
Electronic Communications of the EASST
Volume 10 (2008)

Proceedings of the
Seventh International Workshop on

Graph Transformation and Visual Modeling Techniques
(GT-VMT 2008)

From Model Transformation to Model Integration based on the
Algebraic Approach to Triple Graph Grammars

Hartmut Ehrig , Karsten Ehrig and Frank Hermann

14 pages

Guest Editors: Claudia Ermel, Reiko Heckel, Juan de Lara
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

From Model Transformation to Model Integration based on the
Algebraic Approach to Triple Graph Grammars

Hartmut Ehrig1 , Karsten Ehrig2 and Frank Hermann1

1 [ehrig, frank](at)cs.tu-berlin.de
Institut für Softwaretechnik und Theoretische Informatik

Technische Universität Berlin, Germany

2 karsten@mcs.le.ac.uk
Department of Computer Science

University of Leicester, United Kingdom

Abstract: Success and efficiency of software and system design fundamentally
relies on its models. The more they are based on formal methods the more they can
be automatically transformed to execution models and finally to implementation
code. This paper presents model transformation and model integration as specific
problem within bidirectional model transformation, which has shown to support
various purposes, such as analysis, optimization, and code generation.

The main purpose of model integration is to establish correspondence between var-
ious models, especially between source and target models. From the analysis point
of view, model integration supports correctness checks of syntactical dependencies
between different views and models.

The overall concept is based on the algebraic approach to triple graph grammars,
which are widely used for model transformation. The main result shows the close
relationship between model transformation and model integration. For each model
transformation sequence there is a unique model integration sequence and vice
versa. This is demonstrated by a quasi-standard example for model transformation
between class models and relational data base models.

Keywords: model transformation, model integration, syntactical correctness

1 Introduction

Whenever one can expect benefits out of different modeling languages for the same specific task
there is a substantial motivation of combining at least two of the them. For this purpose it is
useful to have model transformations between these modeling languages together with suitable
analysis and verification techniques. In cases of bidirectional model transformation the support
for the modeling process increases, for instance, if results of analysis can be translated backwards
to mark the original source of deficiency or defect, respectively.

In [EEE+07] Ehrig et al. showed how to analyze bi-directional model transformations based
on triple graph grammars [Sch94, KS06] with respect to information preservation, which is es-
pecially important to ensure the benefits of other languages for all interesting parts of models.

1 / 14 Volume 10 (2008)

mailto:[ehrig,~frank](at)cs.tu-berlin.de
mailto:karsten@mcs.le.ac.uk

Model Integration

Triple graph grammars are based on triple rules, which allow to generate integrated models G
consisting of a source model GS, a target model GT and a connection model GC together with
correspondences from GC to GS and GT . Altogether G is a triple graph G = (GS← GC→ GT).
From each triple rule tr we are able to derive a source rule trS and a forward rule trF , such that
the source rules are generating source models GS and the forward rules allow to transform a
source model GS into its corresponding target model GT leading to a model transformation from
source to target models. On the other hand we can also derive from each triple rule tr a target
rule trT and a backward rule trB, such that the target rules are generating target models GT and
backward rules transform target models to source models. The relationship between these for-
ward and backward model transformation sequences was analyzed already in [EEE+07] based
on a canonical decomposition and composition result for triple transformations.

In this paper we study the model integration problem: Given a source model GS and a target
model GT we want to construct a corresponding integrated model G = (GS ← GC → GT). For
this purpose, we derive from each triple rule tr an integration rule trI , such that the integration
rules allow to define a model integration sequence from (GS,GT) to G. Of course, not each pair
(GS,GT) allows to construct such a model integration sequence. In our main result we charac-
terize existence and construction of model integration sequences sequences from (GS,GT) to G
by model transformation sequences from GS to GT . This main result is based on the canoni-
cal decomposition result mentioned above [EEE+07] and a new decomposition result of triple
transformation sequences into source-target- and model integration sequences.

In Section 2 we review triple rules and triple graph grammars as introduced in [Sch94] and
present as example the triple rules for model transformation and integration between class models
and relational data base models. Model transformations based on our paper [EEE+07] are intro-
duced in Section 3, where we show in addition syntactical correctness of model transformation.
The main new part of this paper is model integration presented in Section 4 including the main
results mentioned above and applied to our example. Related and future work are discussed in
sections 5 and 6, respectively.

2 Review of Triple Rules and Triple Graph Grammars

Triple graph transformation [Sch94] has been shown to be a promising approach to consistently
co-develop two related structures. Bidirectional model transformation can be defined using mod-
els consisting of a pair of graphs which are connected via an intermediate correspondence graph
together with its embeddings into the source and target graph. In [KS06], Königs and Schürr
formalize the basic concepts of triple graph grammars in a set-theoretical way, which was gen-
eralized and extended by Ehrig et. el. in [EEE+07] to typed, attributed graphs. In this sec-
tion, we shortly review main constructions and relevant results for model integration as given in
[EEE+07].

Definition 1 (Triple Graph and Triple Graph Morphism) Three graphs SG, CG, and T G, called
source, connection, and target graphs, together with two graph morphisms sG : CG→ SG and
tG : CG→ T G form a triple graph G = (SG

sG←CG
tG→ T G). G is called empty, if SG, CG, and

T G are empty graphs.

Proc. GT-VMT 2008 2 / 14

ECEASST

A triple graph morphism m = (s,c, t) : G→ H between two triple graphs G = (SG
sG←CG

tG→
T G) and H = (SH sH←CH tH→ T H) consists of three graph morphisms s : SG→ SH, c : CG→CH
and t : T G→ T H such that s◦ sG = sH ◦c and t ◦ tG = tH ◦c. It is injective, if morphisms s, c and
t are injective.

Triple graphs G are typed over a triple graph TG = (TGS← TGC→ TGT) by a triple graph
morphism tG : G→ TG. Type graph of the example is given in Fig. 1 showing the structure of
class diagrams in source component and relational databases in target component. Where classes
are connected via associations the corresponding elements in databases are foreign keys. Though,
the complete structure of correspondence elements between both types of models is defined via
the connection component of T G. Throughout the example, originating from [EEE+07], ele-
ments are arranged left, center, and right according to the component types source, correspon-
dence and target. Morphisms starting at a connection part are given by dashed arrow lines.

Class

name: String

Table

name: String

src

ClassTableRel

Association

name: String

PrimitiveDataType

name: String

FKey
AssocFKeyRel

AttrColRel Column

type: String

name: String

cols

fkeys
referencesdest

fcols

pkey

Attribute

is_primary: boolean

name: String

attrs

Source Component Connection Component Target Component

type

parent

type

Figure 1: Triple type graph for CD2RDBM model transformation
A triple rule is used to build up source and target graphs as well as their connection graph, i.e.

to build up triple graphs. Structure filtering which deletes parts of triple graphs, is performed by
projection operations only, i.e. structure deletion is not done by rule applications. Thus, we can
concentrate our investigations on non-deleting triple rules without any restriction.

Definition 2 (Triple Rule tr and Triple Transformation Step)
A triple rule tr consists of triple graphs L and R, called
left-hand and right-hand sides, and an injective triple
graph morphism tr = (s,c, t) : L→ R.
Given a triple rule tr = (s,c, t) : L→ R, a triple graph
G and a triple graph morphism m = (sm,cm, tm) : L→
G, called triple match m, a triple graph transforma-
tion step (TGT-step)G =

tr,m
==⇒ H from G to a triple graph

H is given by three pushouts (SH,s′,sn), (CH,c′,cn)
and (T H, t ′, tn) in category Graph with induced

L = (SL
tr �� s ��

CL
sLoo

c
��

tL // T L)
t��

R = (SR CRsR
oo

tR
// T R)

SL

��

sm yyrrr CLoo //

��

cm ~~}}
T L

��

tm ||yy
G = (SG

tr
�� s′ ��

CGoo //

c′ ��

T G)

t ′ ��
SR

snyy
CRoo //
cn~~

T R
tn||yy

H = (SH CHsH
oo

tH
// T H)

morphisms sH : CH→ SH and tH : CH→ T H. Morphism n = (sn,cn, tn) is called comatch.

Moreover, we obtain a triple graph morphism d : G→H with d = (s′,c′, t ′) called transforma-
tion morphism. A sequence of triple graph transformation steps is called triple (graph) transfor-
mation sequence, short: TGT-sequence. Furthermore, a triple graph grammar TGG = (S,T R)

3 / 14 Volume 10 (2008)

Model Integration

consists of a triple start graph S and a set T R of triple rules. Given a triple rule tr we refer by
L(tr) to its left and by R(tr) to its right hand side.

Remark 1 (gluing construction) Each of the pushout objects SH,CH,T H in Def. 2 can be
constructed as a gluing construction, e.g. SH = SG +SL SR, where the S-components SG of G
and SR of R are glued together via SL.

:Class {new}

name = n

:Table {new}

name = n

:ClassTableRel

{new}

:Class :Table

:attrs {new}
:ClassTableRel

:Attribute {new}

name = an

primary = true

:PrimitiveDataType {new}

name = t

:Column {new}

type = t

name = an:AttrColRel

{new}

:cols {new}

:type {new}

:Class :Table

:attrs

:ClassTableRel

:Attribute

is_primary = true :Column
:AttrColRel

:cols

:pkey {new}

:Class :Table

:parent {new}

:ClassTableRel

:ClassTableRel {new}
:Class {new}

name=n

Class2Table(n:String)

SetKey()

PrimaryAttribute2Column(an:String, p:Boolean, t:String) Subclass2Table(n:String)

Figure 2: TGT-rules for CD2RDBM model transformation

:Class :Table
:ClassTableRel {new}

:Association {new}

name = an

:src {new}

:Class

:dest {new}

:FKey {new}

:Table

:AssocFKeyRel {new}

:ClassTableRel

:Column {new}

type = t

name = an+“_“+cn

:cols {new}

:fcols {new}

:fkeys {new}

:references {new}
:Column

type = t

name = cn
:pkey

Figure 3: Rule Association2ForeignKey(an : String) for CD2RDBM model transformation

Examples for triple rules are given in Fig. 2 and Fig. 3 in short notation. Left and right hand
side of a rule are depicted in one triple graph. Elements, which are created by the rule, are labeled
with ”new” and all other elements are preserved, meaning they are included in the left and right
hand side. Rule ”Class2Table” synchronously creates a class in a class diagram with its corre-
sponding table in the relational database. Accordingly the other rules create parts in all com-
ponents. For rule ”PrimaryAttribute2Column” there is an analogous rule ”Attribute2Column”
for translation of non primary attributes, which does not add the edge ”:pkey” in the database
component.

3 Model transformation

The triple rules T R are defining the language VL = {G | /0⇒∗ G via TR} of triple graphs. As
shown already in [Sch94] we can derive from each triple rule tr = L→ R the following source
and forward rule. Forward rules are used for model transformations from a model of a source
language to models of the target language. Source rules are important for analyzing properties
of forward transformations such as information preservation, presented in [EEE+07].

Proc. GT-VMT 2008 4 / 14

ECEASST

L = (SL
tr �� s ��

CL
sLoo

c
��

tL // T L)
t��

R = (SR CRsR
oo

tR
// T R)

triple rule tr

(SR
id ��

CL
s◦sLoo

c
��

tL // T L)
t��

(SR CR
sRoo tR // T R)

forward rule trF

(SL
s ��

/0oo

��

// /0)

��
(SR /0oo // /0)

source rule trS

For simplicity of notation we sometimes identify source rule trS with SL−s→ SR and target rule
trT with TL−t→ TR.

Theses rules can be used to define a model transformation from source graphs to target graphs.
Vice versa using backward rules - which are dual to forward rules - it is also possible to define
backward transformations from target to source graphs and altogether bidirectional model trans-
formations. In [EEE+07] we have shown that there is an equivalence between corresponding
forward and backward TGT sequences. This equivalence is based on the canonical decomposi-
tion and composition result (Thm. 1) and its dual version for backward transformations.

Definition 3 (Match Consistency) Let tr∗S and tr∗F be sequences of source rules triS and for-
ward rules triF , which are derived from the same triple rules tri for i = 1, . . . ,n. Let further

G00 =
tr∗S=⇒ Gn0 =

tr∗F=⇒ Gnn be a TGT-sequence with (miS,niS) being match and comatch of triS
(respectively (mi,ni) for triF) then match consistency of G00 =

tr∗S=⇒ Gn0 =
tr∗F=⇒ Gnn means that the

S-component of the match mi is uniquely determined by the comatch niS (i = 1, . . . ,n).

Theorem 1 (Canonical Decomposition and Composition Result - Forward Rule Case)

1. Decomposition: For each TGT-sequence based on triple rules tr∗

(1) G0 =tr∗=⇒ Gn there is a canonical match consistent TGT-sequence

(2) G0 = G00 =
tr∗S=⇒ Gn0 =

tr∗F=⇒ Gnn = Gn based on corresponding source rules tr∗S and for-
ward rules tr∗F .

2. Composition: For each match consistent transformation sequence (2) there is a canonical
transformation sequence (1).

3. Bijective Correspondence: Composition and Decomposition are inverse to each other.

Proof. See [EEE+07].

Now we want to discuss under which conditions forward transformation sequences G1 =
tr∗F=⇒

Gn define a model transformation between suitable source and target languages. In fact we
have different choices: On the one hand we can consider the projections V LS = pro jS(V L)
and V LT = pro jT (V L) of the triple graph language V L = {G | /0 =⇒∗ G via TR}, where pro jX is a
projection defined by restriction to one of the triple components, i. e. X ∈ {S,C,T}. On the other
hand we can use the source rules TRS = {trS | tr ∈ TR} and the target rules TRT = {trT | tr ∈ TR}
to define the source language VLS0 = {GS | /0 =⇒∗ GS via TRS} and the target language VLT 0 =
{GT | /0 =⇒∗ GT via TRT}. Since each sequence /0 =⇒∗ G via TR can be restricted to a source
sequence /0 =⇒∗ GS via TRS and to a target sequence /0 =⇒∗ GT via TRT we have VLS ⊆ VLS0 and

5 / 14 Volume 10 (2008)

Model Integration

VLT ⊆ VLT 0, but in general no equality. In case of typed graphs the rules in TR are typed over
TG with TG = (TGS← TGC→ TGT) and rules of TRS and TRT typed over (TGS← /0→ /0) and
(/0← /0→ TGT), respectively. Since GS and GT are considered as plain graphs they are typed
over TGS and TGT , respectively.

Given a forward transformation sequence G1 =
tr∗F=⇒ Gn we want to ensure the source component

of G1 corresponds to the target component of Gn, i.e. the transformation sequence defines a a
model transformation MT from VLS0 to VLT 0, written MT : VLS0V VLT 0, where all elements of
the source component are translated. Thus given a class diagram as instance of the type graph in
Fig. 1 all corresponding tables, columns and foreign keys of the corresponding data base model
shall be created in the same way they could have been synchronously generated by the triple
rules of TR. An example forward transformation is presented in [EEE+07]. Since GS ∈ VLS0 is
generated by TRS-rules we have a source transformation /0 =⇒∗ GS via TRS. In order to be sure that

G1 =
tr∗F=⇒ Gn transforms all parts of G1, which are generated by /0 =⇒∗ GS, we require that /0 =⇒∗ GS

is given by /0 =
tr∗S=⇒ G1 with G1 = (GS ← /0→ /0), i.e. projS(G1) = GS based on the same triple

rule sequence tr∗ as G1 =
tr∗F=⇒ Gn. Finally we require that the TGT-sequence /0 =

tr∗S=⇒ G1 =
tr∗F=⇒ Gn

is match consistent, because this implies – by Fact 1 below – that GS ∈ VLS and GT ∈ VLT and
that we obtain a model transformation MT : VLSV VLT (see Fact 1).

Definition 4 (Model Transformation) A model transformation sequence (GS,G1 =
tr∗F=⇒ Gn,GT)

consists of a source graph GS, a target graph GT , and a source consistent forward TGT-sequence

G1 =
tr∗F=⇒ Gn with GS = projS(G1) and GT = projT (Gn).

Source consistency of G1 =
tr∗F=⇒ Gn means that there is a source transformation sequence /0 =

tr∗S=⇒
G1, such that /0 =

tr∗S=⇒ G1 =
tr∗F=⇒ Gn is match consistent. A model transformation MT : VLS0V VLT 0

is defined by model transformation sequences (GS,G1 =
tr∗F=⇒ Gn,GT) with GS ∈ VLS0 and GT ∈

VLT 0.

Remark 2 A model transformation MT : VLS0V VLT 0 is a relational dependency and only in
special cases a function.

This allows to show that MT : VLS0V VLT 0 defined above is in fact MT : VLSV VLT

Fact 1 (Syntactical Correctness of Model Transformation MT) Given GS ∈ VLS0 and G1 =
tr∗F=⇒

Gn source consistent with pro jS(G1) = GS then GT = pro jT (Gn) ∈ VLT and GS ∈ VLS, i.e.
MT : VLSV VLT .

Proof. Given G1 =
tr∗F=⇒ Gn source consistent, we have /0 =

tr∗S=⇒ G1 =
tr∗F=⇒ Gn match consistent and

hence, by Theorem 1 above with G0 = /0 =tr∗=⇒ Gn which implies Gn ∈ VL. Now we have
projS(Gn) = projS(G1) = GS ∈ VLS and projT (Gn) = GT ∈ VLT .

Proc. GT-VMT 2008 6 / 14

ECEASST

4 Model Integration

Given models GS ∈VLS0 and GT ∈VLT 0 the aim of model integration is to construct an integrated
model G ∈ VL, such that G restricted to source and target is equal to GS and GT , respectively, i.e.
projSG = GS and projT G = GT . Thus, given a class diagram and a data base model as instance
of the type graph in Fig. 1 all correspondences between their elements shall be recovered or
detected, respectively. Similar to model transformation we can derive rules for model integration
based on triple rule tr. The derived rules are source-target rule trST and integration rule trI given
by

(SL
s ��

CL
sLoo

c
��

tL // T L)
t��

(SR CRsR
oo

tR
// T R)

triple rule tr

(SL
s ��

/0oo

��

// TL)
t ��

(SR /0oo // TR)
source-target rule trST

(SR
id ��

CL
s◦sLoo

c
��

t◦tL // TR)
id��

(SR CR
sRoo tR // TR)

integration rule trI

An example for both kinds of rules is given in Fig. 4 for the triple rule Class2Table in Fig. 2.

:ClassTableRel {new}

:Table

name = n

:Class

name = n

(a) integration rule Class2TableI

:Class{new}

name = n

:Table{new}

name = n

(b) source-target rule Class2TableST

Figure 4: Derived rules for Class2Table()

Similar to the canonical decomposition of TGT-sequences G0 =tr∗=⇒ Gn into source and for-
ward transformation sequences we also have a canonical decomposition into source-target and

integration transformation sequences of the form /0 =
tr∗ST==⇒ G0 =

tr∗I=⇒ Gn. Such a sequence is called
S-T -consistent, if the S- and T -component of the comatch of triST is completely determined by
that of the match of triI for tr = (tri)i=1...n.

Theorem 2 (Canonical Decomposition and Composition Result - Integration Rule Case)

1. Decomposition: For each TGT-sequence based on triple rules tr∗

(1) G0 =tr∗=⇒ Gn there is a canonical S-T -match consistent TGT-sequence

(2) G0 = G00 =
tr∗ST==⇒ Gn0 =

tr∗I=⇒ Gnn = Gn based on corresponding source-target rules tr∗ST
and integration rules tr∗I .

2. Composition: For each S-T -match consistent transformation sequence (2) there is a
canonical transformation sequence (1).

3. Bijective Correspondence: Composition and Decomposition are inverse to each other.

In the following we give the proof of Theorem 2 which is based on the Local-Church-Rosser
and the Concurrency Theorem for algebraic graph transformations (see [Roz97], [EEPT06]).
The proof uses two lemmas, where the proof of the lemmas is given in [EEH08]. In Lemma 1
we show that a triple rule tr can be represented as concurrent production trST ∗E trI of the cor-
responding source-target rule trST and integration rule trI , where the overlapping E is equal

7 / 14 Volume 10 (2008)

Model Integration

to L(trI), the left hand side of trI . Moreover E-related sequences in the sense of the Con-
currency Theorem correspond exactly to S-T -match-consistent sequences in Theorem 2. In
Lemma 2 we show compatibility of S-T -match consistency with sequential independence in the
sense of the Local-Church-Rosser-Theorem. Using Lemma 1 we can decompose a single TGT-
transformation G0 =tr⇒ G1 into an S-T -match consistent sequence G0 =trST==⇒ G10 =trI=⇒ G1 and vice
versa. Lemma 2 allows to decompose TGT-sequences G0 =tr∗=⇒ Gn into S-T -match consistent

sequences G0 =
tr∗ST==⇒ Gn0 =

tr∗I=⇒ Gn and vice versa.
All constructions are done in the category TripleGraphTG of typed triple graphs and typed

triple graph morphisms, which according to Fact 4.18 in [EEPT06] is an adhesive HLR category.
This implies that the Local-Church-Rosser and Concurrency Theorem are valid for triple rules
with injective morphisms (see Chapter 5 in [EEPT06]).

Lemma 1 (Concurrent Production tr = trST ∗E trI) Let E = L(trI) with e1 = (id, /0, id) :
R(trST) → E and e2 = id : L(trI) → E then tr is given by the concurrent production tr =
trST ∗E trI . Moreover, there is a bijective correspondence between a transformation G1 =

tr,m
==⇒ G2

and match-consistent sequences G1 =
trST ,m1,n1
=====⇒ H =

trI ,m2,n2
====⇒ G2, where S−T -match consistency

means that the S− and T−components of the comatch n1 and the match m2 are equal, i.e.
n1S = m2S and n1T = m2T . Construction of concurrent production:

L(trST)
l ��

trST //

(1)

R(trST)

e1 %%KKKKKKKK
L(trI)

e2zzttttttt

trI //

(2)

R(trI)
r
��

L(tr)
d1

// E
d2

// R

E− concurrent rule
Lemma 2 (Compatibility of S−T -match consistency with independence)
Given the TGT-sequences on the right
with independence in (4) and matches
mi,m′i and comatches ni,n′i. Then we
have:

G20 tr1I

m1′,n1′ #+
PPPPPP

PPPPPP

G00
tr1ST

m0,n0
+3 G10

tr2ST

m2′,n2′

3;nnnnnn
nnnnnn

tr1I

m1,n1 #+PPPPPP
PPPPPP G21

tr2I

m3,n3
+3 G22

G11

tr2ST

m2,n2

3;nnnnnn
nnnnnn

(1) G00 =tr1ST==⇒ G10 =tr1I==⇒ G11 S−T -match consistent⇔
(2) G00 =tr1ST==⇒ G10 =tr2ST==⇒ G20 =tr1I==⇒ G21 S−T -match consistent
and
(3) G11 =tr2ST==⇒ G21 =tr2I==⇒ G22 S−T -match consistent⇔
(4) G10 =tr2ST==⇒ G20 =tr1I==⇒ G21 =tr2I==⇒ G22 S−T -match consistent

Proof of Theorem 2.
1. Decomposition: Given
(1) we obtain (for n =
3) by Leamma 1 a de-
composition into triangles
(1),(2),(3), where the corre-
sponding transformation se-
quences are S − T -match
consistent.

G30

(6)

tr1I
 (JJJ

JJJ

G20

(4)

tr1I
 (JJJ

JJJ

tr3ST 6>ttt ttt
G31

(5)

tr2I
 (JJJ

JJJ

G10

(1)
tr1I
 (JJJ

JJJ

tr2ST 6>ttt ttt
G21

(2)
tr2I
 (JJJ

JJJ

tr3ST 6>ttt ttt
G32

(3)
tr3I
 (JJJ

JJJ

G00

tr1ST 6>ttt ttt

tr1
+3G0 = G11

tr2ST 6>ttt ttt

tr2
+3 G22

tr3ST 6>ttt ttt

tr3
+3 G33 = G3

Proc. GT-VMT 2008 8 / 14

ECEASST

In the next step we show that G10 =tr1I==⇒
G11 =tr2ST==⇒ G21 is sequentially independent
leading by the Local Church Rosser The-
orem to square (4) sequential indepen-
dence in this case means existence of d :
L(tr2ST)→ G10 with g◦d = m2.

L(tr1I)
m1 ��

tr1I // R(tr1I)

$$HHHHHH
L(tr2ST)

m2zztttttt
//

d

rrf f f f f f f f f f f f R(tr2ST)

��
G1 g

// G2 // G3

The diagram on the right shows that d =
(dS,dC,dT) = (m2S, /0,m2T) satisfies this property.
(1)− (4) leads to the following transformation se-
quence G00 =tr1ST==⇒ G10 =tr2ST==⇒ G20 =tr1I==⇒ G21 =tr2I==⇒
G22 =tr3ST==⇒ G32 =tr3I==⇒ G33 which is again S−T -match
consistent due to shift equivalence of correspond-
ing matches in the Local Church Rosser Theorem
(see Lemma 2). Similar to above we can show that
G21 =tr2I==⇒ G22 =tr3ST==⇒ G32 are sequentially indepen-
dent leading to (5) and in the next step to (6) with
corresponding S−T -match consistent sequences.

SL2

dS=m2S
~~~~~~~~

��~~~~~~~ m2S

444444

��444444
/0

dC
����

�������������� m2C

44444

��44444444

OO

��
T L2

dT
��

���������������� m2T

33

��333333333333
G10,S

id
// G11,S = G10,S

G10,C gC
//

OO

��

G11,C

OO

��
G10,T

id
// G11,T = G10,T

2. Composition: Vice versa, each S−T -match consistent sequence (2) leads to a canonical S−
T -match consistent sequence of triangles (1),(2),(3) and later by Lemma 1 to TGT-sequence
(1). We obtain the triangles by inverse shift equivalence, where subsequence 1 as above is S−T -
match consistent. In fact S−T -match consistency of (2) together with Lemma 2 implies that the
corresponding sequences are sequentially independent in order to allow inverse shifts according
to the Local Church Rosser Theorem. Sequential independence for (6) is shown below

R(tr1ST )

n1
��

SR1 = L(tr3ST )

m3

��

tr1I // R(tr3ST )

""DDDDDDDD
L(tr1I)

SR1

m1I~~||||||||
//

d

ssh h h h h h h h h h h h h R(tr1I)

��
G10 g1

// G20 g2
// G30 // G31

By S−T -match consistency we have m1I,S = g2S ◦g1S ◦n1S. Define dS = g1S ◦n1S, then g2S ◦
dS = g2S ◦g1S ◦n1S = m1I,S and similar for the T -component, while dC = m1I,C using g2C = id.
3. Bijective Correspondence: by that of the Local Church Rosser Theorem and Concurrency
Theorem.

Given an integration transformation sequence G0 =
tr∗I=⇒ Gn with projS(G0) = GS,projT (G0) =

GT and projC(G0) = /0, we want to make sure that the unrelated pair (GS,GT ) ∈ VLS0×VLT 0 is
transformed into an integrated model G = Gn with projS(G) = GS,projT (G) = GT . Of course
this is not possible for all pairs (GS,GT ) ∈ VLS0×VLT 0, but only for specific pairs. In any case
(GS,GT ) ∈ VLS0×VLT 0 implies that we have a source-target transformation sequence /0 =⇒∗ G0

via TRST = {trST | tr ∈ TR}. In order to be sure that G0 =
tr∗I=⇒ Gn integrates all parts of GS and

GT , which are generated by /0 =⇒∗ G0, we require that /0 =⇒∗ G0 is given by /0 =
tr∗ST==⇒ G0 based on

9 / 14 Volume 10 (2008)



Model Integration

the same triple rule sequence tr∗ as G0 =
tr∗I=⇒ Gn. Moreover, we require that the TGT-sequence

/0 =
tr∗ST==⇒ G0 =

tr∗I=⇒ Gn is S-T -match consistent because this implies - using Theorem 2 - that GS ∈
VLS,GT ∈ VLT and G ∈ VL (see Theorem 2).

Definition 5 (Model Integration) A model integration sequence ((GS,GT ),G0 =
tr∗I=⇒ Gn,G) con-

sists of a source and a target model GS and GT , an integrated model G and a source-target con-

sistent TGT-sequence G0 =
tr∗I=⇒ Gn with GS = projS(G0) and GT = projT (G0).

Source-target consistency of G0 =
tr∗I=⇒ Gn means that there is a source-target transformation se-

quence /0 =
tr∗ST==⇒ G0, such that /0 =

tr∗ST==⇒ G0 =
tr∗I=⇒ Gn is match consistent. A model integration

MI : VLS0×VLT 0 V VL is defined by model integration sequences ((GS,GT ),G0 =
tr∗I=⇒ Gn,G)

with GS ∈ VLS0, GT ∈ VLT 0 and G ∈ VL.

Remark 3 Given model integration sequence ((GS,GT ),G0 =
tr∗I=⇒ Gn,G) the corresponding

source-target TGT-sequence /0 =
tr∗ST==⇒ G0 is uniquely determined. The reason is that each co-

match of triST is completely determined by S- and T -component of the match of triI , because
of embedding R(triST )� L(triI). Furthermore, each match of triST is given by uniqueness of
pushout complements along injective morphisms with respect to non-deleting rule triST and its
comatch. Moreover, the source-target TGT-sequence implies GS ∈V LS0 and GT ∈V LT 0.

Fact 2 (Model Integration is syntactically correct) Given model integration sequence ((GS,GT ),

G0 =
tr∗I=⇒ Gn, G) then Gn = G ∈ VL with projS(G) = GS ∈ VLS and projT (G) = GT ∈ VLT .

Proof. G0 =
tr∗I=⇒ Gn source-target consistent

⇒ ∃ /0 =
tr∗ST==⇒ G0 s.t. /0 =

tr∗ST==⇒ G0 =
tr∗I=⇒ Gn S-T -match consistent

T hm2⇒ /0 =tr∗=⇒ Gn , i.e. Gn = G ∈ VL

Finally we want to analyze which pairs (GS,GT ) ∈ VLS×VLT can be integrated. Intuitively
those which are related by the model transformation MT : VLS V VLT in Theorem 1. In fact,
model integration sequences can be characterized by unique model transformation sequences.

Theorem 3 (Characterization of Model Integration Sequences) Each model integration se-

quence ((GS,GT ),G0 =
tr∗I=⇒ Gn,G) corresponds uniquely to a model transformation sequence

(GS,G′0 =
tr∗F=⇒ Gn,GT ), where tr∗I and tr∗F are based on the same rule sequence tr∗.

Proof. ((GS,GT ),G0 =
tr∗I=⇒ Gn,G) is model integration sequence

de f⇔ source-target consistent G0 =
tr∗I=⇒ Gn with projS(G0) = projS(Gn) = GS, projC(G0) = /0,

projT (G0) = projT (Gn) = GT and Gn = G
de f⇔ /0 =

tr∗ST==⇒ G0 =
tr∗I=⇒ Gn S-T -match consistent with projS(Gn) = GS and projT (Gn) = GT

T hm2⇔ /0 =tr∗=⇒ Gn with projS(Gn) = GS and projT (Gn) = GT
T hm1⇔ /0 =

tr∗S=⇒ G′0 =
tr∗F=⇒ Gn match consistent with projS(Gn) = GS and projT (Gn) = GT

Proc. GT-VMT 2008 10 / 14



ECEASST

de f⇔ G′0 =
tr∗F=⇒ Gn source consistent with projS(G′0) = projS(Gn) = GS and projT (Gn) = GT

de f⇔ (GS,G′0 =
tr∗F=⇒ Gn,GT ) is model transformation sequence.

PersonCompany

custumer_id : int

Custumer

employee

Figure 5: Source component
of Fig. 6 in concrete syntax

Coming back to the example of a model transformation from
class diagrams to database models the relevance and value of
the given theorems can be described from the more practical
view. Fig. 6 shows a triple graph, which defines a class dia-
gram in its source component, database tables in its target com-
ponent and the correspondences in between. Since this model is
already fully integrated, it constitutes the resulting graph G of

example model integration sequence ((GS,GT ),G0 =
tr∗I=⇒ Gn,G).

The starting point is given by GS as restriction of G to elements of the class diagram, indicated
by pink, and GT containing the elements of the database part, indicated by yellow colour. Now,
the blue nodes for correspondence as well as the morphisms between connection component to
source and target component are created during the integration process. All elements are labeled
with a number to specify matches and created objects for each transformation step. The sequence
of applied rules is

G0 =Class2table======⇒ G1 =Class2table======⇒ G2 =Subclass2Table========⇒ G3 =
PrimaryAttribute2Column
==============⇒

G4 =
Association2ForeignKey
=============⇒ G5 = Gn.

3:Table

name=“Company“

10:FKey

7:fkeys 

2:ClassTableRel

24:AttrColRel 

15:ClassTableRel

9:AssocFKeyRel

19:ClassTableRel

20:cols

6:src

11:dest

16:parent

21:pkey

8:Association 

name = “employee“

1:Class 

name=“Company“

14:Class 

name=“Person“

18:Class 

name=“Customer“

27:PrimitiveDataType 

name = “int“ 

23:Attribute 

is_primary = true

name=“cust_id“

25:Column 

type = “int“

name = “cust_id“

22:attrs

26:type 

17:Table 

name=“Person“

5:Column 

type = “int“

name = “employee_cust_id“

4:cols

12:fcols
13:references

Figure 6: Example of model integration for model transformation Class2Table
Now, Table 1 shows all matches of this sequence for both cases of Theorem 3 being the

model integration sequence G0 =
tr∗I=⇒ Gn and the forward transformation sequence G′0 =

tr∗I=⇒ Gn,
where G0 contains the elements of G except correspondence parts and G′0 is G leaving out all
elements of target and connection component. The column ”Created” in the table lists the ele-
ments which are created at each transformation step. According to the numbers for the elements,
the correspondence component is completely created during the model integration sequence and
the elements of each match are created by the corresponding source-target rule application in

11 / 14 Volume 10 (2008)



Model Integration

Integration Sequence Forward Sequence
Elements Elements

Step and Rule Matched Created Matched Created
1 1,3 2 1 2,3
2 14,17 15 14 15,17
3 14-18 19 14-18 19
4 17-23, 25-27 24 17-19, 22,23, 26,27 20,21, 24,25
5 1-8, 10-15, 17,21,25 9 1-3,6,8, 11,14,15, 17,21,25 4,5,7,9,10,12,13

Table 1: Steps of example integration sequence

/0 =
tr∗ST==⇒ G0. Therefore, /0 =

tr∗ST==⇒ G0 =
tr∗I=⇒ Gn is match consistent. Analogously /0 =

tr∗S=⇒ G′0 consists
of the specified steps in Table 1, where comatches are given by the elements of the match in the

forward transformation sequence implying /0 =
tr∗S=⇒ G′0 =

tr∗F=⇒ Gn being match consistent. Both in-
tegration and forward transformation sequence can be recaptured by analyzing the other, which
corresponds to Theorem 3.

5 Related Work

Various approaches for model transformation in general are discussed in [MB03] and [OMG07]
using BOTL and QVT respectively. For a taxonomy of model transformation based on graph
transformation we refer to [MG06]. Triple Graph Grammars have been proposed by A. Schürr
in [Sch94] for the specification of graph transformations. A detailed discussion of concepts,
extensions, implementations and applications scenarios is given by E. Kindler and R. Wagner in
[KW07]. The main application scenarios in [KW07] are model transformation, model integration
and model synchronization. These concepts, however, are discussed only on an informal level
using a slightly different concept of triple graphs compared with [Sch94].

In this paper we use the original definition of triple graphs, triple rules, and triple transforma-
tions of [Sch94] based on the double pushout approach (see [Roz97], [EEPT06]). In our paper
[EEE+07] we have extended the approach of [Sch94] concerning the relationship between TGT-

sequences based on triple rules G0
tr∗⇒Gn and match consistent TGT-sequences G0

tr∗S⇒Gn0
tr∗F⇒Gm

based on source and forward rules leading to the canonical Decomposition and Composition
Result 1 (Thm 1). This allows to characterize information preserving bidirectional model trans-
formations in [EEE+07].

In this paper the main technical result is the Canonical Decomposition and Composition Re-
sult 2 (Thm 2) using source-target rules trST and integration rules trI instead of trS and trF .
Both results are formally independent, but the same proof technique is used based on the Lo-
cal Church–Rosser and Concurrency Theorem for graph transformations. The main result of
[EEPT06] is based on these two decomposition and composition results. For a survey on tool
integration with triple graph grammars we refer to [KS06].

Proc. GT-VMT 2008 12 / 14



ECEASST

6 Future Work and Conclusion

Model integration is an adequate technique in system design to work on specific models in dif-
ferent languages, in order to establish the correspondences between these models using rules
which can be generated automatically. Once model transformation triple rules are defined for
translations between the involved languages, integration rules can be derived automatically for
maintaining consistency in the overall integrated modelling process.

Main contributions of this paper are suitable requirements for existence of model integration
as well as composition and decomposition of source-target and integration transformations to
and from triple transformations. Since model integration may be applied at any stage and several
times during the modelling process, results of model integrations in previous stages can be used
as the starting point for the next incremental step.

All concepts are explained using the well known case study for model transformation between
class diagrams and relational data bases. While other model transformation approaches were
applied to the same example for translation between source and target language, triple graph
grammars additionally show their general power by automatic and constructive derivation of
an integration formalism. Therefore, model integration in the presented way can scale up very
easily, only bounded by the effort to build up general triple rules for parallel model evolution.

Usability extends when regarding partly connected models, which shall be synchronized as
discussed on an informal level in [KW07]. On the basis of model integration rules model syn-
chronization can be defined in future work as model integration using inverse source and target
rules, standard source and target rules as well as integration rules in a mixed way, such that
the resulting model is syntactically correct and completely integrated. Another interesting as-
pect for future work is the extension of triple graph rules and corresponding transformation and
integration rules by negative application conditions (see [HHT96]), or by more general graph
constraints (see [HP05]).

Bibliography

[EEE+07] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, G. Taentzer. Information Preserving
Bidirectional Model Transformations. In Dwyer and Lopes (eds.), Fundamental Ap-
proaches to Software Engineering. LNCS 4422, pp. 72–86. Springer, 2007.
http://tfs.cs.tu-berlin.de/publikationen/Papers07/EEE+07.pdf

[EEH08] H. Ehrig, K. Ehrig, F. Hermann (eds.). From Model Transformation to Model Inte-
gration based on the Algebraic Approach to Triple Graph Grammars (Long Version).
Februrary 2008. published as Technical Report, TU Berlin, No. 2008-3.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph Trans-
formation. EATCS Monographs in Theoretical Computer Science. Springer Verlag,
2006.
http://www.springer.com/3-540-31187-4

[HHT96] A. Habel, R. Heckel, G. Taentzer. Graph Grammars with Negative Application Con-
ditions. Special issue of Fundamenta Informaticae 26(3,4):287–313, 1996.

13 / 14 Volume 10 (2008)

http://tfs.cs.tu-berlin.de/publikationen/Papers07/EEE+07.pdf
http://www.springer.com/3-540-31187-4


Model Integration

[HP05] A. Habel, K.-H. Pennemann. Nested Constraints and Application Conditions for
High-Level Structures. In Kreowski et al. (eds.), Formal Methods in Software and
Systems Modeling. Lecture Notes in Computer Science 3393, pp. 293–308. Springer,
2005.
http://dx.doi.org/10.1007/b106390

[KS06] A. König, A. Schürr. Tool Integration with Triple Graph Grammars - A Survey. In
Heckel, R. (eds.): Elsevier Science Publ. (pub.), Proceedings of the SegraVis School
on Foundations of Visual Modelling Techniques, Vol. 148, Electronic Notes in Theo-
retical Computer Science pp. 113-150, Amsterdam. 2006.
http://dx.doi.org/10.1016/j.entcs.2005.12.015

[KW07] E. Kindler, R. Wagner. Triple Graph Grammars: Concepts, Extensions, Imple-
mentations, and Application Scenarios. Technical report tr-ri-07-284, Software
Engineering Group, Department of Computer Science, University of Paderborn,
June 2007.
http://www.uni-paderborn.de/cs/ag-schaefer/Veroeffentlichungen/Quellen/Papers/
2007/tr-ri-07-284.pdf

[MB03] F. Marschall, P. Braun. Model Transformations for the MDA with BOTL. In Proc. of
the Workshop on Model Driven Architecture: Foundations and Applications (MDAFA
2003), Enschede, The Netherlands. Pp. 25–36. 2003.
http://citeseer.ist.psu.edu/marschall03model.html

[MG06] T. Mens, P. V. Gorp. A Taxonomy of Model Transformation. In Proc. International
Workshop on Graph and Model Transformation (GraMoT’05), number 152 in Elec-
tronic Notes in Theoretical Computer Science, Tallinn, Estonia, Elsevier Science.
2006.
http://tfs.cs.tu-berlin.de/gramot/Gramot2005/FinalVersions/PDF/MensVanGorp.pdf

[OMG07] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification,
Final Adopted Specification (07-07-2007). 2007.
http://www.omg.org/docs/ptc/07-07-07.pdf

[Roz97] G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph Trans-
formations, Volume 1: Foundations. World Scientific, 1997.

[Sch94] A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In G.
Tinhofer, editor, WG94 20th Int. Workshop on Graph-Theoretic Concepts in Com-
puter Science, volume 903 of Lecture Notes in Computer Science, pages 151–163,
Springer Verlag, Heidelberg. 1994.
http://dx.doi.org/10.1007/3-540-59071-4 45

Proc. GT-VMT 2008 14 / 14

http://dx.doi.org/10.1007/b106390
http://dx.doi.org/10.1016/j.entcs.2005.12.015
http://www.uni-paderborn.de/cs/ag-schaefer/Veroeffentlichungen/Quellen/Papers/2007/tr-ri-07-284.pdf
http://www.uni-paderborn.de/cs/ag-schaefer/Veroeffentlichungen/Quellen/Papers/2007/tr-ri-07-284.pdf
http://citeseer.ist.psu.edu/marschall03model.html
http://tfs.cs.tu-berlin.de/gramot/Gramot2005/FinalVersions/PDF/MensVanGorp.pdf
http://www.omg.org/docs/ptc/07-07-07.pdf
http://dx.doi.org/10.1007/3-540-59071-4_45

	Introduction
	Review of Triple Rules and Triple Graph Grammars
	Model transformation
	Model Integration
	Related Work
	Future Work and Conclusion

