GA, a set of
rec-colored arcsR⊆GA, a set oflink arcs L⊆GA, and a set of type graphsS, such that (1)c(s) =
self. (2)∀a ∈ A, sr(a) = s, tg(a) = sF for some type graphF ∈ S, andc(a) = m for some method
label m; c(a) 6= c(b) for a,b ∈ A, a 6= b. (3) ∀r ∈ R, c(r) = rec, tg(r) = s, sr(r) = sF for some
F ∈ S, andc(sF) = self. (4) ∀l ∈ L, sr(l) = sF , tg(l) = sG for someF,G ∈ S, andc(l) = bym for
some method labelm.

Remarks: Directed colored graph is the foundation of graph grammar theory [EPS73, Ehr78,
Roz97]. Object type graphs are adapted from directed colored graphs. Ground type graphs are
trivial. Function type graphs are straightforward. They need to be defined because an object type
graph may include them as subgraphs. The basic idea of objecttype graphs can be described as
follows: For object typeι(t)[li(Li) :σi]

n
i=1, we use a designated node — the starting nodes which

is colored byself — to represent the self type; for each methodli of typeσi, we represent it by
a li-colored arc that starts froms and ends at a node which (1) is colored byσi if σi is a ground
type, or (2) is the starting node of a (sub-) type graph otherwise; for each linkl ∈ Li of li, we
represent it by an arc which is colored bybyl and goes from the end node of the arc representing
l to the end node of the arc representingli.

For the sake of brevity, we drop the subscripts in(s,G1,G2)(GN ,GA,C,sr,tg,c) and
(s,A,R,L,S)(GN ,GA,C,sr,tg,c) whenever possible throughout the paper.

4.2 Examples of OTG

We now provide some examples to illustrate the definitions introduced in the last section. Through-
out this section, if the type of an objecta is represented by a graphA, we will say the type ofa is
A, and vice versa.

Example 1 In Figure1, A, B, andC are the type graphs for the three ground typesint, real, and
bool respectively. They are just a node colored by the appropriate ground types.D is the type
graph for function typeint→ int. E is the type graph for(int→ B)→ int, whereB is the object
type in Figure2(a)which will be explained in the next example.

Example 2 In Figure2(a), graphA denotes the object type[x : int,y : int], where methodsx and

Proc. GT-VMT 2008 6 / 16

ECEASST

int int

in out

in

out

D E

x y

self

intint
byx

int

in

int

out

int int

in out

in

out

C E

x y

self

intint
byx

int

in

int

out

real bool

int

B

A

Figure 1: Examples of Ground Type Graphs and Function Type Graphs.

x y

self
s

intint

x y

self
s

intint
byx

A B

(a)

a b

self

selfint

x mvx

self

int
byx

A B

c

rec

int
in

out

bya byb

(b)

Figure 2: Example of Object Type Graphs

y are independent of each other. GraphB denotes the type[x : int,y({x}) : int] wherey depends
on x. Note that the direction of the link arc inB is from x to y (not fromy to x), and that the link
is colored bybyx, signifying that changes made to methodx will affect methody. For instance,
an object of typeA may be[x = 1, y = 2] (which is actually a record), and an object of typeB
may be[x = 1, y = ς(s :S (B))(s.x+2)].

Note also that although the presence of the link inB or the absence of the link inA serves as
an extra condition (compared to conventional type systems)for selecting objects to be typed asA
or B respectively, there are still infinitely many objects that are of typeA or typeB. For example,
objects[x = m,y = n] with m,n ∈ N are all of typeA; objects[x = n,y = ς(s : B)(a(s.x) + b)]
with n,a,b ∈ N are all of typeB. In this sense, OTG is (still) an abstract specification of object
behaviors.

Example 3 In Figure2(b), A is the type graph forι(t)[x : int,mvx({x}) : int → t] which is the
type of a simplified 1-d movable point[x = 1,mvx = ς(s : B)λ (i : int)(s.x⇐ s.x + i)]. The facts
thatmvx depends onx and returns a modified self object are indicated by thebyx-colored arc and
the out-colored arc respectively. Note the direction of theout-colored arc goes to the starting
node of the type graph directly, indicating that this is a self type (as opposed to recursive objet
type). GraphB represents the type of the object[a = 1, b = p, c({a,b}) = ς(s : S (B))s] where
p is some predefined object of typeB. Here, note that the fact thatb is of recursive object type is
depicted by asel f -colored node and arec-colored arc going from this node to the starting node
of the graph; and that the fact thatc is of self type is depicted by its method arc going directly

7 / 16 Volume 10 (2008)

A Graph-Based Type Representation for Objects

to the starting node of the graph. The difference between recursive object type and self type is
clearly represented in object type graphs.

5 Subtyping under OTG

Given the definition of OTG, we now investigate the issue of subtyping under OTG. Throughout
the paper, we writeAσ <: Bτ iff σ <: τ whereσ andτ are types andAσ andBτ are their type
graphs. We first present the necessary definitions and then provide some subtyping examples.

5.1 Definitions

Definition 7 (Type Graph Premorphism) Let Φ be the set of ground types. Given two type
graphsG = (GN ,GA,C,sr, tg,c) and G′ = (G′N ,G′A,C′,sr′, tg′,c′), a type graph premorphism
f :G→ G′ is a pair of maps(fN :GN → G′N , fA :GA→ G′A), such that (1)∀a ∈ GA, fN(sr(a)) =
sr′(fA(a)), fN(tg(a))= tg′(fA(a)), andc(a)= c′(fA(a)); (2)∀v∈GN, if c(v)∈Φ, thenc′(fN(v))∈
Φ; otherwisec(v) = c′(fN(v)).

Definition 8 (Base, Subbase) Given an object type graphG = (s,A,R,L,S). Thebase of G,
denoted byBa(G), is the graph(s,A, t(A),L), wheret(A) = {tg(a) | a ∈ A}. A subbase of G is a
subgraph(s,A′, t(A′),L′) of Ba(G), whereA′ ⊆ A, L′ ⊆ L, t(A′) = {tg(a) | a ∈ A′}, and for each
l ∈ L′ there exista1,a2 ∈ A′ such thatsr(l) = tg(a1) andtg(l) = tg(a2).

Definition 9 (Closure, Closed) Theclosure of a subbaseD = (s,A′, t(A′),L′) of an object type
graphG = (s,A,R,L,S), denoted byCl(D), is the unionD∪E1∪E2, where (1)E1 = {l ∈ L |
∃a1,a2 ∈ A′ with tg(a1) = sr(l), tg(a2) = tg(l)}, and (2)E2 = {l,h,a, t(l) | l,h ∈ L, a ∈ A, a 6∈
A′, tg(l) = sr(h) = tg(a), and∃a1,a2 ∈ A′ such thattg(a1) = sr(l), tg(a2) = tg(h)}. A subbase
D is said to beclosed if D = Cl(D).

Definition 10 (Covariant, Invariant) Given an object type graph(s,A,R,L,S). Let t(A) =
{tg(a) | a ∈ A}. For eachv ∈ t(A), if v is not incident with any links, or ifv is the target node
of some links but not the source node of any links, thenv is said to becovariant; otherwise,v is
said to beinvariant.

Definition 11 (Object Subtyping) Given two object type graphsG = (sG,AG, /0,LG,SG) and
F = (sF ,AF , /0,LF ,SF). F <: G if and only if the following conditions are satisfied: (1) There
exists a premorphismf from Ba(G) to Ba(F) such thatf (Ba(G)) = Cl(f (Ba(G))). That is,
f (Ba(G)) is closed. (2) For each nodev in f (Ba(G)), let u be its preimage inBa(G) under f ,
Fv ∈ SF be the type graph withv as its starting node, andGu ∈ SG be the type graph withu as its
starting node. (i) Ifv is invariant, thenFv is isomorphic toGu. (ii) If v is covariant, thenFv <: Gu.

Remarks: We now briefly explain the intuitive ideas behind these definitions. Type graph pre-
morphism is adapted from graph morphism which is a fundamental concept in algebraic graph
grammars [EPS73, Ehr78, Roz97]. It preserves the directions and colors of arcs and the colors of
nodes up to ground types. The base of an object type graph singles the method interdependency

Proc. GT-VMT 2008 8 / 16

ECEASST

x y

self

intint

x y

self

real int
byx

A B

byx

v

(a)

x y

self

intint

x y

self

real pos
byx

A B

byx

v

u
u'

(b)

Figure 3: Examples of Object Subtyping

information out of the entire object type graph so that the structure of the method interdependen-
cies can be better studied. A subbase of a base is a subgraph ofthe base and this subgraph by
itself forms a base (of another object type graph). The closure of a subbase captures the com-
plete behavior of the subbase by including, in addition to all methods and links in the subbase,
all necessary methods and associated links outside of the subbase. A subbase is closed if it coin-
cides with its closure. The notions of covariance and invariance are used to characterize whether
the change of a method can affect another method by checking the directions of links that are
incident with the method. The subtyping relation of two object types is given by first checking
the structures of the two object type graphs to ensure that they have the same kind of behaviors,
and then checking the subtyping relations for their sub- type graphs.

5.2 Examples

We now present some simple subtyping examples.

Example 4 Given the two type graphs in Figure3(a), clearly we can find a premorphismf from
base ofA to base ofB such thatf (Ba(A)) is closed; note also that nodev in B is covariant. Thus,
B <: A. As an example, we can regard the object[x = 1, y = ς(s :S (B))(s.x +1)] of typeB as
having typeA.

Example 5 For the two type graphs in Figure3(b), we can also find a premorphism from the
base ofA to the base ofB, and nodev in B is also covariant. But, nodeu in B is invariant which
requires the corresponding nodeu′ in A have the same color – pos (standing for positive integer)
in order to haveB <: A. But u′ is colored byint, hence,B 6<: A.

As an example to justify thatB 6<: A, let b = [x = 1, y = ς(s :S (B))(log(s.x)+1)], it is easy
to checkb : B. If B <: A, thenb : A, and in this case we can update thex field in b to a negative
integer, say, -1, resulting an object likeb = [x = −1, y = ς(s : S (B))(log(s.x) + 1)]. In this
object, the invocation of methody will crash sincelog is not defined over negative integers.

Example 6 Considering the graphsA andB in Figure4(a), it is easy to check (similar to the
case of example4) that B <: A. As an example for this subtyping, an object[x = 1, y = ς(s :
S (B))(s.x+1), z = 1]which is of typeB, can clearly be regarded as having typeA.

Example 7 Let us revisit the two object types in Figure2(a). We haveB 6<: A, since we cannot

9 / 16 Volume 10 (2008)

A Graph-Based Type Representation for Objects

x y

self

intint

x
y

self

real
byx

A B

byx

v

z

int int

(a)

h w

mvh mvw
byw

getw

geth

int intself

int int

byh byw

in

out

in

out
byh

F

int int

h w

mvh mvw
byw

getw

geth

int intself

int int

byh byw

in

out

in

out
byh

C

int int

byh

(b)

Figure 4: Examples of Object Subtyping

find a premorphismf from Ba(A) to Ba(B) such thatf (Ba(A)) is closed. Similarly, there exists
no such a premorphismg from Ba(B) to Ba(A) such thatg(Ba(B)) is closed, soA 6<: B.

One may wonder what kind of type (graph) can be of a subtype ofA or B respectively. Any
subtype ofA must not have a link between methodsx andy; and any subtype ofB must have a
link going from x to y. This is the structural requirement in Definition11. As a result, object
[x = 1, y = 1] cannot be regarded as having the same type with the object[x = 1, y = ς(s :
S (B))(s.x + 1)], and vice versa. One may contend that this subtyping is too restrictive so that
some “good” subtyping instances are not allowed by it; we argue that this is the trade-off in the
sense that the strictness of this subtyping can block and prevent potential programming errors,
as shown in the next example.

Example 8 As the last example, we show how the “free or constrained rectangles problem”
described in section 2.1. The (new) types of the free rectangle fRect and the constrained rectangle
cRect are depicted asF andC in Figure4(b). Note that the independence between the height and
the width in the free rectanglefRect and their dependency in the constrained rectanglecRect are
faithfully shown by the absence and presence of abyh-colored link between methodsh andw in
F andC, respectively. It is easy to check thatC 6<: F. So if we modify the functionds of section
2.1 by replacing its parameter typeFR by the new typeF in Figure4(b), then the callds(cRect)
will be rejected under OTG by the compiler since it does not type-check.

6 Inheritance under OTG

We now turn to the issue of inheritance. Some basic notions ingraph grammar are needed before
we can define inheritance formally.

6.1 Definitions

Definition 12 (Type Graph Production) A type graph production p is a pair of type graph
premorphismsf : K→ A1 andg : K→ A2, whereA1 is called theleft side, A2 theright side, and

K the interface. This is denoted asp = (A1
f
← K

g
→ A2).

Proc. GT-VMT 2008 10 / 16

ECEASST

P B

A K
f

PO gf'

g'

P'

i

j

h

(a) Graph gluing definition

P HD

S TK
f g

k PO PO1 2

(b) Direct derivation definition

Figure 5: Definitions of Graph Gluing and Direct Derivation

Definition 13 (Type Graph Gluing) Given two type graph premorphismsf : K → A and g :

K → B. Thegluing of A andB alongK is thepushout of K
f
→ A andK

g
→ B in the category

formed by type graphs together with type graph premorphisms(Figure5(a)).

Definition 14 (Direct Derivation) Given type graphsP, D, H, a type graph productionp =

(S
f
← K

g
→ T), and a premorphismk : S→ P (called a context map). We say thatH is directly

derived from P via p by k, denoted byP
(p,k)
=⇒ H, if P is the result of gluingS andD alongK and

H is the result of gluingD andT alongK (Figure5(b)).

Definition 15 (Unfolding Production and Operation) A graph productionu = (S
f
←−K

g
−→G)

is called an unfolding production if (1)K is a graph consisting of two nodesv1 and v2, and
c(v1) = c(v2) = sel f ; (2) S is a graph consisting of two nodesu1 andu2 and an arct such that
c(u1) = c(u2) = sel f ,c(t) = rec,sr(t) = u2, andtg(t) = u1; (3) f (vi) = ui, i = 1,2; g is a partial
morphism withg(v2) = sG wheresG is the starting node ofG. Given an unfolding production

u = (S
f
←− K

g
−→G), an object graphF, and a premorphismi : S→ F, we sayF unfolds toP if

F
(u,i)
=⇒ P.

Definition 16 (Addition Production and Operation) A graph productiona = (S
f
←−K

g
−→G) is

called an addition production, if (1)K consists of only one nodev, andc(v) = sel f ; (2) S consists
of only one nodeu, andc(u) = sel f ; (3) f (v) = u andg(v) = sG wheresG is the starting node of

G. Given an addition productiona = (S
f
←− K

g
−→ G), an object graphF, and a premorphism

j : S→ F, we say thatP is the result of addingG into F if F
(a, j)
=⇒ P.

Definition 17 (Link Production and Operation) A graph productionl = (S
f
←− K

g
−→ G) is

called a link production, if (1)G is a graph consisting of two nodesv1, v2 and an arca connecting
these two nodes.c(vi) (i = 1,2) is either a ground type or a→ or asel f , andc(a) = bym, where
m is the color of one of the methods inG; (2) K is a graph consisting of two nodesu1 andu2

with c(ui) is either a ground type or a→ or asel f , i = 1,2; (3) S is isomorphic toK, that is, f is
an isomorphism fromK to S; g is an injection withg(ui) = vi, i = 1,2; Given a link production

l = (S
f
←− K

g
−→G), an object graphF, and a premorphismk : S→ F, we say thatP is the result

11 / 16 Volume 10 (2008)

A Graph-Based Type Representation for Objects

x y

self
s

intint
byx

B

z

self
s

C

int
v

self
s

x y

self
s

intint
byx

D

int

A
f

f'

g'

z v

g

(a) Graph gluing

self

selfself

self

self

self int

rec
rec

p

q

f g

u

u s1

2

v1

v2

self

self

Real

p
q

GKS

i

self

self

Real

rec
p

q

s

F

self

Real

p
q

self

self

Real

recp
q

s

P

r

G

F

(b) Unfolding operation

Figure 6: Examples of Graph Gluing and Unfolding Operation

of embeddingG into F if F
(l,k)
=⇒ P.

Definition 18 (Inheritance Construction of Object Type Graphs) Given object type graphsF
andG. F is said to be inherited fromG if G can be transformed intoF through a finite sequence
of unfolding operations, addition operations, and link operations.

Definition 19 (Inheritance) Given object type graphsS and T , an object of typeT can be
constructed by inheritance from an object of typeS if T is inherited fromS.

Remarks: The central idea here is that inheritance of objects should be guided and guarded by
object types. We devise, through some basic graph transformation techniques, an “inheritance”
notion on object types, and then use this notion to judge whether an object can be built through
inheritance from another object. Specifically, type graph production, type graph gluing, and
direct derivation are the standard graph grammar notions inthe context of object type graphs.
An object type graph can be inherited from another object type graph, if the second object type
graph can be transformed into the first one through a sequenceof combinations of three special
productions: unfolding production, addition production,and link production. An object can be
constructed from another object via inheritance if and onlyif the type of the first object can be
inherited from the type of the second object.

6.2 Examples

We now give some examples to demonstrate the graph operationdefinitions in the last section.

Example 9 A graph gluing example is shown in Figure6(a), where f andg map the only node
in A to thesel f -colored node inB andC respectively, andD is the result of gluingB andC along
A. Intuitively, this gluing operation entails the connection of B andC by identifying their starting
nodes.

Proc. GT-VMT 2008 12 / 16

ECEASST

int

x

out

eq

P

byx

in

bool

self

int

x

out

eq

byx

in

bool

self

color

c

self self

self

color

c

int

x

out

eq

byx

in

bool

self

int

x

out

eq

CP

byx

in

bool

self

color

byc
c

int

x

out

eq

byx

in

bool

self

color

c

color color color

int

x

out

eq

byx

in

bool

self

color

c

byc

P' P'

Figure 7:CP is Inherited fromP.

Example 10 Figure6(b) shows an unfolding operation.F
(u,i)
=⇒ P, whereu = (S

f
←− K

g
−→ G),

f (vi) = ui, i = 1,2, g(v2) = sG, i(u1) = sF , i(u2) = r. As we can see,P can be understood as
constructed by deleting therec-colored arc fromF, and then glue the result with a copy of the
original F by identifying the starting node of the former with the source node of therec-arc of
the latter.

Example 11 We finally show how the “colored point problem” addressed in section 2.2 can be
resolved under OTG inheritance and subtyping. The type of points pt and pt0 and the type of
color pointcpt are depicted asP andCP in Figure7 respectively. We can see thatCP is inherited
from P (through one addition operation and one link operation), which means thatcpt can be
constructed by inheritance frompt (or pt0). Moreover, it is easy to check thatCP <: P under
OTG subtyping, which indicates that inheritance and subtyping are congruent in this case. (Note
that this contrast with the “inheritance is not subtyping” slogan in the literature which is mainly
motivated by this colored point example.) Finally, the crash of F(cpt) is prevented since the
functionF, as defined in section 2.2 and in the literature, does not type-check under OTG typing.
Note in its definition,F = f un(p : PT)(p.eq(pt0)), with PT = Ob jectType(MyType){x : int,eq :
MyType→ Bool}, p.eq requires an argument of the self type associated withPT , S (PT), but
pt0 has typePT , andPT is neither the same as nor the subtype ofS (PT) under OTG.

7 Resolution of the Problems

As examples of OTG subtyping and inheritance, we have demonstrated in the last section that
the two problems outlined in section 2 can be successfully resolved under OTG subtyping and
inheritance mechanisms. Here, we just summarize some majorpoints.

• OTG subtyping takes into consideration the method interdependencies in objects. An ob-
ject in which there is no dependence between two methods can never be regarded as having
the same type with or a subtype of that of an object in which there is an interdependency
between these two methods, and vice versa. The problem addressed in section 2.1 can be
naturally resolved in OTG since there is an interdependencybetween height and width in
constrained rectangles, and there is no such interdependency in free rectangles. Conse-

13 / 16 Volume 10 (2008)

A Graph-Based Type Representation for Objects

quently, these two kinds of rectangles have different types.
• OTG inheritance replies on basic graph derivations. The fundamental idea in this respect

is that inheritance on objects should be regulated using type information of the relevant
objects. An “inheritance” relation over object types is first defined using graph derivations
and then used to determine whether an object can be constructed by inheritance from
another one.

• “Inheritance is not subtyping” has been advocated in the literature for quite a while. De-
spite that, the mainstream OOP still adheres to the practicethat “inheritance indicates
subtyping”. One of the reasons for this is that without this practice, the software hierar-
chy built by inheritance would be almost useless. Thus this practice is highly desirable.
The“colored point problem” described in section 2.2 is one of the motivating examples
that has prompted “inheritance is not subtyping”, because otherwise we will face some
“method-not-found” error. Under OTG, we give this problem anew solution in the sense
that “inheritance indicates subtyping” is retained and ”method-not-found” error is avoided.

8 Related Work

Representing object types as directed colored graphs and subsequently addressing the subtyping
and inheritance issues by graph transformations is our original idea. It uniquely connects the
type theory of object-oriented languages to algebraic graph transformation theory. The founda-
tions of type theory can be found in [Bar92, AC96, Pie02], and the recent results and directions
in type theory research are reflected in, for example, [PRB07, Che07, DHC07]. The origin
of algebraic graph grammar and graph transformation can be traced back to [EPS73, Ehr78],
and [Roz97, EEPT06] present a comprehensive coverage of this research area. For current trends
and developments in graph transformation, see for example,the proceedings of GT-VMT and
ICGT [EG07, CEM+06].

Incidentally, it is interesting to note that the phrase “type graph” has been used inconsistently
in the literature. For example, it is used to denote the disjunctive rational trees in Prolog type
analysis and database query algebra [HCC93, Sch01], to facilitate the investigation of quantifi-
cation in Type Logical Grammar [BS06], and to give types for (some other) graphs in graph
transformation study [GL07, EEPT06]. None of these is the same as the (object) type graphs
introduced in this paper. In particular, the notion of type graphs which is used frequently in the
domain of graph transformations refers to the directed graphs which are designated to abstract
the properties of other (more complex) graphs and thereby torender the type of those graphs;
whereas the notion of the type graphs addressed in this paperrefers to a graphical representation
of the usual data types (e.g., primitive types, function types, object types, etc.). Nevertheless,
both notions are theabstraction of certain entities: the former is the abstraction of graphsand
the latter is the abstraction of values.

9 Final Remarks

Subtyping and inheritance are two major issues in OOP. Although both issues have been stud-
ied extensively, problems still persist. Two particular problems, method interdependencies and

Proc. GT-VMT 2008 14 / 16

ECEASST

“inheritance is not subtyping”, are identified and subsequently addressed by a graph-computing
(OTG) approach in this paper. It is demonstrated that both problems can be resolved effectively
under OTG subtyping and inheritance mechanisms.

Bibliography

[AC96] M. Abadi, L. Cardelli.A Theory of Objects. Springer-Verlag, New York, 1996.

[Bar92] H. Barendregt. Lambda Calculi with Types. In S. Abramsky (ed.),Handbook of
Logic in Computer Science. Volume 2, pp. 117–309. Clarendon Press, Oxford, 1992.

[BL95] V. Bono, L. Liquori. A Subtyping for the Fisher-Honsell-Mitchell Lambda Calcu-
lus of Objects. InProc. of International Conference of Computer Science Logic.
LNCS 933, pp. 16–30. 1995.

[Bru94] K. Bruce. A paradigmatic Object-Oriented Programming Language: Design, Static
Typing and Semantics.Journal of Functional Programming 4(2):127–206, 1994.

[BS06] C. Barker, C. chieh Shan. Types as Graphs: Continuations in Type Logical Grammar.
J. of Logic, Language and Information 15(4), 2006.

[CEM+06] A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, G. Rozenberg (eds.).Proc. of
ICGT’06. LNCS 4178, Springer, 2006.

[CHC90] W. Cook, W. Hill, P. Canning. Inheritance is not Subtyping. In Proc. of POPL.
Pp. 125–135. 1990.

[Che07] J. Chen. A typed intermediate language for compiling multiple inheritance. InProc.
of POPL’07. Pp. 25–30. 2007.

[DHC07] D. Dreyer, R. Harper, M. Chakravarty. Modular type classes. InProc. of POPL’07.
Pp. 63–70. 2007.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer.Fundamentals of Algebraic Graph Trans-
formation. Springer, 2006.

[EG07] K. Ehrig, H. Giese (eds.).Proc. of GT-VMT’07. http://eceasst.cs.tu-berlin.de/, 2007.

[Ehr78] H. Ehrig. Introduction to the algebraic theory of graph grammars. InGraph-
Grammars and Their Applications to Computer Science and Biology. LNCS 73,
pp. 1–69. Springer-Verlag, 1978.

[EPS73] H. Ehrig, M. Pfender, H. J. Schneider. Graph grammars: An algebraic approach. In
IEEE Conference of Automata and Switching Theory. Pp. 167–180. 1973.

[FHM94] K. Fisher, F. Honsell, J. Mitchell. A Lambda Calculus of Objects and Method Spe-
cialization.Nodic Journal of Computing 1:3–37, 1994.

15 / 16 Volume 10 (2008)

A Graph-Based Type Representation for Objects

[GL07] E. Guerra, J. de Lara. Adding Recursion to Graph Transformation. InProc. of GT-
VMT’07. 2007.

[HCC93] P. V. Hentenrck, A. Cortesi, B. L. Charlier. Type Analysis of Prolog Using Type
Graphs. Technical report, Brown University, Technical Report CS-93-52, 1993.

[LC96] L. Liquori, G. Castagna. A Typed Lambda Calculus of Objects. LNCS 1179,
pp. 129–141. Sringer–Verlag, 1996.

[Liq98] L. Liquori. On Object Extension. InECOOP’98 Object-oriented Programming.
Lecture Notes in Computer Science 1445, pp. 498–522. Sringer–Verlag, 1998.

[Pie02] B. Pierce.Types and Programming Languages. MIT Press, 2002.

[PRB07] P. Permandla, M. Roberson, C. Boyapati. A type system for preventing data races
and deadlocks in the java virtual machine language. InProc. of LCTES’07. Pp. 1–10.
2007.

[Roz97] G. Rozenberg (ed.).Handbook of Graph Grammars and Computing by Graph
Transformation. Volume 1. World Scientific, 1997.

[Sak05] M. Sakkinen. Wishes for Object-oriented Languages. In Proc. of Langages et Mod-
eles a Objets (LMO 2005, invited talk). 2005.

[Sch01] K.-D. Schewe. On the Unification of Query Algebras and Their Extension to Ratio-
nal Tree Structures. InProc. of 12th Australasian Database Conference. Pp. 52–59.
2001.

[Seb07] R. Sebesta.Concetps of Programming Languages. Addison Wesley, 8th edition,
2007.

Proc. GT-VMT 2008 16 / 16

