
Electronic Communications of the EASST
Volume 13 (2008)

Proceedings of the
Second International Workshop on

Layout of (Software) Engineering Diagrams
(LED 2008)

Interactive, Constraint-based Layout of Engineering Diagrams

Tim Dwyer, Kim Marriott and Michael Wybrow

8 pages

Guest Editors: Andrew Fish, Harald Störrle
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Interactive, Constraint-based Layout of Engineering Diagrams

Tim Dwyer1, Kim Marriott1 and Michael Wybrow1

1Clayton School of Information Technology, Monash University, Australia
{Tim.Dwyer,Kim.Marriott,Michael.Wybrow}@infotech.monash.edu.au

Abstract: Many engineering disciplines require visualisation of networks. Con-
strained graph layout is a powerful new approach to network layout that allows the
user to impose a wide variety application-specific placement constraints—such as
downwards pointing directed edges, alignment of nodes, cluster containment and
non-overlapping nodes and clusters—on the layout. We have recently developed
an efficient algorithm for topology-preserving constrained graph layout. This un-
derpins two dynamic graph layout applications we have developed: a network di-
agram authoring tool, Dunnart, and a network diagram browser. In this paper we
provide an overview of topology-preserving constrained graph layout and illustrate
how Dunnart and the network diagram browser can be applied to engineering dia-
gram authoring and visualisation.

Keywords: constraint-based layout, diagram authoring, diagram exploration

1 Introduction

Many engineering disciplines require visualisation of networks. For example, software and pro-
cess engineers need to understand the complex networks of relationships between system com-
ponents. A wide variety of graph layout algorithms have been developed to aid such visuali-
sation [DETT99]. However, many of these algorithms are designed to draw simple, idealised
mathematical graphs. This significantly limits their usefulness since, in many applications, the
networks have much more complex structure and, consequently, more constraints on their layout.
Such constraints include, for instance, requiring directed connections to be represented by arrows
that point downward, grouping of particular nodes into clusters, large labels on nodes and edges,
alignment of selected nodes, and an ordering on nodes perhaps reflecting an underlying physical
or temporal ordering. Standard graph layout techniques for handling these application-specific
layout requirements are complex and are brittle in the sense that each technique can handle only
a particular kind of layout constraint.

We have developed a new approach to network layout that provides a generic, robust frame-
work that handles the layout constraints arising in a wide variety of applications. The approach,
constrained graph layout [HM98, DKM06a, DKM06b], generalises the popular force-directed
model for graph layout. Like force-directed methods, these techniques find a layout minimising
a goal function such as the standard stress goal function which tries to place all pairs of nodes
their ideal (graph-theoretic) distance apart. However, unlike force-directed methods, constrained
graph layout algorithms allow the goal to be minimised subject to so-called separation con-
straints on the nodes in each dimension [DKM06b]. These have the form u+d ≤ v or u+d = v
where u and v are variables representing horizontal or vertical position and d is a constant giv-

1 / 8 Volume 13 (2008)



Interactive, Constraint-based Layout of Engineering Diagrams

ing the minimum separation required between u and v. Although seemingly a very restricted
kind of linear constraint, separation constraints are expressive enough to handle a wide variety
of application-specific layout constraints. These include:

Directed edges We can ensure that node v is placed above (or, to the left of) node u if there is a
directed edge from v to u.

Alignment or distribution E.g. placing selected nodes on different horizontal layers.
Bands By adding dummy variables we can ensure that nodes are placed in vertical or horizontal

bands, as defined in [DK05].
Fixed position A node’s position can be fixed in any axis.
Containment We can ensure that selected nodes lie in a rectangular region, for instance within

the boundaries of page, window or a cluster dynamically sized to fit its contents.
Orthogonal ordering between nodes We can ensure that nodes are to the left/right or above/below

other nodes.
Non-overlap of nodes and/or clusters By dynamically generating separation constraints we can

ensure that nodes do not overlap each other and, in combination with containment con-
straints, that clusters do not overlap.

While constrained graph layout techniques were originally employed for static layout they
are also suited to dynamic layout. A core requirement of dynamic graph layout is stability
of layout during changes to the graph so as to preserve the user’s mental model of the graph.
One natural requirement to achieve this is that, as far as possible, the topology of the current
layout is preserved during layout changes. We have recently developed an efficient algorithm
for topology-preserving constrained graph layout [DMWb]. In addition to handling separation
constraints, this algorithm can improve a layout while preserving the original topology of the
layout.

Topology-preserving constrained graph layout underpins two dynamic graph layout applica-
tions we have developed. The first is a network diagram authoring tool, Dunnart, which uses
the algorithm to provide continuous layout adjustment during user interaction [DMWa]. The
second is a network diagram browser which uses the algorithm to update the layout of a de-
tailed view of part of the network as the user changes the focus node or collapses or expands
node clusters [DMS+]. In this paper we provide an overview of topology-preserving constrained
graph layout and of these two applications, and illustrate how they can be applied to engineering
diagram authoring and visualisation.

2 Topology-preserving constraint-based graph layout

In this section we briefly review topology-preserving constrained graph layout. For more details
the reader is referred to [DMWb]. A network diagram (V,E,C) is a graph with nodes V , a set
of edges E ⊆V ×V , and a set of node clusters C ⊆℘V . These reflect the three kinds of objects
provided in the diagramming tool. The nodes correspond to the basic graphic shapes, such as
rectangles, ellipses, etc. Each node v ∈V is assumed to be rectangular with a fixed width wv and
height hv and to have four corners tlv, trv,blv,brv. Node clusters correspond to container shapes:
a cluster c ∈ C is simply the set of nodes in a particular container shape. Container shapes
automatically change shape to snugly fit their component shapes. Note that for simplicity we do

Proc. LED 2008 2 / 8



ECEASST

not allow nested clusters—this would be relatively easy to add. Each cluster c has a boundary
Bc which is a sequence of distinct node corners except that the first and last element are the
same. This defines a closed region called the cluster region. Consecutive pairs of elements in
the boundary are called boundary segments. The third kind of objects in a network diagram are
the edges, which model connectors attached to a start and an end object. Edges may have an
arrow head at one end, in which case they are said to be “directed”. A route Re for an edge
e≡ (u,v) ∈ E is a sequence of node corners and nodes s.t. the first element is u, the last element
is v and the other elements are distinct node corners. Consecutive pairs of elements in the route
are called edge segments.

A layout for a network diagram is a pair (X ,P) which consists of a position Xv ≡ (xv,yv)
for each node v ∈ V and the set of paths, i.e. edge routes and cluster boundaries, P ≡ {Re|e ∈
E}∪{Bc|c ∈C} in the network.

Constrained graph layout allows constraints on the placement of nodes. These are required to
be separation constraints in a single dimension. The layout must also satisfy various refinement
constraints to ensure that it is “tidy.” There is a non-overlap constraint between each pair of basic
graphic shapes. There is a membership constraint on each node cluster: if node v is in cluster c
then v must be fully contained in the cluster region of c and if v is not in cluster c then v must not
intersect the cluster region (although it can be on the boundary). The last refinement constraint
is that edges are not allowed to pass through nodes—every path p ∈ P is valid and tight where a
valid path is one in which no segment passes through a node and a tight path is one in which the
path “wraps” tightly around each node corner in the path.

Topology-preserving constrained graph layout uses the P-stress (for path-stress) goal function
to measure the quality of a layout. Given a layout (X ,P), its P-stress is

∑
i< j

wi j((di j−||Xi,X j||)+)2 + ∑
p∈P

wp((||p||−dp)+)2

where di j is the graph theoretic distance between nodes i and j, dp is the ideal length of path p,
wp = 1

d2
p

and z+ is z if z≥ 0 and 0 otherwise.
The first component of P-stress is a modification of the stress function which penalises nodes

that are too close together. However, unlike the stress function, nodes that are more than their
ideal distance apart are not penalised, thus eliminating long range attraction since this can cause
issues in highly constrained problems. The second component of P-stress tries to make the length
of each path p in the network no more than its ideal length dp. This has the effect of straightening
edges and making clusters more compact and circular in shape. The ideal length of an edge is a
user-defined parameter while the desired boundary length of cluster c is 2

√
π ∑v∈c wvwh (i.e. the

ideal length is proportional to the perimeter of the circle of the same area as that of the constituent
nodes).

The following algorithm finds a layout that minimises P-stress and satisfies the layout con-
straints.

(1) A position for the nodes satisfying the layout constraints is found by projecting 1 the current
position of the nodes X0 on to the placement constraints and then using a greedy heuristic

1 The projection of a point d on to constraints S is the closest feasible point to d. That is, the projection of d on to
S is the vector y minimising ∑

n
i=1(yi−di)2 subject to S.

3 / 8 Volume 13 (2008)



Interactive, Constraint-based Layout of Engineering Diagrams

to satisfy the non-overlap constraints and cluster containment constraints (modeled using a
rectangular box) [DKM06b].

(2) Edge routing is performed using an incremental poly-line connector routing algorithm to com-
pute poly-line routes for each edge, which minimise edge length and amount of bend [WMS06].
The cluster boundary is obtained using the convex hull of the cluster.

(3) The layout is optimised by iteratively improving the current layout by using a (non-linear)
gradient projection approach. This preserves the topology of the initial layout [DMWb].

Note that unlike force-directed layout, constrained graph layout techniques ensure that the gen-
erated layouts really do satisfy all of the layout constraints (unless the constraints are infeasible).

Also note that topology-preserving minimisation of P-stress has a simple physical metaphor:
the paths, i.e. poly-line connectors and cluster boundaries, act like rubber-bands, trying to shrink
in length and hence, in the case of connectors, straighten. And, just like physical rubber bands,
the paths are impervious and do not allow nodes and other paths to pass through them.

The above layout algorithm is used in a network diagram authoring tool and network browsing
tool that we have developed. We now describe these.

3 Diagram authoring

Although some general purpose diagramming tools, such as Microsoft Visio2 and Omnigraffle,3

provide automatic graph layout, the integration of graph layout into these tools is quite unsatis-
factory. Similar concerns apply to the network layout tool yEd.4 The issue is that these tools use
static graph layout algorithms which are not well-matched to the inherently interactive nature of
diagramming tools. They provide only “once off” graph layout and allow little flexibility for the
author to tailor the resulting layout by, say, requiring that certain nodes are aligned.

We believe that a better model for integrating automatic graph layout into diagramming tools is
continuous network layout. In this model the graph-layout engine runs continuously to improve
the layout in response to user interaction. The author uses placement constraints, such as align-
ment and distribution, to tailor the layout style and can guide the layout by repositioning diagram
components or rerouting connectors. Importantly, layout should be fast enough to immediately
show the effect of changes made to the diagram by the author. Thus, continuous network layout
requires efficient dynamic graph layout techniques that support placement constraints.

Continuous network layout was introduced in GLIDE [RMS97]. However, the spring-based
layout algorithm used by GLIDE was not robust or powerful enough to truly support the model.
We have developed a new network diagram authoring tool, Dunnart [DMWa],5 that provides
continuous network layout and uses a topology-preserving constrained graph layout algorithm.

Dunnart supports a variety of different layout styles, arbitrary clusters of nodes, and place-
ment tools such as alignment, distribution and separation. Dunnart’s layout engine continuously
adjusts the layout in response to user interaction, ensuring that the diagram remains “tidy,” i.e.
without overlapping objects, while still maintaining the layout style and user-imposed place-

2 “Layout Assistant for Visio”, Tom Sawyer Soft., http://www.tomsawyer.com/lav/
3 “Omnigraffle”, The Omni Group, http://www.omnigroup.com/omnigraffle/
4 “yEd”, yWorks, http://www.yworks.com/products/yed/
5 “Dunnart”, http://www.csse.monash.edu.au/∼mwybrow/dunnart/

Proc. LED 2008 4 / 8

http://www.tomsawyer.com/lav/
http://www.omnigroup.com/omnigraffle/
http://www.yworks.com/products/yed/
http://www.csse.monash.edu.au/~mwybrow/dunnart/


ECEASST

(a) Organic layout style. The controls on the left allow
parameters such as default edge length to be adjusted with
a slider. As the slider is moved the layout updates imme-
diately to show the results.

(b) The author tries a different layout style: flow. This
adds style constraints requiring that directed edges be
downward pointing.

(c) Unhappy with the result, the author now tries the lay-
ered layout style. This forces objects to be arranged on
layers. It generates a set of horizontal alignment con-
straints with separation constraints between them. The
separation constraints keep the layers in order and en-
forces a minimum spacing (adjustable by the user) be-
tween layers.

(d) The author now fine-tunes this layout. First, they
draw attention to a particular path through the diagram
by vertically aligning some objects. Following this ac-
tion, they manually change the ordering of several nodes
within their layers so that the diagram better fits within
the page boundary.

Figure 1: Screenshots illustrating interaction and the various styles of network layout possi-
ble with Dunnart. The “Unix family tree” network is based on a Graphviz example diagram:
http://www.graphviz.org/Gallery/directed/unix.html

5 / 8 Volume 13 (2008)



Interactive, Constraint-based Layout of Engineering Diagrams

ment constraints. Layout adjustment occurs in real-time providing immediate feedback about
the effect of user changes.

Figure 1 illustrates the use of Dunnart. See [DMWa] for a detailed description of Dunnart’s
features and behaviour.

4 Network diagram visualisation

Another tool we have developed is a network visualisation tool [DMS+]. This is based on
the classic overview+detail visualisation model. The core innovation in the tool is that we use
topology-preserving constrained graph layout to generate a high quality layout for the sub-graph
displayed in the detailed view and a high-speed layout method for the remainder of the graph.

The user navigates through the network by repeatedly selecting a focal node to centre in the
detailed view. The tool then displays the surrounding neighbourhood (up to a maximum of forty
nodes) within the detailed view. The tool allows the user to change the level of detail shown in an
individual node, as demonstrated with the UML Class nodes in Figure 2. They can also change
the level of detail in the network by choosing a cluster, i.e. a hierarchical collection of nodes, to
be expanded or collapsed in the detailed view.

The tool also allows the viewer to tailor the layout in the detailed view by imposing place-
ment constraints on the layout. These allow the author to control the layout without having to
explicitly position objects. The relationship is maintained in subsequent interaction until the
author explicitly removes it, including being remembered and restored when the affected nodes
leave and return to the detailed view. A significant benefit of allowing constraints to be placed
on the layout is that the user can use these to improve navigation through the network by, for
instance, aligning nodes in an important metabolic pathway, or orthogonalising the layout and
so creating landmarks to guide their subsequent exploration [War04]. In order to facilitate this,
our tool provides two high-level styling tools that generate placement constraints designed to
make the layout more memorable by highlighting the largest cycles in a directed graph and by
orthogonalising the layout.

An example session with the network visualisation tool is shown in Figure 2. See [DMS+] for
a detailed description of the tool’s features and behaviour.

5 Conclusion

We have described two new interactive tools: one for authoring network diagrams and one for
visualising large network diagrams. Both tools utilise constrained graph layout, allowing the user
to impose placement constraints on the diagram to capture a wide variety of application-specific
layout constraints. Furthermore, the dynamic network layout in these tools is stable and, where
reasonable, the topology of the current layout is preserved during user interaction. We believe
that these tools demonstrate that constrained graph layout provides an ideal basis for layout of
network diagrams occurring in engineering applications.

Proc. LED 2008 6 / 8



ECEASST

(a) Here the class FSSolidMatT is the initial focus (b) The user changes focus to FSIsotropicMatT and
zooms in to some of its neighbours to see specific meth-
ods and attributes. Note that the topology of the common
subgraph between this and the previous neighbourhood
is preserved.

(c) Here orthogonalisation constraints have been added to a neighbourhood around the
class SSSolidMatT

Figure 2: Exploring a large UML collaboration diagram, from the Tahoe Development Server
project (http://tahoe.ca.sandia.gov/). The diagram contains 267 classes and 373 relationships
between classes. This figure is taken from [DMS+].

7 / 8 Volume 13 (2008)

http://tahoe.ca.sandia.gov/


Interactive, Constraint-based Layout of Engineering Diagrams

Bibliography

[DETT99] G. Di Battista, P. Eades, R. Tamassia, I. G. Tollis. Graph Drawing: Algorithms for
the Visualization of Graphs. Prentice-Hall, Inc., 1999.

[DK05] T. Dwyer, Y. Koren. Dig-CoLa: Directed Graph Layout through Constrained Energy
Minimization. In Proceedings of the IEEE Symposium on Information Visualization
(Infovis’05). Pp. 65–72. IEEE, 2005.

[DKM06a] T. Dwyer, Y. Koren, K. Marriott. Drawing Directed Graphs Using Quadratic Pro-
gramming. IEEE Transactions on Visualization and Computer Graphics 12(4):536–
548, 2006.

[DKM06b] T. Dwyer, Y. Koren, K. Marriott. IPSep-CoLa: An incremental procedure for sepa-
ration constraint layout of graphs. IEEE Transactions on Visualization and Computer
Graphics 12(5):821–828, 2006.

[DMS+] T. Dwyer, K. Marriott, F. Schreiber, P. J. Stuckey, M. Woodward, M. Wybrow. Explo-
ration of networks using overview+detail with constraint-based cooperative layout.
IEEE Transactions on Visualization and Computer Graphics (InfoVis 2008). To ap-
pear 2008.

[DMWa] T. Dwyer, K. Marriott, M. Wybrow. Dunnart: A Constraint-based Network Diagram
Authoring Tool. In Proc. 16th Int. Symp. on Graph Drawing (GD’08). To appear
2008.

[DMWb] T. Dwyer, K. Marriott, M. Wybrow. Topology Preserving Constrained Graph Layout.
In Proc. 16th Int. Symp. on Graph Drawing (GD’08). To appear 2008.

[HM98] W. He, K. Marriott. Constrained Graph Layout. Constraints 3:289–314, 1998.

[RMS97] K. Ryall, J. Marks, S. M. Shieber. An Interactive Constraint-Based System for Draw-
ing Graphs. In ACM Symposium on User Interface Software and Technology. Pp. 97–
104. 1997.

[War04] C. Ware. Interacting with visualizations. In Information Visualization: Perception for
Design. Chapter 10, pp. 317–350. Elsevier, 2nd edition, 2004.

[WMS06] M. Wybrow, K. Marriott, P. J. Stuckey. Incremental Connector Routing. In Proc. 13th
Int. Symp. on Graph Drawing (GD’05). LNCS 3843, pp. 446–457. Springer, 2006.

Proc. LED 2008 8 / 8


	Introduction
	Topology-preserving constraint-based graph layout
	Diagram authoring
	Network diagram visualisation
	Conclusion

