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Abstract: Modelling and simulation are becoming increasingly important enablers
for the analysis and design of complex systems. In application domains such as
automotive design, the notion of a “virtual experiment” is taken to the limit and
complex designs are model-checked, simulated, and optimized extensively before a
single realization is ever made. This “doing it right the first time” leads to tremen-
dous cost savings and improved quality. Furthermore, with appropriate models, it is
often possible to automatically synthesize (parts of) the system-to-be-built.

In this paper, the basic concepts of modelling and simulation are introduced. These
concepts are based on general systems theory and start from the idea of a model
as an abstract representation of knowledge about structure and behaviour of some
system. The purpose is either analysis or design in a particular experimental context.

Typically, different formalisms are used such as Ordinary Differential Equations,
Queueing Networks, and State Automata. It will be shown how these different for-
malisms all share a common structure and differ in the choice of time base, state
space, and description of temporal evolution. This allows one to classify formalisms
on the one hand and to find a common ground for implementing simulators on the
other hand.
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1 Introduction

At a first glance, it is not easy to characterize modelling and simulation. Certainly, a variety of
application domains such as fluid dynamics, energy systems, and logistics management make
use of it in one form or another. As a paradigm, it is an intergrated way of representing problems
and thinking about them as much as a solution method. Many compelling reasons exist to use
simulation experiments as a substitute for real-world experiments. The latter may be too costly or
dangerous to perform, or un-ethical. As simulations may be performed in simulated-time rather
than in real-time, it becomes possible to evaluate many model variants rapidly. This allows one
to drastically optimize system designs before physical realization. After optimization, parts of
the model may be amenable to application synthesis. The problems solved with modelling and
simulation cover the analysis and design of complex dynamical systems. Complexity can be due
to a large number of components, but also to the heterogeneity of those components. In analysis,
abstract models are built inductively from observations of a real system. In design, models deduc-
tively derived from a priori knowledge are used to build a system, satisfying certain design goals.
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Figure 1: Modelling and simulation concepts

Often, an iterative combination of analysis and design is needed to solve real problems. Though
the focus of modelling and simulation is on the time-varying behaviour of dynamical systems,
static systems are a limit-case. Both physical (obeying conservation and constraint laws) and
non-physical (informational, such as software) systems and their interactions are studied.

This paper first introduces the general concepts of Modelling and Simulation theory. The rep-
resentation of models in diverse formalisms, at different levels of abstraction, and the behaviour-
conserving transformation between the formalisms is discussed. Multi-formalism model repre-
sentation is presented as an enabler for open, distributed, modelling and simulation systems.

2 Modelling and Simulation Basics

2.1 Concepts

Figure 1 presents modelling and simulation concepts as introduced by Zeigler [ZPK00].

Object is some entity in the Real World. Such an object can exhibit widely varying behaviour
depending on the context in which it is studied as well as the aspects of its behaviour which
are under study.

Base Model is a hypothetical, abstract representation of the object’s properties, in particular, its
behaviour, which is valid in all possible contexts, and describes all the object’s facets.

System is a well defined object in the Real World under specific conditions, only considering
specific aspects of its behaviour.
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Experimental Frame (EF) describes a limited set of circumstances under which a system (real
of model) is to be observed or subjected to experimentation. As such, the Experimental
Frame reflects the objectives of the experimenter who performs experiments on a real
system or, through simulation, on a model.

(Lumped) Model (not to be confused with a lumped parameter model [Cel91]) is an abstract
representation of a system within the context of a given Experimental Frame. Usually,
certain properties of the system’s structure and/or behaviour are reflected by the model
(within a certain range of accuracy).

Experimentation is the act of carrying out an experiment. An experiment may interfere with
system operation (influence its input and parameters) or it may not. As such, the exper-
imentation environment may be seen as a system in its own right (which may itself be
modelled in a lumped model). Also, experimentation involves observation. Observation
yields measurements.

Simulation of a lumped model in a certain formalism (such as Petri Nets, Differential Algebraic
Equations (DAE) or Bond Graphs) computes the dynamic input/output behaviour. Simu-
lation may use symbolic as well as numerical techniques. Simulation, which mimics the
real-world experiment, can be seen as virtual experimentation. Whereas the goal of mod-
elling is to meaningfully describe a system, presenting information in an understandable,
re-usable way, the aim of simulation is to be fast and accurate. Symbolic techniques are
often favoured over numerical ones as they allow the generation of classes of solutions
rather than just a single one (e.g., sin(x) as a solution to the harmonic equation as opposed
to one single approximate trajectory solution). Furthermore, symbolic optimizations have
a much larger impact than numerical ones thanks to their global nature. Crucial to the
System–Experiment/Model–Virtual Experiment scheme is that there is a homomorphic
relation between model and system: building a model of a real system and subsequently
simulating its behaviour should yield the same results as performing a real experiment
followed by observation and codifying the experimental results.

Verification is the process of checking the consistency of a simulation program with respect to
the lumped model it is derived from.

Validation is the process of comparing experiment measurements with simulation results within
the context of a certain Experimental Frame [Bal97]. When comparison shows differences,
the formal model built may not correspond to the real system. A large number of match-
ing measurements and simulation results, though increasing confidence, does not prove
validity of the model however. For this reason, Popper has introduced the concept of fal-
sification [Mag85], the enterprise of trying to disprove a model. It is to be noted that
the correspondence in generated behaviour between a system and a model will only hold
within the limited context of the Experimental Frame. Consequently, when using mod-
els to exchange information between agents, a model must always be matched with an
Experimental Frame before use. Conversely, a model should never be developed without
simultaneously developing its Experimental Frame. This requirement has its repercussions
on the design of model representation languages.
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Figure 2: T, l controlled liquid

2.2 Abstraction and Formalisms

Abstract models of system behaviour can be described at different levels of abstraction or detail
as well as by means of different formalisms. The particular formalism and level of abstraction
depends on the background and goals of the modeller as much as on the system modelled. As
an example, a temperature and level controlled liquid in a pot is considered. This is a simplified
version of the system described in [BZF98], where structural change is the main issue. On the
one hand, the liquid can be heated or cooled. On the other hand, liquid can be added or removed.
In this simple example phase changes are not considered. The system behaviour is completely
described by the following (hybrid) Ordinary Differential Equation (ODE) model:

dT
dt = 1

l [
W

cρA −φT ]
dl
dt = φ if 0 < l < H else 0

is low = (l < llow)
is high = (l > lhigh)
is cold = (T < Tcold)

is hot = (T > Thot)

The inputs are the filling (or emptying if negative) flow rate φ , and the rate W at which heat is
added (or removed if negative). This system is parametrized by A, the cross-section* surface
of the vessel, H, its height, c, the specific heat of the liquid c, and ρ , the density of the liquid.
The state of the system is characterized by variables T , the temperature and l, the level of the
liquid. The system is observed through threshold output sensors is low, is high, is cold, is hot.
Given input signals, parameters, and a physically meaningful initial condition (T0, l0), simulation
of the behaviour yields a continuous state trajectory. By means of the binary (on/off) level
and temperature sensors introduced in the differential equation model, the state-space may be
discretized. The inputs can be abstracted to heater heat/cool/off and pump fill/empty/closed. At
this level of abstraction, a Finite State Automaton (with 9 possible states) representation of the
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Figure 3: FSA formalism

dynamics of the system as depicted in Figure 3 is most appropriate.
Though at a much higher level of abstraction, this model is still able to capture the essence

of the system’s behaviour. In particular, there is a behaviour morphism between both models:
model discretization (from ODE to FSA) followed by simulation must yields the same result as
simulation of the ODE followed by discretization.

2.3 Systems Theory

In general systems theory [Wym67], a causal (output is the consequence of input), deterministic
(input will lead to unique output) system model SY S is defined. It is a template for a plethora of
different formalims such as Ordinary Differential Equations, Finite State Automata, Difference
Equations, etc.Its general form is

SY S ≡ 〈T,X ,Ω,Q,δ ,Y,λ 〉

T time base
X input set
Ω = {ω : T → X} input segment set
Q state set
δ : Ω×Q → Q transition function
Y output set
λ : Q → Y (or Q×X → Y ) output function

∀ω,ω ′ ∈ Ω,δ (ω •ω
′,qi) = δ (ω ′,δ (ω,qi)).

The time base T is the formalisation of the independent variable time. Different ordering rela-
tions (partial/total) can be used over T . Common time bases (with appropriate < and +) are

• T = {NOW}. Models such as algebraic models are instantaneous. The time base is a
singleton.
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Figure 4: Time base for hybrid system models

• T = R. Models with this time base are called continuous-time models. Note how discrete
event models have R as a time base. However, only at a finite number of time-instants in a
bounded time-interval, an event different from the non-event φ occurs.

• T = N (or isomorphic). Models with this time base are called discrete-time models. Some
formalisms such as Finite State Automata (FSA) do not have an explicit notion of time
(unlike their extension, timed automata). Hence, they are often called untimed models.
There is however a notion of progression (from one state to another). According to our
general definition, the index of progression, a natural number, is time.

In hybrid system models which combine aspects of continuous and discrete models [MB02], a
system evolves continuously over time (R) until a certain condition is met. Then, instantaneously
(the continuous time does not progress), the system may go through a number of discrete states
(the index of progression is discrete) before continuing its continuous behaviour. To uniquely
describe progression (of generalized time) in this case, a tuple (tc, td) depicted in Figure 4 is
needed. Even when a series of discrete transitions keeps returning to the same state, the discrete
index tc allows one to distinguish between them. The time base used is

T = {(tc, td)|tc ∈ R, td ∈ {1, . . . ,N(tc)}}.

Here, N(tc) (≥ 1) describes the number of discrete transitions the system goes through at con-
tinuous time tc. Obviously, only a partial ordering will be defined over T which consists of first
testing the relationship between the tc components, and subsequently (if equal), that between the
td components.

In case of Partial Differential Equations (PDEs), the time base remains R. The other indepen-
dent variables (often space in the form of some coordinate system) should be seen as infinitely
many state-variable labels or generalized coordinates.

The input set X describes all possible allowed input values (possibly a product set). An input
segment ω represents input during a time-interval. The history of system behaviour is condensed
into a state (from a state set Q). The dynamics is described in a transition function δ which takes
a current state, and applies an input segment ω ∈ Ω to it to obtain a new state. The system may
generate output. This output is obtained as a function λ of the state (and more generally, of
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the current input too). State and transition function must obey the composition or semigroup
property. This property, whereby a transition over a time interval [ti, t f ] can always be split into
a composition of transitions over arbitrary sub-intervals, is the basis of all model simulators.

Figure 5 shows some common segment types: continuous, piecewise continuous, piecewise
constant and discrete event.

Note how for discrete event systems, inputs and output segments are event segments

ω : 〈t1, t2〉 → A∪{φ},

with φ the non-event. For such systems, the internal state behaviour is piecewise constant (the
internal state only changes at event times).

A host of formalisms are currently in use. In particular, through time-scale or parameter
abstraction, reality is often represented by means of discrete-event models. In these models,
time evolves continuously (T = R), but the state of the system only changes at a finite number
of point in time in a bounded time-interval. These times are called event-times. A number
of discrete-event formalisms, called world views were constructed. World views range from
Event Scheduling which expresses events and their consequences explicitly, focussing on the
simulation efficiency, over Activity Scanning and the Three Phase Approach which emphasize
changing conditions in the system, to Process Interaction which represents the system in terms of
interacting processes [Bal88, CS92]. Zeigler [Zei84] developed the DEVS discrete-event system
specification. It is primitive in that it allows other discrete-event formalisms to be expressed in
terms of DEVS. It is modular as it allows compositional construction of hierarchical models.
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T: Continuous T: Discrete T: {NOW}

Q: Continuous DAE Difference Equations Algebraic Equations
Q: Discrete Discrete event Finite State Automata Integer Equations

Naive Physics Petri Nets

Table 1: I/O system model classification

2.4 System classification

Formalisms can be classified based on the general system model structure (in particular, the
type of time base T and state set Q) as shown in Table 1. More specific classifications are
based on the structure of formalisms. For continuous models, further classification according
to physical domains such as mechanical, electrical, and hydraulical, is meaningful. The variety
of classifications leads to the insight that ultimately, one should picture a vast formalism-space
and classify that space according to various criteria. Different criteria will lead to different
equivalence classes. Note how several exisiting modelling languages and tools may implement
a single formalism.

3 Complex systems

3.1 Multi-component specifications

A common means to tackle complexity is to decompose a problem top-down into smaller sub-
problems. Conversely, complex solutions may be built bottom-up by combining primitive sub-
problem solution building blocks. Both approaches are instances of compositional modelling:
the composition of interacting component models to build new models. In case the components
only interact via their interfaces, and do not influence each other’s internal working in any other
way (model information is completely encapsulated in object-oriented terminology, the compo-
sitional modelling approach is called modular. If inter-components access is not restricted to
take place via interfaces or ports only, the approach is called non-modular.

3.2 Multi-formalism modelling

Complex systems are characterized, not only by a large number of components, but also by
the diversity of the components. For the analysis and design of such complex systems, it is no
longer sufficient to study the diverse components in isolation, using the specific formalisms these
components were modelled in. Rather, it is necessary to answer questions about properties (most
notably behaviour) of the whole system. To focus the attention, Figure 6 gives an example of a
complex system.

The complexity lies in the diversity of the different components, both in abstraction level and
in formalism used:

• A paper and pulp mill produces paper from trees with polluted water as a side-effect. This
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Figure 6: Complex system example

system is modelled as a process interaction discrete-event scheduling system.

• A Waste Water Treatment Plant (WWTP) takes the polluted effluent from the mill and
purifies it. Some solid waste is taken to a landfill whereas the partially purified water
flows into a lake. This system is modelled using Differential Algebraic Equations (DAEs)
describing the biochemical reactions in the WWTP.

• A Fish Farm grows fish in the lake. Fish feed on algae which are highly sensitive to pol-
luted water. The water is also used for a tree plantation which supplies the paper mill. This
system is modelled using the System Dynamics formalism. The dotted feedback arrow
from the fish farm to the paper mill indicates the possible disastrous impact of poisoned
fish on the productivity of workers in the mill.

It is obvious that decision-making for this system will require understanding of the behaviour of
the overall system. Studying the individual components will not suffice. The complexity of this
system and its model is due to

9 / 12 Volume 10 (2008)



Foundations of Modelling and Simulation

• the number of interacting, coupled, concurrent components. Complex behaviour is often a
consequence of a large number of feedback loops.

• the variety of components such as software/hardware, continuous/discrete.

• the variety of views, at different levels of abstraction.

A model of a system such as the one described above may be valid (within a particular ex-
perimental context) at a certain level of abstraction. This level of abstraction, which may be
different for each of the components, is determined by the available knowledge, the questions
to be answered about the system’s behaviour, the required accuracy of answersetc.Orthogonal to
the choice of model abstraction level is the selection of a suitable formalism in which the model
is described. The choice of formalism is related to the abstraction level, the amount of data that
can be obtained to calibrate the model, the availability of solvers/simulators for that formalism
as well as to the kind of questions which need to be answered.

Milner, in his Turing Award lecture [Mil93] rejects the idea that there can be a unique con-
ceptual model, or one preferred formalism, for all aspects of something as large as concurrent
systems modelling. Rather, many different levels of explanation, different theories, languages
are needed. We believe this view is amplified when arbitrarily complex systems are studied.

As an introduction to the semantics of multi-formalism models we present the Formalism
Transformation Graph (FTG) in Figure 7.

The different formalisms are shown as nodes in the graph. The horizontal line at the bottom
denotes the level at which trajectories can be described. The vertical dashed line demarcates con-
tinous model formalisms (on the left) from discrete model formalisms (on the right). The FTG
shows a plethora of formalisms, indicating that in general, many classifications are possible. It
suffices to annotate the nodes in the FTG with attributes (possibly derived from the formalism
structure) and determine equivalence classes based on those attributes. The arrows denote a ho-
momorphic relationship “can be mapped onto”, implemented as a symbolic property-preserving
transformation between formalisms. The vertical, dotted arrows denote the existence of a solver
or simulation kernel which is capable of simulating a model, thus generating a trajectory. A tra-
jectory is really a model of the system in the data formalism (time/value tuples). Obviously, the
experimental frame of a trajectory is very limited. In a denotational sense traversing the graph
makes semantics of models in formalisms explicit: the meaning of a model/formalism is given
by mapping it onto some known formalism (whose meaning may in turn be given by mapping
it onto an even more basic formalismetc.). Though a multi-step mapping may seem cumber-
some, it can be perfectly and correctly performed by tools. The advantage of this approach is
that the introduction of a new formalism only requires the description of the mapping onto the
nearest formalism as well as the implementation of a translator to that formalism. It is often
meaningful to introduce a new, domain-specific formalism for a specific application, encoding
particular properties and constraints of the application. Often, translation involves some loss
of information, though behaviour must obviously be conserved. This loss may be a blessing in
disguise as it entails a reduction in complexity, hopefully leading to an increase in (simulation)
performance. Usually, the aim of multi-step mapping is to eventually reach the trajectory level.
Another major use for formalism transformation is the answering of particular questions about
the system. Some questions can only be answered in the context of a particular formalism.
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Figure 7: The Formalism Transformation Graph (FTG)

Note that in the co-simulation approach, each of the sub-models in a coupled model is sim-
ulated with a formalism-specific simulator. Interaction due to coupling is resolved at the trajec-
tory level. Compared to transformation to a common formalim before simulation, this approach,
though appealing from a software engineering point of view (it’s object-oriented) discards a lot
of useful information. Questions can only be answered at the trajectory level. Furthermore, there
are obvious speed and numerical accuracy problems for continuous formalisms [FY97]. The
approach is meaningful only for discrete-event formalisms. In this realm, it is the basis of the
DoD High Level Architecture (HLA) for simulator interoperability.

4 Conclusions

In this paper, the basic concepts of modelling and simulation were introduced. These concepts
are based on general systems theory and start from the idea of a model as an abstract represen-
tation of knowledge about structure and behaviour of some system. This lead to the concept of
multi-formalism modelling of complex systems, and its relation to the semantics of models.
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