
Electronic Communications of the EASST
Volume 10 (2008)

Proceedings of the
Seventh International Workshop on

Graph Transformation and Visual Modeling Techniques
(GT-VMT 2008)

Composing control flow and formula rules for computing on grids1

P. Bottoni and N. Mirenkov and Y. Watanobe and R. Yoshioka

15 pages

Guest Editors: Claudia Ermel, Reiko Heckel, Juan de Lara
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

1 Work done while the first author was working in Aizu University as adjunct professor.

http://www.easst.org/eceasst/

ECEASST

Composing control flow and formula rules for computing on grids2

P. Bottoni1 and N. Mirenkov2 and Y. Watanobe2 and R. Yoshioka2

1 bottoni@di.uniroma1.itDep. of Computer Science, ”Sapienza” Univ. of Rome, Italy

2(nikmir,yutaka,rentaro)@u-aizu.ac.jpDep. of Computer Software, Univ. of Aizu, Japan

Abstract: We define computation on grids as the composition, through pushout
constructions, of control flows, carried across adjacency relations between grid cells,
with formulas updating the value of some attribute. The approach is based on the
identification of a subcategory of attributed typed graphs suitable to the definition of
pushouts on grids, and is illustrated in the context of the Cyberfilm visual language.

Keywords: Grids, Control flow rules, DPO

1 Introduction

Graphs have been long proposed as a universal formalism for describing the structure of sys-
tem configurations and to support computational specifications of the transformations they may
undergo. Moving from this common ground, the areas of graph transformations and graph algo-
rithms have taken two divergent, possibly complementary paths.

On the one hand, graph transformations propose a declarative approach to computation based
on the iteration of local modifications to the graph structure, so as to define a language of admis-
sible graph configurations, each depicting a possible state of the system being modelled.

On the other hand, algorithms on graphs exploit procedural definitions of visits to the graph
structure, usually to extract some global property of it. In many cases, graph transformations
– typically performed by enriching the graph with additional features such as types [CMR96],
attributes [MW93, HKT02, dBE+07] or control structures on rule application [KK99, SWZ99,
BKPT00] – are capable of replicating many relevant features of the algorithmic approach.

However, the general approach to graph transformations – based on the search for a subgraph
isomorphism between the antecedent of a rule and the host graph under scrutiny – is not optimal
for spatially organized structures, such as grids (in any number of dimensions), trees, or pyra-
mids [YM02, WMYM08], as the inherent non-determinism of the matching process fails to take
advantage of the existence of privileged relations among elements, and of orders for their visit.

We propose to reconcile the use of graph transformation as a general computational framework
with the existence of some spatial structure on the host graph. To this end, we combine a suite of
meta-models for diagrammatic languages – defining the possible spatial relations among identi-
fiable elements [BG04], their transformation semantics [BLG07], and the relations between the
two [dGB07] – with a form of algebraic composition of rules in the framework of the Double
Pushout Approach to graph rewriting.

The proposal is applied to theCyberfilmvisual environment, which provides the user with
iconic representations of computational flows on spatial structures. These representations are

2 Work done while the first author was working in Aizu University as adjunct professor.

1 / 15 Volume 10 (2008)

mailto:bottoni@di.uniroma1.it
mailto:(nikmir,yutaka,rentaro)@u-aizu.ac.jp

Composing rules on grids

arranged as sequences of frames highlighting the set of nodes which at each step contribute
to the production of a new result [WMYM08]. In a separate view, the formulas defining the
computations can be defined, thus allowing their reuse according to different control flows. In
particular, we focus on bidimensional grids on which several control flows can be defined, and
use a categorical construction to provide a formal treatment of the composition of control flow
and computational formulas.

In the rest of the paper, after related work inSection 2, we provide background on graph
transformations and the adopted metamodels inSection 3. Section 4introduces the categories on
grids needed to define control flow rules inSection 5. Finally, Section 6shows how to compose
formulas and control flows, before drawing conclusions inSection 7.

2 Related Work

Spatial structures, such as those defined by grids or trees, have been the subject of many studies
from the algorithmic point of view, in particular as regards the identification of paths with partic-
ular properties over them [IPS82]. From the algebraic point of view, trees have been studied as
representations of computational structures, such as terms [HP95] or abstract syntaxes [Mos94],
whereas images, rather than grids, have been studied in relation to the sets of languages definable
on them [GR97]. The translation morphism discussed in this paper may be seen as an analogous
of the ”positional overlapping” operation for images [BL07].

The technique for composing control flows and formulas differs from the notion of (local)
application of rules to rules in [Par94], based on finding a match from a rule component to a
component of another rule, as well as from that ofaction patternin [BLG07], where a pattern is
matched to the right-hand side of a rule to produce a rule whose effects conform to the pattern.
A construction analogous to the one here is in [TB94], exploiting common subrules to identify
possible agreements on a host graph and construct amalgamated versions of the rules. Although
we can also use this notion to find agreements between rule application, we are mainly interested
here in the construction of new rules from rules defined on different graph types.

Finally, we point out a similarity with notions of modularity and Viewpoints [GEMT00], pro-
posed as a way to modeling a system through the integration of partial models. However, we
combine different aspects of the behaviour of the system into an integrated specification, rather
than considering behavioral and structural aspects together. The approach to coordination pro-
posed in [AFGK02] is also based on pushouts (actually colimits), to allow separation of concerns
when defining different aspects of a program behaviour.

3 Background: Metamodels and Graph Transformations

According to the metamodel for diagrammatic languages presented in [BG04], and shown inFig-
ure 1, adiagramis composed ofidentifiable elementsamong which significantspatial relations
exist. A whole diagram is itself an identifiable element, with global properties. An identifiable
element is a recognizable unit in the language, associated with a graphical representation defined
by acomplex graphic element, composed in turn of one or moregraphic elements, each possess-
ing someattach zone, representing the geometrical support for spatial relations. The existence of

Proc. GT-VMT 2008 2 / 15

ECEASST

Figure 1: The overall metamodel for diagrammatic languages.

a relation is assessed via a predicateisAttached() implemented by each zone. Symmetries
may exist between spatial relations. Two relationsσ andρ are tied by a symmetry if there is a
size-preserving diagram transformation changing all instances ofρ into instances ofσ .

Specializations of these abstract types define language families. For example, in connection-
based languages, anEntity acts as an endrole forConnection elements, while the signif-
icant relation isTouches , determined by the coincidence of adot at the end of a connection
with a point on theborder of an entity. In this paper we are interested in languages based on
Adjacency , which indicates a class of relations betweenCell s of regular shape tessellating
the plan, and whosebordersoverlap for a finite segment. According to the type of tessellation,
cells may entertain various adjacency relations, typically possessing symmetric companions,
such as inLeft andRight adjacency for regular arrangements of rectangles.

Based on this metamodel, we can represent diagrams as attributed typed graphs, where nodes
are elements of classes in the metamodel and edges are instances of the associations.

Formally, atype graphis a constructTG = (NT ,ET ,sT , tT) with NT andET sets of node and
edge types.sT : ET → NT andtT : ET → NT define thesourceand target node types for each
edge type. A typed graph onTG is a graphG = (N,E,s, t) with a graph morphismtype: G→
TG composed oftypeN : N→ NT and typeE : E→ ET , s.t. typeN(s(e)) = sT(typeE(e)) and
typeN(t(e)) = tT(typeE(e)). Type graphs with node inheritance exploit a pairTGI = (TG, I),
whereI = (NI ,EI ,sI , t I) is a node inheritance graph, withNI = NT , i.e. I has the same nodes as
TG, but its edges are the inheritance relations. The inheritanceclan of a noden is the set of all
its children nodes (includingn itself): clan(n) = {n′ ∈ NI |∃ pathn′→∗ n in I} ⊆ NI .

Typed attributed graphs are typed graphs with additionaldatanodes andattribute edges(nodes
of G are now calledobject nodes). A type graphTGhas a set∆ of data type nodesand a setA of
attribute type edges, denoting the domains of the attribute nodes and the set of attributes associ-

3 / 15 Volume 10 (2008)

Composing rules on grids

ated with nodes, together with functionsσA : NT→P(A), defining the attributes for a given type,
andτA : A→ ∆, defining the admissible domain for each attribute. These elements define atype
graph with attributes TGA. A typed attributed graph onTGA is a construct(TG,G,N∆,EA,sA, tA),
whereTG andG are as before,N∆ is the set of data nodes, coinciding with the disjoint union of
the domains of attributes, andEA is the set ofattribute edges, from object nodes to data nodes.
Edges are typed onA and associate object nodes with the values of its attributes.sA : EA→ N
andtA : EA→ N∆ define the valuation of attributes for a given node, coherently withσA andτA.
We represent data nodes as typed items and distinguish them from object nodes through a dotted
contour, following the convention proposed in Example 8.5 of [EEPT06].

Attributed typed graphs form the adhesive HLR category [LS04] AGraphATG , so that transfor-
mations can be expressed through Double Pushout (DPO) derivations [EEPT06], in which rules
are spansL← K→RandK defines the part which is left unchanged by the rule application. We
also exploit application conditions, as shown inSection 4.

4 Categories on Grids

Rectangular grids are regular arrangements of cells according to symmetrical pairs ofvertical
andhorizontaladjacency relations, withnrow rows andncol columns, conforming to the family
of adjacency-based diagrammatic languages depicted inFigure 2. Hence, nodes are instances
of Cell , with a position given by theirrow andcol attributes and boolean values to distinguish
border cells. Adjacency relations can be of four types, with the obvious constraints on their
pairing. Moreover, there exists a set of additional constraints stating that a grid has to form
a rectangle (i.e. its top and bottom borders must have the same number of elements, as must
its left and right borders), and all border elements are adjacent to three other cells except the
four corner elements, adjacent to two. Mirror and rotation symmetries exists between pairs of
adjacency relations.

Figure 2: The family of bidimensional grids.

Grids thus give rise to a subcategoryAGrid T of AGraphATG , whose morphisms are composed
of a structuralpart, involving nodes of typeCell andAdjacency , and adatapart involving

Proc. GT-VMT 2008 4 / 15

ECEASST

attributes. The structural part usestranslationsas morphisms. A translation exists from a gridG1

to a gridG2 if G2 is such that an isomorphism exists fromG1 to a subset of its cells, preserving
its connectivity and the relative directions. A translation is uniquely determined by the position
of the image of the upper left corner (or any other cell) of the original grid in the context of the
target grid.Figure 3shows the composition of two translations, where the highlighted rectangles
show the new positions of the original grid. We assume that translations occur only rightwards
and downwards. The pairs(r,c) labeling the morphisms indicate the offsets at which the nodes
of the original grid are found in the new grid. The size ofG2 is at least equal to that ofG1. The
identity morphism is the translation(0,0) from a grid into itself, and morphism composition is
the vectorial sum of the translations. We now study the subcategoryTGrid T , obtained by taking
the structural part ofAGrid T , i.e. maintaining the type information, but forgetting attributes.

Figure 3: Translation morphism and composition.

In TGrid T , a pushoutG1
p1→ P

p2← G2 for a spanG1
t1← G

t2→ G2 between two grids can be
constructed in the same way as the pushout inGraph if and only if one of the following is true:

(1) eithert1 or t2 is an identity;
(2a)t1 has a label of the form(r1,0) andG1.ncol == G.ncol AND
(2b) t2 has a label of the form(0,c1) andG2.nrow== G.nrow;
(3a)t1 has a label of the form(0,c2) andG1.nrow== G.nrowAND
(3b) t2 has a label of the form(r2,0) andG2.ncol == G.ncol.

Then,P has size(max(G1.nrow,G2.nrow), max(G1.ncol,G2.ncol)); morphismsp1 : G1→
P and p2 : G2→ P are labeled by(max(r1, r2)− r1, max(c1,c2)− c1), and (max(r1, r2)− r2,
max(c1,c2)− c2), respectively, so that parallel arrows have the same label (seeFigure 4). The

pushout complementG
x1→C

x2→ G′, for the compositionG
t1→ G1

t2→ G′, whereG is an object of

5 / 15 Volume 10 (2008)

Composing rules on grids

size(r,c), G1 of size(r1,c1) andG′ of size(r ′,c′), uniquely exists only ift1 andt2 satisfy the
constraints above, and has size((r ′− r1)+ r,(c′−c1)+c), with x1 andx2 labeled ast1 andt2.

Figure 4: The pushout construction for grids

We can now definestructuralDPO rules inTGrid T in accordance to the construction above.
In particular, in order to satisfy the the dangling condition, rules are non-deleting (i.e.L← K
is an identity). The gluing condition, ifK → R is not an identity, requires border cells ofL to
be matched to border cells of the host gridG. The pushout complement objectD is now always
equal toG. Hence, grids can be generated so that the constraints on their rectangular form are
maintained through the pushout construction, without having to adopt regulatory mechanisms
for rewriting, such as those needed for the so-called Indian grammars: a set ofhorizontalrules
is there first used to create the upper row, and thenvertical rules are applied in parallel to pop-
ulate the columns [SK74]. The pushout construction can now be lifted in order to consider also
attributes. In particular, as typical of attributed graph rewriting, data morphisms are identities
(no domain element can be created or deleted). Hence, the effect of a rule can only be the addi-
tion of structural nodes and edges and the deletion and creation of attribute edges. Application
conditions can be used to describe the relations between values. All grids inAGrid T can now
be generated by the iterated use of the two rules inFigure 5andFigure 6, in which identifiers of
Adjacency nodes indicate their directions and an application condition defines the coordinates
of the new cell.

In both cases, we show the classical representation of DPO rules at the top of the figure, and
use, at its bottom, a compact notation, already exploited in [dGB07]: the difference between
K, L, andR is shown by highlighting the deleted and produced parts with different colours and
marking them with tags{del } and{new}. The elements outside the tagged areas are those
belonging to theK component. Note that, differently from [EEPT06], we explicitly showK as
presenting isolated data nodes, which are connected to different object nodes inL andR.

Proc. GT-VMT 2008 6 / 15

ECEASST

Figure 5: The rule for letting a grid grow horizontally.

5 Control Flow Rules

Figure 7presents the metamodel triples describing the correspondences induced by assigning to
the adjacency relation in the visual representation the semantic meaning of acarrier, along which
either data or modifications in theactivation statecan travel from and toactive elements. The
left upper part ofFigure 7constitutes the static semantics for the control flow variety on spatial
structures, while the right upper part models the data variety, here simplified by considering a
simple integer-valued attribute, calledlevel . By applying the construction in [dGB07] one
can incrementally define the flow structure through triple graph rules which introduce carriers in
correspondence with the installation of adjacency relations in specified directions. Hence, one
can model thepermeabilityof the cell wall to control or data flow. As an example, flows could
travel rightwards and leftwards, but not downwards and upwards.

A control flow (cf) rule is a DPO rule inAGraphATG with graphs conforming to the left
upper part ofFigure 7, so thatA contains the attributestatewith values in some finite domain
ActivationState∈ ∆.

In general, as shown in the rule (in compact form) on the left ofFigure 83, the activation state
may vary during transportation, e.g. a flow can decrease its intensity. The element reached by the
flow could have possessed some other activation value and the one from which the flow originated
may gain a new one, as defined by application conditions. The basic rule on the right ofFigure 8
deals with the case of cells entering anactivestate as the control flow reaches them traveling
the grid rightwards from the origin to the destination, while the origin enters aquiescentstate.

3 Abbreviations are used for names of values and types.

7 / 15 Volume 10 (2008)

Composing rules on grids

Figure 6: The rule for letting a grid grow vertically.

The carrier identifier indicates the value of itsDirection attribute. Similar rules are defined
for other directions, exploiting rotational and mirror symmetries.cf-rules are composed to form
more complex ones using a componentwise pushout construction inAGraphATG , as shown in
Figure 9, whereL← K→ R is the maximal intersection ofL1← K1→ R1 andL2← K2→ R2,
all the squares commute and those with curved arrows are pushouts. As an example, directional
rules compose through a rule on a single cell passing from theactive to the quiescentstate.
Figure 10illustrates the case of the two horizontal movements, whileFigure 11that of one
directional and one vertical movement.

Figure 7: The metamodel triples for control and data flows on grids.

Proc. GT-VMT 2008 8 / 15

ECEASST

Figure 8: A generic rule for transmission of control flows and a basic rule.

L

��

44K
loo r //

��

**
R

��

44L1

��

K1
l1oo r1 //

��

R1

��
L2 44K2

l2oo r2 // **R2 44L′ K′
loo r // R′

Figure 9: The construction for rule composition.

6 Composing Control Flow and Computation Formulas

We now introducedata-rules to specify the transformation of some attribute according to some
formula. These are defined on the type graph in the right upper part ofFigure 7. Data andcf-
rules are composed, again with a pushout construction, to produce rules which both apply the
formula and propagate the flow, when an active element is reached by the control flow.

The rule inFigure 12doubles the value oflevel . X andY are variables to indicate generic
instances of an integer. The rules involved in their combination operate on four different types
of graphs. The intersection is defined in a type graph whereActiveElement abstracts on
ControlActiveElement andDataActiveElement and has no attribute, while the pushout
object complies with a type graph formed by taking the quotient of the disjoint union of the two
type systems fromFigure 7and identifying the activity types in aFullActiveElement type

Figure 10: The construction of the rule propagating control flow horizontally in both verses.

9 / 15 Volume 10 (2008)

Composing rules on grids

Figure 11: The construction of a bidirectional rule.

(abbreviated inFActv). Node morphisms go from less to more specific types.

Figure 12: A rule expressing a computational formula.

In Figure 13, the bidirectional rule ofFigure 11is composed with the formula ofFigure 12, so
that the latter is now evaluated only when the activation front leaves an element in both directions.
Using different mappings from the intersection to thecf-rule, the formula would be evaluated
when the control flow reaches an element from a specific direction. The resulting rule does
not specify thelevel values for the other elements. Rules can be applied sequentially or, if
they do not conflict on their result, combined to form amalgamated rules to achieve an effect of
parallelism [TB94]. As an example, the rule ofFigure 13agrees with itself on any node whose
upper and left neighbours are both mapped, by two distinct matches, to the cell identified by
1. Rules can be enriched with parameters and applied via rule expressions to realize complex
computations [BKPT00].

6.1 Types of activation inCyberfilm

TheCyberfilmlanguage [YM02, WMYM08] provides a collection of predefined control flows,
associated with program templates defining the loops realizing them, and with sequences of
iconic schemes for an intuitive visualization of the main steps in the execution flow.Cyberfilm
allows the separated definition of computational formulae and control flow specifications. Hence,
the constructions above can be exploited to provide a compositional mechanism for it.

In particular, in the Cyberfilm framework, control flow is defined by the transformation of the

Proc. GT-VMT 2008 10 / 15

ECEASST

Figure 13: The resulting rule specifying the condition of application.

flashing stateof a node Different types of flashing are defined: for example,full flashingindicates
that the node is able to perform reading and writing operations;contour flashingindicates that
the node is referenced by other flashing nodes which can perform reading operations, but not
change its value;half flashingindicates the activity state of an observer which can change the
state of other nodes in a global fashion. Other types of flashing are defined, but in this paper we
restrict ourselves to the flow of the full and contour flashing, thus interpreting full flashing as
an indication that the formula associated with the node can be evaluated to assign a new value
to the node, and contour flashing, as the fact that the value of the node is available for formula
evaluation by other nodes.

At any time, a cell is in only one possible state. The control flows of thefull andcontour
flashing can be independent or coordinated. Independent flows can be specified as described in
Section 5, whereas coordinated flows require the identification of the conditions under which a
cell is able to receive the contributions of other cells.

Figure 14shows the composition of a coordinatedcf-rule, for rightward transmission of both
full andcontourflows, with a formula rule where an element reads the value of its down neigh-
bour (without changing it), to compute its new level. The upward adjacency relation is mapped,
in the formula rule, to adata carrier (DC) element, as control and data may flow in different
directions, i.e. cells can have differentpermeabilityto data and control flows.

11 / 15 Volume 10 (2008)

Composing rules on grids

Figure 14: The rule resulting from the coordination of movements of full and contour flashing.

In this case, thecf-rule is bound to consider both thefull andcontourflows simultaneously.
The same effect could be achieved by considering the two flows independently.Figure 15shows
the first step of the relative construction, in which the rightwards movement for the full flash-
ing is combined with the same formula to produce a rule which does not affect the state of the
ControlActiveElement identified by 2. InFigure 16, the obtained rule is composed with
that for rightward movement of contour flashing. While the final effect is the same, the interme-
diate step could be combined with other movement rules. Several such rules might be defined,
for example to propagate the flow across several cells, so that only some elements are activated.

7 Conclusions

We have proposed an approach, based on componentwise pushout of DPO rules in the category
of attributed typed graphs, to the specification of computations on grids. The approach allows

Proc. GT-VMT 2008 12 / 15

ECEASST

Figure 15: Coordinating movement of the full flashing flow with the formula inFigure 14.

the independent definition of two types of rules, one to specify control flow and the other to
specify the actual computations. The construction is symmetrical in control and formula rules, so
that it can be flexibly applied starting from either specification. Symmetries between adjacency
relations can also be exploited to generate different versions of flows and formulas.

Future work will explore other types of spatial structures, typically trees and pyramids, to
define adequatecf-rules, also considering the distinction between formula evaluation on control
flows reaching or leaving the involved cells, and develop ways of reasoning about the compati-
bility of independentcf-rules (e.g. one for reading and one for writing).

Bibliography

[AFGK02] L. F. Andrade, J. L. Fiadeiro, J. Gouveia, G. Koutsoukos. Separating computation,
coordination and configuration.J. of Software Maintenance14(5):353–369, 2002.

[BG04] P. Bottoni, A. Grau. A Suite of Metamodels as a Basis for a Classification of Visual
Languages. InProc. VL/HCC 2004. Pp. 83–90. 2004.

[BKPT00] P. Bottoni, M. Koch, F. Parisi Presicce, G. Taentzer. Automatic Consistency Check-
ing and Visualization of OCL Constraints. InProc. UML 2000. Pp. 294–308. 2000.

[BL07] P. Bottoni, A. Labella. Pointed pictures.Journal of Visual Languages and Computing
18:523–536, 2007.

13 / 15 Volume 10 (2008)

Composing rules on grids

Figure 16: Coordinating movement of the contour flashing flow with the rule ofFigure 15.

[BLG07] P. Bottoni, J. de Lara, E. Guerra. Action Patterns for Incremental Specification of
Execution Semantics of Visual Languages. InProc. VL/HCC 2007. Pp. 163–170.
2007.

[CMR96] A. Corradini, U. Montanari, F. Rossi. Graph processes.Fundamenta Informaticae
26(34):241–265, 1996.

[dBE+07] J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Attributed graph
transformation with node type inheritance.TCS376:139–163, 2007.

[dGB07] J. de Lara, E. Guerra, P. Bottoni. Triple Patterns: Compact Specifications for the Gen-
eration of Operational Triple Graph Grammar Rules. InProc. GT-VMT’07. Pp. 81–
95. 2007.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer.Fundamentals of Algebraic Graph Trans-
formation. Springer, 2006.

[GEMT00] M. Goedicke, B. Enders, T. Meyer, G. Taentzer. Towards integration of multiple
perspectives by distributed graph transformation. In Nagl et al. (eds.),Proc. AGTIVE
1999. Pp. 369–377. 2000.

[GR97] D. Giammarresi, A. Restivo. Two-dimensional languages. InHandbook of Formal
Languages. Volume III, pp. 215–267. Springer, 1997.

Proc. GT-VMT 2008 14 / 15

ECEASST

[HKT02] R. Heckel, J. K̈uster, G. Taentzer. Confluence of Typed Attributed Graph Transfor-
mation with Constraints. InProc. ICGT 2002. LNCS 2505, pp. 161–176. 2002.

[HP95] A. Habel, D. Plump. Unification, rewriting, and narrowing on term graphs.Electr.
Notes Theor. Comput. Sci.2, 1995.

[IPS82] A. Itai, C. H. Papadimitriou, J. L. Szwarcfiter. Hamilton Paths in Grid Graphs.SIAM
J. Comput.11(4):676–686, 1982.

[KK99] H. Kreowski, S. Kuske. Graph Transformation Units with Interleaving Semantics.
Formal Aspects of Computing11:690–723, 1999.

[LS04] S. Lack, P. Sobocinski. Adhesive Categories. In Ehrig et al. (eds.),Proc. FOSSACS
2004. Pp. 273–288. Springer, 2004.

[Mos94] P. Mosses.Recent Trends in Data Type Specification. Chapter Unified algebras and
abstract syntax, pp. 280–294. Springer, 1994.

[MW93] M. K. M L öwe, A. Wagner.Term Graph Rewriting: Theory and Practice. Chapter An
Algebraic Framework for the Transformation of Attributed Graphs, pp. 185–199.
John Wiley and Sons Ltd, 1993.

[Par94] F. Parisi Presicce. Transformations of Graph Grammars. InTAGT. LNCS 1073,
pp. 428–442. 1994.

[SK74] R. Siromoney, K. Krithivasan. Parallel context-free grammars.Information and Con-
trol 24:155–162, 1974.

[SWZ99] A. Scḧurr, A. Winter, A. Zündorf. The PROGRES-Approach: Language and Envi-
ronment. In Ehrig et al. (eds.),Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. 2. Pp. 487–550. World Scientific, 1999.

[TB94] G. Taentzer, M. Beyer. Amalgamated Graph Transformations and Their Use for
Specifying AGG. InDagstuhl Seminar on Graph Transformations in Computer Sci-
ence. LNCS 776, pp. 380–394. Springer, 1994.

[WMYM08] Y. Watanobe, N. N. Mirenkov, R. Yoshioka, O. Monakhov. Filmification of meth-
ods: A visual language for graph algorithms.Journal of Visual Languages and Com-
puting19(1):123–150, 2008.

[YM02] R. Yoshioka, N. N. Mirenkov. Visual computing within environment of self-
explanatory components.Soft Computing7(1):20–32, 2002.

15 / 15 Volume 10 (2008)

	Introduction
	Related Work
	Background: Metamodels and Graph Transformations
	Categories on Grids
	Control Flow Rules
	Composing Control Flow and Computation Formulas
	Types of activation in Cyberfilm

	Conclusions

