
Electronic Communications of the EASST
Volume 13 (2008)

Proceedings of the
Second International Workshop on

Layout of (Software) Engineering Diagrams
(LED 2008)

Exploiting the Layout Engine to Assess Diagram Completions

Steffen Mazanek, Sonja Maier, Mark Minas

14 pages

Guest Editors: Andrew Fish, Harald Störrle
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Exploiting the Layout Engine to Assess Diagram Completions

Steffen Mazanek1, Sonja Maier2, Mark Minas3

1 steffen.mazanek@unibw.de
2 sonja.maier@unibw.de
3 mark.minas@unibw.de

Institut für Softwaretechnologie
Universität der Bundeswehr München, Germany

Abstract: A practicable approach to diagram completion is to first compute model
completions on the abstract syntax level. These can be translated to corresponding
diagram changes by the layout engine afterwards. Normally, several different model
completions are possible though. One way to deal with this issue is to let the user
choose among them explicitly, which is already helpful. However, such a choice
step is a quite time-consuming interruption of the editing process. We argue that
users often are mainly interested in completions that preserve their original diagram
as far as possible. This criterion cannot be checked on the abstract syntax level
though. In fact, minimal model changes might still result in enormous changes of
the original diagram. Therefore, we suggest to use the layout engine in advance for
assessing all possible model completions with respect to the diagram changes they
eventually cause.

Keywords: layout, diagram completion, assessment

1 Introduction

With the advent of more and more visual domain-specific modeling languages, user assistance
for diagram editors becomes increasingly important. Therefore, we have presented a novel ap-
proach to diagram completion recently [MMM08b], which can be applied to diagram languages
specified by means of graph grammars. The possible completions are gathered while parsing.

Given a (possibly incorrect) diagram, a diagram completion basically is a set of modifications
that transform the input diagram into a correct target diagram. Consider the Nassi-Shneiderman
diagram (NSD) given at the left-hand side of Fig. 1. It consists of two simple statements that
do not form a correct NSD, because they do not touch each other vertically as required. Some

s1

s2

s1

s2

...
s1

s2

s2

s1

s1

s2

...

...
y n

input diagram diagram completions
1 2 3 4

Figure 1: Diagram completion

1 / 14 Volume 13 (2008)

mailto:steffen.mazanek@unibw.de
mailto:sonja.maier@unibw.de
mailto:mark.minas@unibw.de


Exploiting the Layout Engine to Assess Diagram Completions

possible completed diagrams are shown at the right-hand side of the figure. The given state-
ments, e.g., can be moved and resized such that they touch each other properly. Their order in
the resulting diagram thereby can be freely choosen (cf. diagrams 1 and 2). Alternatively, the
two isolated statements can be connected indirectly by inserting one or more new components
right between them (cf. diagrams 3 and 4). In general, a diagram completion either inserts addi-
tional diagram components or spatially rearranges existing ones (or both). Applying a diagram
completion, thus, heavily relies on a powerful layout engine.

This simple example already shows that in general several completions are possible for a given
diagram. In fact, we could attach an arbitrary number of additional statements to an arbitrary
NSD and still get a correct resulting NSD (provided at the end there are no isolated statements
left). So it is surely necessary to restrict the number of new diagram components to be introduced.
Even so, there might be way too many different completions to be still helpful for the user.

Fig. 2 shows a (textual) choice dialog with all completions of size one (only one new compo-
nent) for our example diagram. This actually is a screenshot of a corresponding DIAGEN-editor
[Min02] with completion support [MMM08b]. The phrase “with gluing” means that new spatial
relations are introduced between existing components. For NSDs this means that touch-relations
are established between previously apart corners of existing components. These new relations
are highlighted in the example preview diagrams at the right-hand side of the figure. In our
implementation such a preview indeed can be triggered by clicking on a particular item in the
list.

while ...

s1

s2

while ...

s1

s2

while ...

s1

s2

Figure 2: Choosing completions as suggested in [MMM08b]

Although such choice has some merits already, the cognitive overload caused by this multitude
of completions1 is problematic for a user (even if solutions directly would be presented in a
more graphical manner). To overcome this problem, in this paper we propose a generic approach
for ranking sets of completions. We basically use information from the concrete syntax level
to rank abstract completions. That way, the benefit gained from the diagram completions can

1 For the example in Fig. 2 there are 20 possible completions of size one, alone six where a new while-component
is inserted (for each of the given previews the two existing statements can also be interchanged).

Proc. LED 2008 2 / 14



ECEASST

be maximized, because we can significantly reduce the cognitive overload. For instance, we
can only provide the best completions as a choice to the user. We even can provide a shortcut
for the automatic application of the best completion, which we show to be useful in certain
situations. All in all, our approach appears to be very useful for both learning visual languages
and improving editing productivity.

We proceed as follows: First, we discuss the scope of our approach and state the problem
more clearly (Sect. 2). Thereby, we justify the claim that our approach is quite widely applicable
(even for model-based diagram editors). In Sect. 3 we introduce our approach in its generality.
Thereafter, we discuss its integration in the DIAGEN system (Sect. 4). Finally, we summarize
the benefits of our approach from the usability’s perspective (Sect. 5) and conclude (Sect. 6).

2 Scope and Problem Description

Although this paper continues our previous work on the DIAGEN system, the described problem
has a much wider scope. Diagram editors based on the following principles are affected:

• distinction between concrete and abstract syntax, i.e. diagram and model,

• temporarily incorrect diagrams are allowed (basic requirement for free-hand editing),

• syntax analysis is performed on the abstract syntax level, and additionally

• completions can be computed on the abstract syntax level.

The distinction between abstract and concrete syntax is widely accepted. For instance, Rekers
and Schürr have proposed a graph based framework for visual environments [RS96] where a so-
called spatial relations graph (SRG) is derived from the physical layout by a graphical scanner;
the SRG in turn is a representation of the corresponding abstract syntax graph (ASG). Their
general approach, however, is so powerful that parsers unfortunately run in exponential time.

A more practicable approach has been presented by the third author [Min02]: In his DIA-
GEN system editors use hypergraphs as a model for diagrams [Min00]. Diagram components
thereby are represented by hyperedges whose incident nodes represent the component’s attach-
ment points/areas. Similar to the approach of Rekers and Schürr, an SRG is created by a graph-
ical scanner, which adds spatial relations edges where appropriate. The corresponding ASG
is created from the SRG by the application of special graph transformation rules.2 This ASG
then is syntactically analyzed according to a hyperedge replacement grammar (HRG). HRGs
[DHK97] are a context-free graph grammar formalism well-suited for the definition of visual
languages. In particular, the parsing complexity is polynomial for practically relevant languages.
In [MMM08a] we have shown that hypergraph completions with respect to HRGs also can be
computed efficiently. Such a completion can perform an arbitrary number of the following two
kinds of modifications: “glue distinct nodes” and “insert a new hyperedge”. The resulting hy-
pergraph is guaranteed to be a member of the grammar’s language.

Nowadays, however, model-based approaches for defining visual languages are also very pop-
ular. Here, the abstract syntax of a visual language is defined via a metamodel. In this domain,

2 In DIAGEN the SRG and the ASG actually are hypergraphs rather than graphs.

3 / 14 Volume 13 (2008)



Exploiting the Layout Engine to Assess Diagram Completions

syntax analysis means that a corresponding object structure for the given diagram has to be cre-
ated. Thereby, conformance to the metamodel has to be ensured. For this purpose constraint
logic programming is frequently used. For instance, in DIAMETA, the metamodel-based sibling
of DIAGEN, the syntactical analysis of freely drawn diagrams is performed by solving a con-
straint satisfaction problem [Min06]. In addition, Sen et al. recently have presented an approach
to model completion with respect to a metamodel [SBV07], which has been incorporated into
AToM3 [LVA04]. Their completions are also derived using constraint logic programming. A
similar approach is used in the Generic Eclipse Modeling System GEMS [WSNW08] and the
SmartEMF [HCW07] inference engine for the Eclipse Modeling Framework. We refer to these
approaches, because the method presented in this paper might also be applicable there.

To make use of an abstract model/graph completion, it has to be translated into corresponding
changes of the diagram again. In [MMM08b] we have described how we actually have extended
the DIAGEN editing process in order to translate hypergraph completions into diagram comple-
tions. As expected, the layout engine has played an important part in this context. However,
this kind of assistance is only useful, if the choice among the different completions is easy. Just
sorting them by their size is not sufficient though. There still might be several solutions which
take to much time to inspect (cf. Fig. 2). Even worse, the user’s train of thought [BKC00] is
interrupted in a way counter to the idea of free-hand editing. So an additional, complementary
instrument is sought.

Another challenge is the fact, that the changes the layout engine will actually perform in
order to apply a completion are sometimes hard to predict and may badly surprise the user.
For instance, the orthogonal ordering of the existing diagram components might be completely
destroyed such that existing inter-component relations like below, above, left from or right from
do not hold anymore. A small change of the model, thus, might result in enormous changes in
the user’s original diagram. Larger changes of the model, in contrast, might sometimes cause
only little visual changes of existing components (cf. Fig. 1).

Generally, we can say that little changes to existing components better preserve the mental map
of the user [ELMS91, Bra01, vP07], which we already know to be a highly desirable objective.
A completion rearranging the whole diagram probably does not meet the user’s intention. Even if
we can animate the changes (a common technique in dynamic graph drawing for the preservation
of the mental map [Bra01]), the user might still lose track if the diagram is of practical size.

In Fig. 3 this problem is clarified using the example diagram from Fig. 1 again. We also show
its corresponding model, a hypergraph as used in the DIAGEN system.3 In the middle row of
the figure we provide some of the hypergraph completions as computed by the parser discussed
in [MMM08a]. These completions are sorted by the number of edges they add. At the bottom
the corresponding diagrams are shown. In ASGs of NSDs a common node visited by component
edges represents touching corners of the corresponding diagram components. The problem is
obvious here. Even if a completion is minimal on the abstract syntax level (diagrams a) and b) in
Fig. 3), it might still destroy the orthogonal ordering of the diagram components and, thus, the
mental map of the user. For instance, in diagram b) the vertical order of the two given statements
is turned upside down. This annoying effect is caused by the layout constraint that asks the height

3 A hyperedge is represented by a box with the particular edge label inside. A node is represented by a black dot.
The lines between edges and nodes indicate that an edge visits a node.

Proc. LED 2008 4 / 14



ECEASST

while ...

s1

s2

s1s1

s2

...
s1

s2

s2

s1

s2

s1

...

stmt

stmt

stmt

stmt

stmt

stmt

stmt

stmt

stmt
stmt

stmt

stmt

A simple, incomplete NSD, its ASG, …

stmt

stmt

s1

stmt

stmt

cond

...y n

stmt

0

... some hypergraph completions of size ...

1 2

…and the resulting diagrams:

while

s2 s2...

d) e) f)c)b)a)

Figure 3: Clarification of the problem by example

of statements to be non-negative and greater than a given minimal height.
This example demonstrates, that choosing explicitly among these model completions can be a

quite frustrating task. In the following we propose an approach to avoid this problem. Whereas
completions can be computed on the abstract syntax level most conveniently, the concrete syntax
by all means has to be considered in order to get a helpful ranking.

3 Our Approach in general

In this section, we suggest a general approach that makes this try then inspect cycle for all
possible completions much more convenient. Even better, we show that the distracting choice
step often can be completely avoided.

We assume that users want their original diagram to be preserved as far as possible. The idea
now is to sort the completions with respect to the diagram changes they eventually cause (on
concrete syntax). That way, we can present those completions first that best preserve the original
diagram. This is very helpful for beginners, since they precisely see and understand which
adaptations are necessary in order to correct their diagram. We even can provide a shortcut for
the automatic application of the best completion. This is meaningful for expert users who might
already have in mind this distinguished completion. It might be quite tedious though to actually
perform the necessary diagram changes by hand. So they probably appreciate assistance for this
step.

This kind of assistance is motivated in Fig. 4. In the situation shown at the left-hand side of
the figure, three complex mouse actions (click+drag) are necessary in order to correct the given
diagram in the obvious way (the situation would be even worse if the statements had different

5 / 14 Volume 13 (2008)



Exploiting the Layout Engine to Assess Diagram Completions

n:=3n+1

n even

n:=n/2

y n n eveny n n eveny n n eveny n
n:=n/2 n:=3n+1n:=n/2 n:=3n+1n:=n/2

n:=3n+1

n:=3n+1

n even

n:=n/2

y n n eveny n
n:=3n+1n:=n/2

n eveny n
n:=n/2n:=3n+1

input diagram „best“ completion alternative completion

manual construction of „best“ completion

Figure 4: Correcting diagrams by hand is tedious

heights). These manual editing actions can be completely avoided by using the shortcut for the
automatic application of the best completion (also shown in the figure). In contrast, a shortcut for
applying just an arbitrary completion would feel like rolling the die. For instance, the given input
diagram could also be put together in a different way, where the branches below the condition
are swapped. However, this is not the solution we suppose to be intended by the user.

In Fig. 5 the diagram completions shown in Fig. 3 are sorted. The first and the second diagram
are best in the sense that existing diagram components do not need to be changed at all. The
first one, however, should be preferred, because fewer edges are added to the ASG (so only
using concrete syntax of existing components does not seem to be enough either). The third
diagram is also quite good. Here, the two statements are connected by introducing an additional
statement. Therefore, the sizes of the existing statements have to be adapted. Minimal changes
on the ASG are caused by solutions four and five. Only nodes are glued and no edge is inserted
at all. However, on the diagram level larger changes are caused, because the two statements
have to touch each other vertically and thus have to be moved. Diagrams five and six are really
undesirable solutions since they destroy the orthogonal ordering of the existing components.

An overview of our approach is given in Fig. 6. First, the given diagram is translated to its
model, e.g., by using graph or model transformation. This model in turn is syntactically analyzed

s2...

...=while ...

s1

s2

s1

s2

s1

s2

...
s1

s2

s2

s1

s2

s1

...
s1

y n < < << < ...

input diagram:

sorted completions:

1 2 4 53 6

Figure 5: Sorting possible completions

Proc. LED 2008 6 / 14



ECEASST

Completion nCompletion n

Completion 2Completion 2
Completion

engine

Completion 1Completion 1

…

Layouter

Layouter

Layouter

Resulting
diagram 1

Resulting
diagram 1

Resulting
diagram 2

Resulting
diagram 2

Resulting
diagram n

Resulting
diagram n

Updated
diagram

Updated
diagramDiagramDiagram ModelModel

Rank

Choose

Apply

Figure 6: Ranking completions, survey of our approach

and completions are computed if required. The resulting diagrams for all possible completions
are precomputed by the layouter and compared with respect to a metric. If the user wants to
choose explicitly, he can get a sorted list of all completions where the best ones are presented
first. If the described shortcut has been invoked, the best completion can be directly applied to
the user’s original diagram.

Note, that this approach heavily relies on layout with minimal changes as, e.g., discussed in
[MV93]. This means, that the layouter must not apply a static layout algorithm to the whole
diagram. Rather it should preserve existing layout parameters like positions and sizes as far as
possible. Otherwise, the assessments for comparing the resulting diagrams are meaningless.

Several possibilities, some simple, some more complicated, are available for a metric. We do
not go into detail here, since this question already has been discussed in “mental map”-papers
like [ELMS91] or [BT98]. However, the most prominent candidates probably are “orthogonal
ordering”, “Euclidean distance”, and “Manhattan distance”. We have not evaluated yet which
one is most appropriate.4 One additional factor might be incorporated though: the information
from the abstract syntax level, e.g., how many new edges have been embedded, how many nodes
are glued and so on. This might play a role.

4 Realization in DIAGEN

In this section we describe our editing process with completion support as realized in DIAGEN.
Complementary to [MMM08b], we focus on layout here.

As suggested in [MV93], we can use constraint hypergraph grammars (CHG) to define the
syntax of diagrams and specify layout constraints at the same time. CHGs are an extension
of HRGs, where edges and nodes can receive attributes, the values of which represent layout-
related parameters like size or position on the screen. Relationships between these attributes can
be added to the productions (similar to attributed grammars as known from the string setting).
Fig. 7 shows the CHG for NSDs. Note, that it is also possible to provide an all hand-written
layouter, but CHGs have appeared to be very well-suited for our purpose (as we further discuss
later).

Each production consists on its left-hand side of a hypergraph with a single nonterminal edge
and the nodes visited. The right-hand side of every production is an arbitrary hypergraph of
terminal and nonterminal hyperedges. Application of a production to a hypergraph is similar to

4 For our application, however, we suppose that their results are quite similar in most cases.

7 / 14 Volume 13 (2008)



Exploiting the Layout Engine to Assess Diagram Completions

n2n1

a:NSD

n1 n2

::=

n3 n4

b:Stmt

n1 n2

n3 n4

b:Stmt

n1 n2

c:NSD

n3 n4

a:Stmt

n1 n2

::=

n3 n4

b:stmt

n1 n2

n3 n4
c:NSD

b:cond

c:NSD d:NSD

n3 n4

n1 n2

n4n3

a.x1=b.x1, a.x2=b.x2
a.y1=b.y1, a.y2=b.y2

a.x1=b.x1=c.x1, a.x2=b.x2=c.x2
a.y1=b.y1, a.y2=c.y2, b.y2=c.y1

a.x1=b.x1=c.x1, a.x2=b.x2=d.x2
a.y1=b.y1, a.y2=c.y2=d.y2
c.x2=d.x1, b.y2=c.y1=d.y1
b.y2-b.y1>=hmin

a.x1=b.x1, a.x2=b.x2=c.x2
a.y1=b.y1, a.y2=b.y2=c.y2
c.x1=b.xm, c.y1=b.ym
b.xm-b.x1>=wmin, b.ym-b.y1>=hmin

a.x1=b.x1, a.x2=b.x2
a.y1=b.y1, a.y2=b.y2
b.x2-b.x1>=wmin
b.y2-b.y1>=hmin

b:while

Figure 7: Constraint hypergraph grammar of NSDs

string grammars: if the left-hand side is a subgraph of the hypergraph, this subgraph is removed
and replaced by the corresponding right-hand side. The resulting hypergraph is said to be derived
from the first hypergraph. In order to specify which node from the right-hand side replaces
which node from the left-hand side, corresponding nodes are labelled with the same names. The
language of a hypergraph grammar is the set of hypergraphs that consist of terminal hyperedges
only and that are derivable from the starting graph (in case of NSDs this is a single nonterminal
NSD edge with incident nodes).

The language of NSDs is recursively defined. An NSD is basically a chain of statements
(nonterminal Stmt), where a statement in turn is either a primitive statement (terminal stmt),
a while-loop whose body is an NSD again, or a condition followed by a yes and a no branch
(NSDs again). The constraints, for instance, ensure that a condition component is left aligned
with its yes branch and right aligned with its no branch. Furthermore, the right-hand side of the
left branch has to touch the left-hand side of the right branch, and so on.

A bird’s eye view on our editing process is shown in Fig. 8. The user of a DIAGEN editor can
freely edit diagrams using the drawing tool. After each editing operation a chain of processing
steps is performed. First, the scanner derives the SRG from the arrangement of diagram compo-
nents. Thereby, spatial relations edges are introduced where components are connected in a way
relevant for the particular visual language. An SRG of an example NSD is part of Fig. 9.

Thereafter, a reduction step is performed to reduce complexity, very similar to lexical analysis
in string parsing. This allows for more efficient parsing and readable grammars. In the case of
NSDs, nodes connected via spatial relationship edges are unified. This results in an ASG like the
one also shown in Fig. 9.

Next, the parser performs the syntactical analysis of the ASG. Thereby, a derivation structure
is constructed (if any). In the following, this derivation structure can be used by the layouter

Proc. LED 2008 8 / 14



ECEASST

Rank (cf. Fig. 6)

DiagramDiagram SRGSRGScanner ASGASGReducer Parser

Derivation
structure

Derivation
structure

Drawing
tool

Editor user

selects operation

Layout
information

Layout
informationLayouter Attribute

evaluation

asks for assistance

if desired:
choose

Update 
translator

Graph 
completion

Graph 
completionGraph 

completion

Figure 8: Editing process with completion support

and for highlighting correctly recognized parts of the diagram. In case of a CHG, this derivation
directly establishes a constraint satisfaction problem whose solution is a layout for the diagram
[MV93].

The feature diagram completion now is incorporated as follows into this standard DIAGEN

editing process: If the user explicitly asks for assistance, the parser is triggered again with the
desired size of completions as a parameter. It computes all possible graph completions of this
size (cf. [MMM08a]). Those are ranked as described in the last section (we have used Manhattan
distance [Kra87] as a metric). The user now can choose among them (if desired). Since the best
completions are presented first, this choice can be made very fast. In addition, we provide a
shortcut for the automatic application of the best completion. Therefore, the editor user can
specify the maximal size of desired completions in the editor properties. For our NSD editor,
two is a practicable default value for this parameter.

To actually apply a particular completion, it first has to be embedded into the SRG using the
update translator. For the example given in Fig. 9, spatial relationship edges “at” are inserted
between the corresponding corners of components that visit the same node in the ASG. There-
after, the reducer and the parser are invoked again, so that finally the layouter can arrange the
new components within the actual diagram.

Discussion of constraint-based layout for diagram completion

Constraints generally are known to be well-suited for the description of layout on a rather high
level of abstraction. However, in our domain, an additional benefit becomes noticeable: The con-
straints normally used for diagram beautification can be directly used to embed the completions,
i.e., no extra specification effort is necessary for this purpose. While parsing, layout constraints
for the completions are raised automatically. Thus, a solution of these constraints directly yields
a proper embedding of the new diagram components.

The constraint solver QOCA [MC02] appeared particularly suited for our setting. It is based

9 / 14 Volume 13 (2008)



Exploiting the Layout Engine to Assess Diagram Completions

at at

at at

at at

at at

s1

s2

s3

stmt

stmt

stmt

stmt

stmt

stmt

Scanner Reducer

stmt

stmt

stmt

stmt

Parser

stmt

stmt

stmt

stmt

s1

s2

s3

...
Parser Update

translator

Reducer

Layouter

DiagramDiagram SRGSRG ASGASG

C
om

pletion

Figure 9: Example process for the embedding of a completion

on the metaphor of the metric space model, i.e., it computes incremental solutions with minimal
changes according to a given metric. This is very convenient for interactive applications and an
important requirement for our approach. Furthermore, a so-called stayweight can be assigned
to variables that indicates the importance of leaving the particular variable unchanged. This
is especially useful in our domain, since we do not need to guess initial values for the variables
related to completions. Rather it is sufficient to just set their stayweight to zero. After embedding
the completion we have to increase these stayweights again, of course (otherwise, the affected
components will show an unpredictable behavior later).

But there is also one serious issue with constraint-based layout that needs further considera-
tion. In order to find useful places for the new components, there need to be sufficiently many
constraints, i.e., not too many degrees of freedom. This, in a sense, restricts the freedom users
of a free-hand editor are so fond of. In the future, we want to investigate other mechanisms for a
sensible embedding of completions in order to avoid this problem.

5 Benefits

In this section we summarize the key benefits of our approach with respect to the usability of
diagram editors.

In [Nie94] Nielsen discusses the most important usability factors. One of these factors is
“Flexibility and efficiency of use”. It subsumes, among other things, the following important
usability heuristics, which we have tackled with our approach:

• Accelerators should be provided,

• Shortcuts: Accelerators to speed up dialogue,

Proc. LED 2008 10 / 14



ECEASST

• System should be efficient to use, and

• Keyboard core functions should be supported

Furthermore, we consider the factor “Consistency and standards”. Indeed our new editor
functionality does always work the same way for all kinds of editors generated with DIAGEN.
Thus, editors show a consistent behavior. According to Nielsen, another important usability
factor is the support of recognition, understanding and processing of errors; in particular the
automatic construction of solutions (as we do) is widely agreed to improve the usability of tools.

We also know, that users want to learn (e.g. visual languages) exploratively. Carroll and
Rosson have called this the “paradox of the active user” [CR87]: Users do not read manuals even
if they could considerably improve their productivity. Rather they learn tools by playing around
with them following the trial and error principle. Language exploration is greatly supported by
our approach, because we can use our completion engine for language generation, i.e., the user
can generate and inspect all possible (correct) diagrams up to a particular size. This feature
(together with the correction of the user’s incorrect diagrams) significantly reduces the time
needed for learning a particular visual language.

Next, we demonstrate the usability improvement with a concrete example. Consider the short-
cut for the application of the best completion again, which has been motivated in Fig. 4. The
increase in editing productivity possible by introducing such a shortcut is stated more precisely
in Fig. 10. There, we compare both approaches to correct the diagram of Fig. 4 by using the
GOMS method [JK96]. In the first column of the figure the primitive operations are listed that
are necessary when performing the changes manually. The second column shows the operations
needed when using a shortcut that automatically applies the best completion. Following [JK96]
we use the following times to compute the overall task performance:

mental act of routine thinking (M) 1.2s
point with mouse to a target (P) 1.1s
press or release mouse button (B) 0.1s
keystroke (K) 0.28s
home hands to keyboard or mouse (H) 0.4s
waiting for the system to respond (W(t)) t

Therewith, we get an overall execution time of 8.4s for the first way. This is even quite
optimistic. We have assumed that the two statements have the same height. Furthermore, we have
not considered editing errors, which are likely to occur when performing such sensitive mouse
actions. For the second way – the shortcut – we get a task performance of 4.06s: more than twice
as fast. Here, we have estimated that it takes 1.5s to compute and rank the completions.5

When discussing usability, last but not least, the factor “joy of use” should not be underesti-
mated. We are convinced that the feature diagram completion is fun to use and, thus, hopefully
increases the usage and acceptance of our tool.
5 This is a realistic assumption for small and medium-sized diagrams. In [MMM08a] we have provided some
performance data for our parser with completion support. For instance, completions of size two for an NSD of size
20 can still be computed in less than a second. Our parser has not even been optimized with respect to performance
yet. Prelayouting the resulting completions (provided their number is not too big) can also be done quite efficiently.
Furthermore, this is a task that can be parallelized easily.

11 / 14 Volume 13 (2008)



Exploiting the Layout Engine to Assess Diagram Completions

dragging components explicitly:
• think (M)
• point to move handle of statement 1 (P)
• press and hold mouse button (B)
• drag component such that its left upper

corner touches left lower corner of con-
dition component (P)

• release mouse button (B)
• point to move handle of statement 2 (P)
• press and hold mouse button (B)
• drag component such that its left up-

per corner touches right upper corner of
statement 1 (P)

• release mouse button (B)
• point to resize handle of condition (P)
• press and hold mouse button (B)
• drag handle such that the right lower

corner of condition touches the right
upper corner of statement 2 (P)

• release mouse button (B)

shortcut for correction:
• think (M)
• move hand to keyboard (H)
• hit command key (K+K)
• wait for result to be computed

(W(1.5s))
• move hand back to mouse (H)

Figure 10: Comparison of explicit dragging and shortcut

6 Concluding Remarks

In this paper we have described an approach on how to assess and sort diagram completions. The
problem we have addressed is practically relevant, in particular when compared to the incredible
success of content assist in textual environments, see e.g. [GS04, NJ07, BW06]. Even for
simple diagrams the number of completions increases rapidly with their maximal possible size.
However, choosing from a high number of completions while editing causes too much cognitive
overload for users. Such time-consuming interruptions generally should be avoided. We can help
the user in this respect by providing a shortcut to a distinguished completion: the one causing
minimal changes to his original diagram.

We have proposed to exploit the layout engine for this purpose. In fact, we precompute all
possible target diagrams and the corresponding changes to the existing components. Different
metrics can be used to actually compare the resulting diagram completions. Thanks to the lay-
outer we get nice-looking results that meet the user’s expectation very well. The resulting editors
effectively combine the advantages of free-hand and structured editing: The user can draw his
diagrams with maximal freedom, but he also can ask for assistance at any time.

In the future we have to conduct an extensive user study. As already argued in this paper, we
strongly expect further productivity gains for experts. But we also hope to find more evidence
on how learning of visual languages actually is improved. We plan to extend our approach to
languages that are not context-free (DIAGEN’s embedding productions). Finally, we will use our
approach to compute situation-dependent, correctness-preserving structured editing operations.

Proc. LED 2008 12 / 14



ECEASST

Bibliography

[BKC00] B. Bailey, J. Konstan, J. Carlis. Measuring the effects of interruptions on task per-
formance in the user interface. Systems, Man, and Cybernetics, 2000 IEEE Inter-
national Conference on 2:757–762 vol.2, 2000.

[Bra01] J. Branke. Dynamic graph drawing. In Drawing graphs: methods and models.
Pp. 228–246. Springer-Verlag, London, UK, 2001.

[BT98] S. S. Bridgeman, R. Tamassia. Difference Metrics for Interactive Orthogonal Graph
Drawing Algorithms. In GD ’98: Proceedings of the 6th International Symposium
on Graph Drawing. Pp. 57–71. Springer-Verlag, London, UK, 1998.

[BW06] H. Bast, I. Weber. Type less, find more: fast autocompletion search with a succinct
index. In SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR
conference on Research and development in information retrieval. Pp. 364–371.
ACM, New York, NY, USA, 2006.

[CR87] J. M. Carroll, M. B. Rosson. Paradox of the active user. In Interfacing thought: cog-
nitive aspects of human-computer interaction. Pp. 80–111. MIT Press, Cambridge,
MA, USA, 1987.

[DHK97] F. Drewes, A. Habel, H.-J. Kreowski. Hyperedge Replacement Graph Grammars. In
Rozenberg (ed.), Handbook of Graph Grammars and Computing by Graph Trans-
formation. Vol. I: Foundations. Chapter 2, pp. 95–162. World Scientific, 1997.

[ELMS91] P. Eades, W. Lai, K. Misue, K. Sugiyama. Preserving the Mental Map of a Diagram.
Technical report, FUJITSU LABORATORIES, 1991.

[GS04] K. Grabski, T. Scheffer. Sentence completion. In SIGIR ’04: Proceedings of the
27th annual international ACM SIGIR conference on Research and development in
information retrieval. Pp. 433–439. ACM, New York, NY, USA, 2004.

[HCW07] A. Hessellund, K. Czarnecki, A. Wasowski. Guided Development with Multiple
Domain-Specific Languages. In Engels et al. (eds.), MoDELS. Lecture Notes in
Computer Science 4735, pp. 46–60. Springer, 2007.

[JK96] B. E. John, D. E. Kieras. The GOMS family of user interface analysis techniques:
comparison and contrast. ACM Trans. Comput.-Hum. Interact. 3(4):320–351, 1996.

[Kra87] E. Krause. Taxicab Geometry: An Adventure in Non-Euclidean Geometry. Dover,
1987.

[LVA04] J. de Lara, H. Vangheluwe, M. Alfonseca. Meta-Modelling and Graph Grammars
for Multi-Paradigm Modelling in AToM3. Journal on Software and Systems Mod-
elling, pp. 193–209, 2004.

[MC02] K. Marriott, S. S. Chok. QOCA: A Constraint Solving Toolkit for Interactive
Graphical Applications. Constraints 7(3-4):229–254, 2002.

13 / 14 Volume 13 (2008)



Exploiting the Layout Engine to Assess Diagram Completions

[Min00] M. Minas. Hypergraphs as a Uniform Diagram Representation Model. In TAGT’98:
Selected papers from the 6th International Workshop on Theory and Application of
Graph Transformations. Pp. 281–295. Springer-Verlag, London, UK, 2000.

[Min02] M. Minas. Concepts and Realization of a Diagram Editor Generator Based on
Hypergraph Transformation. Science of Computer Programming 44(2):157–180,
2002.

[Min06] M. Minas. Syntax analysis for diagram editors: a constraint satisfaction problem.
In AVI ’06: Proceedings of the working conference on Advanced visual interfaces.
Pp. 167–170. ACM, New York, NY, USA, 2006.

[MMM08a] S. Mazanek, S. Maier, M. Minas. An Algorithm for Hypergraph Completion ac-
cording to Hyperedge Replacement Grammars. In Proc. of the 4th Intl. Conference
on Graph Transformation. LNCS. Springer, 2008.

[MMM08b] S. Mazanek, S. Maier, M. Minas. Auto-completion for Diagram Editors based on
Graph Grammars. In Proc. of the 2008 IEEE Symposium on Visual Languages and
Human-Centric Computing. IEEE Computer Society Press, 2008.

[MV93] M. Minas, G. Viehstaedt. Specification of diagram editors providing layout ad-
justment with minimal change. Visual Languages, 1993., Proceedings 1993 IEEE
Symposium on, pp. 324–329, Aug 1993.

[Nie94] J. Nielsen. Enhancing the explanatory power of usability heuristics. In CHI ’94:
Proceedings of the SIGCHI conference on Human factors in computing systems.
Pp. 152–158. ACM, New York, NY, USA, 1994.

[NJ07] A. Nandi, H. V. Jagadish. Effective phrase prediction. In VLDB ’07: Proceedings
of the 33rd international conference on Very large data bases. Pp. 219–230. VLDB
Endowment, 2007.

[vP07] J. von Pilgrim. Mental Map and Model Driven Development. In Proc. of the Work-
shop on the Layout of (Software) Engineering Diagrams (LED 2007). 2007.

[RS96] J. Rekers, A. Schurr. A graph based framework for the implementation of visual en-
vironments. Visual Languages, 1996. Proceedings., IEEE Symposium on, pp. 148–
155, Sep 1996.

[SBV07] S. Sen, B. Baudry, H. Vangheluwe. Domain-specific model editors with model
completion. In Multi-paradigm Modelling Workshop at MoDELS 2007. 2007.

[WSNW08] J. White, D. C. Schmidt, A. Nechypurenko, E. Wuchner. Model Intelligence: an
Approach to Modeling Guidance. UPGRADE 9(2):22–28, 2008.

Proc. LED 2008 14 / 14


	Introduction
	Scope and Problem Description
	Our Approach in general
	Realization in DiaGen
	Benefits
	Concluding Remarks

