
Electronic Communications of the EASST
Volume 15 (2008)

Proceedings of the
8th International Workshop on

OCL Concepts and Tools (OCL 2008)
at MoDELS 2008

Deriving OCL Optimization Patterns from Benchmarks

Jesús Sánchez Cuadrado, Frédéric Jouault, Jesús García Molina and Jean Bézivin

16 pages

Guest Editors: Jordi Cabot, Martin Gogolla, Pieter Van Gorp
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Deriving OCL Optimization Patterns from Benchmarks

Jesús Sánchez Cuadrado1, Frédéric Jouault2, Jesús García Molina1 and Jean
Bézivin2

1 jesusc@um.es, jmolina@um.es
Universidad de Murcia

2 frederic.jouault@inria.fr, jean.bezivin@inria.fr
AtlanMod team, INRIA & EMN

Abstract: Writing queries and navigation expressions in OCL is an important part
of the task of developing a model transformation definition. When such queries
are complex and the size of the models is significant, performance issues cannot be
neglected.

In this paper we present five patterns intended to optimize the performance of model
transformations when OCL queries are involved. For each pattern we will give an
example as well as several implementation alternatives. Experimental data gathered
by running benchmarks is also shown to compare the alternatives. The model trans-
formation benchmark framework developed to obtain these results is also described.

Keywords: OCL, Model transformation, ATL, Model navigation, Benchmarks

1 Introduction

Rule-based model transformation languages usually rely on query or navigation languages for
traversing the source models to feed transformation rules (e.g., checking a rule filter) with the
required model elements. The Object Constraint Language (OCL) is the most common language
for this task, and it is implemented in several transformation approaches such as: ATL [JK05],
QVT [OMG05], and Epsilon [KPP08].

In complex transformation definitions a significant part of the transformation logic is devoted
to model navigation. Thus, most of the complexity is typically related to OCL. From a per-
formance point of view, writing OCL navigation expressions in an efficient way (e.g., avoiding
bottlenecks) is therefore essential to transformations optimization.

We are currently working on the identification of common transformation problems related to
performance. For each identified issue, we analyze several alternative solutions. In this work,
we present some of our initial results in the form of idioms.

In particular, we describe five performance-related patterns in model transformations when
OCL queries are involved. Each pattern is presented in three parts: i) a statement describing
the problem, as well as a motivating example; ii) some experimental data gathered by running
benchmarks, so that different implementation alternatives can be compared, and finally iii) some
recommendations on the basis of this data.

The paper is organized as follows. Next section introduces the framework used to run bench-
marks, and Section 3 describes the five patterns identified. Section 4 presents some related work.

1 / 16 Volume 15 (2008)

mailto:jesusc@um.es
mailto:jmolina@um.es
mailto:frederic.jouault@inria.fr
mailto:jean.bezivin@inria.fr


Deriving OCL Optimization Patterns from Benchmarks

Finally, Section 5 gives the conclusions.

2 Benchmarking framework

To facilitate the specification, execution and presentation of the results of our benchmarking
tests, we have created a supporting software framework. Its architecture is shown in Figure 1.

Benchmarks are organized in a directory-based structure, where all the information of a given
benchmark is stored in one directory. A benchmark comprises several artifacts, namely: meta-
models (sources and targets), several input models, probably of different sizes, and several trans-
formation definitions written either in the same or different transformation languages.

The result of the execution of some set of transformations is stored in a model of measures,
which is later transformed to some proper representation for their visualization and analysis. In
particular we have implemented a model transformation which takes a measure model and cre-
ates a comparative table with four dimensions: kind of source models, transformation language,
language implementation, and transformation definition implementation. From this model an
HTML page and a CSV file, to be exported in a spreadsheet, are generated. The comparative
charts of this paper has been created with a spreadsheet software importing the CSV files.

Figure 1: Architecture of the benchmark framework.

A DSL has been defined to specify the required information to execute benchmarks. An inter-
preter is in charge of processing DSL programs in order to launch the benchmarks accordingly.
Each benchmark is executed n times, computing the mean time of all executions. To avoid bi-
ased results, the first m times are ruled out, and also execution times which are too high (e.g.
30% higher than the mean time of the rest) are discarded because they are probably caused by
multi-task issues of the operation system.

The abstract syntax metamodel of the DSL is shown in Figure 2. A program to specify the
benchmark execution comprises two parts: the benchmark definition and the set of test suites.
A benchmark definition specifies a set of source and target metamodels, a set of possible trans-
formation definitions to be executed, and the set of source models of interest. When a transfor-
mation definition is declared, the transformation language it conforms to must be specified. For
the moment we have considered ATL transformations and plain EMF code. For each benchmark
definition one or more suites are specified. A benchmark suite declares a set of benchmark cases
to be run and compared together. Each benchmark case fixes the values for the parameters of a
specific execution, for example the transformation definition to be executed, the input models,
the implementation of the language, etc.

Proc. OCL 2008 2 / 16



ECEASST

Figure 2: Abstract syntax metamodel of the benchmarks DSL.

The following code excerpt is part of a benchmark specification intended to compare the per-
formance of several collection data types. This specification establishes that the transformation
definitions to be benchmarked will use one metamodel called Tree (line 2), both for their input
and output models (lines 3-4). As can be seen the input model is left open by declaring the
input XMI file as a parameter. Then, the concrete input models that can be used are declared
(lines 6-9). They are identified by their size (i.e. number of model elements). The available
transformation definitions are declared within a transformation block using the version
keyword (lines 11-16) and using the specification modifier to set the corresponding file.
The transformation language to which the transformation definition conforms to is declared for
each definition using the :language modifier. Finally, one or more benchmark suites can be
declared (lines 18-38). The execute keyword within a test suite allows us to declare a bench-
mark case. In this example the two transformation definitions declared above will be executed
for all the declared models for the EMFVM ATL virtual machine, but only for the 1600-elements
model for the Regular ATL VM.

1 benchmark_definition ’collections’ do
2 metamodel ’Tree’ => ’Tree.ecore’
3 in_model ’IN : Tree’ => :parameter
4 out_model ’OUT : Tree’ => ’target.xmi’
5
6 input_model_size ’IN’ do
7 model 16000 => ’model_16000.xmi’
8 model 32000 => ’model_32000.xmi’
9 end

10
11 transformation do
12 version ’seq_include_atl’, :language => :atl,
13 :specification => ’sequence_include.atl’
14 version ’set_include_atl’, :language => :atl,
15 :specification => ’set_include.atl’
16 end
17

3 / 16 Volume 15 (2008)



Deriving OCL Optimization Patterns from Benchmarks

18 benchmark_suite ’default’ do
19 execute ’seq_include_atl’ do
20 vm :emfvm
21 input_model ’IN’, :all
22 end
23
24 execute ’seq_include_atl_regular’ do
25 vm :regular
26 input_model ’IN’, [16000]
27 end
28
29 execute ’set_include_atl’ do
30 vm :emfvm
31 input_model ’IN’, :all
32 end
33
34 execute ’set_include_atl_regular’ do
35 vm :regular
36 input_model ’IN’, [16000]
37 end
38 end
39 end

The DSL has been designed with flexibility in mind. The definition of the artifacts to run the
benchmark (metamodels, models and transformations) is separated from the benchmark suites
and benchmark cases, so that such information does not need to be specified over and over
again. As can be seen in the example above, it is possible to specify different combinations
of parameters. This allows us, for instance, to compare different implementations of the same
language, different implementations of the same transformation definition or how performance
is affected by the size of models.

So far, we have defined benchmarks that can be classified into two categories: microbench-
marks that measure specific aspects of a language or some transformation definition via a syn-
thetic transformation definition, and examples which correspond to optimizations performed on
real examples. The benchmark shown above is an example of a microbenchmark. A complete
transformation from UML to Java, where mapping multiple inheritance to simple inheritance is
considered, is a benchmark example.

Finally, this DSL as well as the scripts to run the benchmarks has been implemented using
RubyTL’s facilities for defining embedded DSLs within Ruby [CM07]. JRuby has been used to
allow a seamless integration of the DSL with the transformation launchers written in Java.

3 Performance patterns

In this section we describe five OCL patterns and analyze them in order to improve the perfor-
mance of OCL navigation expressions in model transformations. We rely on the experimen-
tal data obtained by running performance benchmarks to compare the different implementation

Proc. OCL 2008 4 / 16



ECEASST

strategies1.
We identified these patterns by working on actual transformations in which we identified one

or more bottlenecks. The corresponding expressions are then re-implemented in a more efficient
way. Next, whenever a pattern is identified, a small, synthetic benchmark is created to isolate
this particular problem and to compare several implementation options.

We will illustrate the patterns using the ATL language2, but they are general for any rule-based
transformation language using OCL, such as QVT [OMG05]. Therefore, these optimization pat-
terns can be considered as idioms or code patterns [Bec06], since they provide recommendations
about how to use OCL.

ATL is a rule-based model transformation language based on the notion of declarative rule
that matches a source pattern and creates target elements according to a target pattern. It also
provides imperative constructs to address those problems that cannot be completely solved in
a declarative way. The navigation language of ATL is OCL. Helpers written in OCL can be
attached to source metamodel types. Also, global attributes whose value is computed at the
beginning of the transformation execution can be defined. The ATL virtual machine provides
support for several model handlers, but in our experiments we have only considered EMF.

It should be noted that the patterns presented here suppose that no special optimization is
performed by the compiler (i.e., straightforward implementation of the OCL constructs), and that
all optimizations have to be done manually by the developer. This is the case with ATL 2006,
but this may not be the case with all OCL implementations. These patterns could also probably
be used by an OCL compiler to perform internal optimizations using expression rewriting, but
this is out of the scope of this paper.

3.1 Short-circuit boolean expressions evaluation

Model transformations usually involve traversing a source model by means of a query generally
containing boolean expressions. When such boolean expressions are complex and the source
model is large, the order in which such operands are evaluated may have a strong impact on the
performance if short-circuit evaluation [AU77] is used. Short-circuit evaluation means that the
first condition is always evaluated but the second one is only evaluated if the first argument does
not suffice to determine the value of the expression.

3.1.1 Experiments

The experiment carried out compares the possible performance impact of evaluating boolean
expressions with and without short-circuit evaluation.

Figure 3 shows the execution time of a query containing a boolean expression with the fol-
lowing form: simpleCondition or complexCondition, where simpleCondition is an
operation with a constant execution time, while complexCondition is an operation whose execu-
tion time depends on the size of the source model. The query is executed once for each element
of a given type in the model.

1 The benchmarks have been executed in a machine with the following configuration: Intel Pentium Centrino
1.5Ghz, 1GB RAM. Java version 1.6.0 under Linux kernel 2.6.15.
2 The ATL version used is: ATL 2006 compiler, using the EMFVM virtual machine on Eclipse 3.4.

5 / 16 Volume 15 (2008)



Deriving OCL Optimization Patterns from Benchmarks

Three cases has been considered in the benchmark, each one tested with and without short-
circuit evaluation:

• The simpleCondition operation returns true for half of the elements. This means that
complexCondition must be executed, in any case, for the other half of the elements. This
can be considered an average case.

• In the second case, simpleCondition is satisfied for all the elements. Thus, complexCondi-
tion may not be evaluated. This would be the best case.

• In the third case, simpleCondition is not satisfied for any element. Thus, complexCondition
must always be evaluated. This would be the worst case.

Figure 3: Boolean expressions with and without short-circuit-evaluation

As expected, in the average case the performance improvement with short-circuit evaluation
is directly proportional to the number of times the first condition is executed (i.e. its execution
prevents the execution of the second one). In the best case the execution time with short-circuit
evaluation is much lower because the complex condition is never executed. On the contrary, for
the worst case the complex condition must always be executed, so there is no difference between
having short-circuit evaluation or not.

3.1.2 Recommendations

There are two well-known strategies to improve the performance of a boolean expression when
short-circuit evaluation is considered, depending on whether it is “and” or “or”.

Proc. OCL 2008 6 / 16



ECEASST

• And. The most restrictive (and fastest) conditions must be placed first, that is, those con-
ditions/queries more likely to return a “false” value. Thus, the slowest condition will be
executed less often.

• Or. The less restrictive conditions (and fastest) must be placed first, that is, those con-
ditions/queries more likely to return a “true” value. Again, the slowest condition will be
executed less often.

If the implementation supports short-circuit evaluation then boolean expressions can be writ-
ten in such a way that efficiency is considerably improved. If not, any expression can be rewritten
using the rules of the following table, where the second column shows how to rewrite the expres-
sions in OCL. It is important to notice that this table assumes that the results of the queries are
defined values, i.e. true or false, but not OclUndefined. As a matter of fact, the current imple-
mentation of ATL uses a two-valued logic.

With short-circuit Without short-circuit
AND query1() and query2() if query1() then query2() else false endif
OR query1() or query2() if query1() then true else query2() endif

3.2 Determining an opposite relationship

Given a relationship from one model element to another, it is often necessary to navigate through
the opposite relationship. For instance, if one is dealing with a tree defined by the children rela-
tionship it may be necessary to get a node’s parent node (i.e., navigating the opposite relationship
of children).

If the opposite relationship has been defined in the metamodel, then navigation in both direc-
tions can be efficiently achieved. However, such opposite relationship is not always available, so
an algorithm to check all the possible opposite elements has to be worked out. This algorithm
tends to be inefficient since it implies traversing all the instances of the opposite relationship’s
metaclass.

When the metametamodel supports containment relationships, and the reference we are con-
sidering have been defined as containment, then it is possible for a transformation language to
take advantage of the unique relationship between an element and its container to efficiently
compute the opposite one. For instance, ATL provides the refImmediateComposite()
operation (defined in MOF 1.4) to get the container element.

3.2.1 Experiments

The performance test has consisted in getting the owning package for all classifiers of a given
class diagram. A package references its owned classifiers through a classifiers relation-
ship. A helper for the Classifiermetaclass has been created to compute the owner opposite
relationship. The helper will be called once for each classifier of the model.

Four ways of computing an opposite relationship have been compared:

• Using an iterative algorithm such as the following (all examples are given in ATL syntax3):
3 The helper keyword and the terminal semicolon are required by ATL to syntactically identify OCL helpers. ATL

7 / 16 Volume 15 (2008)



Deriving OCL Optimization Patterns from Benchmarks

helper context CD!Class def : parent : CD!Package =
CD!Package.allInstances()->any(p |

p.classifiers->includes(self) );

• Using the refImmediateComposite() operation provided by ATL.

• Precomputing, before starting the transformation, a map (dictionary in QVT terminology)
associating elements with their parent. In the case of ATL, maps are immutable data
structures, and as we will see this issue affects performance.

helper def : pkgMap : Map(CD!Class, CD!Package) =
CD!Package.allInstances()->iterate(p;

acc : Map(CD!Class,CD!Package) = Map{} |
p.classifiers->iterate(c;

acc2 : Map(CD!Class, CD!Package) = acc |
acc2.including(c, p)

)
);

helper context CD!Class def : owner : CD!Package =
thisModule.pkgMap.get(self);

• The same as the previous strategy but using a special mutable operation to add elements
to the map.

The results of this benchmark are shown in Figure 4. Three class diagrams with n×m el-
ements, where n is the number of packages and m is the number of classes per package, have
been considered at this time: (1) a small model with 10 packages and 250 classes per package,
(2) a second model with 25 packages and 500 classes per package, and (3) a third model with
500 packages and 25 classes per package. This last model has been introduced to test how the
“shape” of the model may affect the performance.

The refImmediateComposite operation proves to be the best option, however the per-
formance of the “mutable map version” is comparable. The iterative algorithm is more efficient
than the “immutable map version” when the number of packages is smaller than the number of
classes, which will be probably the common case. The reason is that such an algorithm only
iterates over the packages, while the “map version” also iterates over all the classes. The main
reason for the poor numbers is that, since it is immutable, the cost of copying a map each time a
new element is added is too high.

3.2.2 Recommendations

According to this data, to compute the opposite of a containment relationship the
refImmediateComposite operation should be used. If the reference is not containment
or just the metametamodel does not provides this feature, using a mutable map proved to be the
best option.

also requires that type names be prefixed by the name of the metamodel defining them (e.g., CD here), separated by
an exclamation mark.

Proc. OCL 2008 8 / 16



ECEASST

Figure 4: Comparison of different ways of computing an opposite relationship. The logarithmic
scale used for the time axis corresponds to the following formula: 1.59× ln(time)+8.46.

If the transformation language does not provide a mutable map data type, but an immutable
one, the iterative algorithm or the map strategy has to be chosen according to the most usual
shape of the models.

As a final remark, although maps or dictionaries are not natively supported by OCL, trans-
formation languages usually extends OCL to implement them. For instance, ATL provides an
immutable Map4 data type (usable in side-effect free OCL expressions), and QVT provides a
mutable Dictionary data type.

3.3 Collections

OCL provides different collection data types. Each type is more efficient for certain operations
and less efficient for others. It is important to choose the proper collection data type according
to the operations to be applied, otherwise performance may be compromised.

In this section we compare the implementation of the including (adds an element to a col-
lection), and includes (check the existence of some element) operations for three collection
data types, Sequence, Set, and OrderedSet. The performance results are applicable to
other operations, such as union.

4 In order to measure the performance using a mutable Map, we had to implement it in a test version of the ATL
engine.

9 / 16 Volume 15 (2008)



Deriving OCL Optimization Patterns from Benchmarks

3.3.1 Experiments

The benchmark for the including operation consists of iterating over a list of n elements,
adding the current element to another list in each iteration step. The execution time for different
input sizes, as well as for the three collections data types is shown in Figure 5.

Figure 5: Comparison of the including operation for different collection data types

As can be seen, including is more efficient for sequences than for sets. This is what one
would expect, since in a sequence a new element is inserted at the tail, and there is no need to
check if the element was already added. The performance of ordered sets is slightly worse than
sets, basically because it is internally implemented in ATL using a LinkedHashSet, that is,
both a hash map and a linked list must be updated in each insertion.

The benchmark for the includes operation consists of finding an element which is in the
middle of a list of n elements. The same code is executed 2000 times. The execution time for
different input sizes, as well as for the three collections data types is shown in Figure 6.

As expected the cost of includes is greater for sequences. However, if it executed less
times, for instance 100 times, the execution time is similar in all cases, and there is not difference
in using a sequence or a set. This shows that it is not worth converting a collection to a set (using
asSet) if the number of query operations (such as includes) is not large.

3.3.2 Recommendations

The decision about which collection data type to use should be based on which will be the most
frequent operations. In particular, these tests show that unless one needs to make sure that there
is no duplicated elements into the collection (or if the transformation logic cannot enforce it),
then the sequence type should be used, in particular when operations to add new elements are
frequently called.

Proc. OCL 2008 10 / 16



ECEASST

Figure 6: Comparison of the includes operation for different collection data types

3.4 Usage of iterators

OCL encourages a “functional” style of navigating through a model by promoting iterators to
deal with collections. Thus, queries are often written without taking into account the efficiency
of the expressions, but just trying to find out a readable, easy or more obvious solution.

For instance, it is common to come across OCL code like expression (a) shown below, which
obtains the first element of a collection satisfying a condition. However, expression (b) may be
more efficient since the iteration can finish as soon as the condition is satisfied. Of course, an
optimizing compiler could rewrite (a) into (b).

(a) collection->select(e | condition)->first()
(b) collection->any(e | condition)

Thus, it is important to take into account the contract of each iterator and operation to choose
the most appropriate one, depending on the computation to be performed.

3.4.1 Experiments

To assess whether it is really important, from a performance point of view, to be careful when
choosing an iterator we have compared these two ways of finding the first element satisfying a
condition in a list of n elements. In this benchmark the condition is satisfied by all elements after
the middle of the list. This means that option (a) will return a list of n/2 elements.

The first time we ran this benchmark, the execution time for both cases (a) and (b) was the
same. The reason is that the current implementation of any in ATL does not finish the iteration
as soon as possible, but it is equivalent to “select()->first”. Thus, a new optimized version was
implemented and its performance is also compared.

11 / 16 Volume 15 (2008)



Deriving OCL Optimization Patterns from Benchmarks

Figure 7 shows the execution time for the three cases: using the original version of any, using
a fixed version and with “select()->first”. It also shows another case which is explained below.

Figure 7: Finding the first element satisfying a condition.

According to the proposed benchmark, the execution time of “select()->first” should be worse
than using any, but not so much. We looked into this issue and the reason is related to the imple-
mentation of the select operation in ATL. It internally uses the standard OCL including
operation to add an element to the result each time the condition is satisfied. Since including
is an immutable operation the whole partial result is copied for each selected element. That is
why as the size of the list grows the execution time grows exponentially.

We implemented an optimized version of select which uses a mutable operation to add
elements to the result. As can be seen in Figure 7, its performance is greater than the original,
but it is also comparable to any. The main reason for this result is that the transformation
execution involves a constant time which is independent of the iterator execution time. When
such constant time is removed, the any iterator is around 150% faster.

3.4.2 Recommendations

The select iterator should be used only when it is strictly needed to visit all elements of
the collections. Iterators such as any, exists, includes, etc. should be used to avoid iterating the
whole collection. In any case, the benchmark results show that if the select iterator is properly
implemented then it can provide a performance comparable to other iterators.

Proc. OCL 2008 12 / 16



ECEASST

3.5 Finding constant expressions

In rule-based transformation languages, rules are executed at least once for each instance matched
against the source pattern, so all expressions within the rule may be executed once for each rule
application. When such expressions depend on the rule’s source element, then it is inevitable to
execute them each time. However, those parts of an expression which are independent of vari-
ables bound to the source element can be factorized in a “constant”, so that they are executed
only once when the transformation starts. Some transformation engines do not support this kind
of optimization, so it has to be done manually.

As an example, let us consider the following transformation rule, which transforms a clas-
sifier into a graphical node. The condition to apply the rule is that the classifier (instance
of Classifier) must be referenced by another element which establishes whether or not it
is drawable (Drawable). Since the filter is checked for each classifier, all elements of type
Drawable are traversed each time the engine tries to find a match.

rule Classifier2Node {
from source : CD!Classifier (

DrawModel!Drawable.allInstances()->exists(e | e.element = source)
)
to Graphic!GraphNode ...

}

A more efficient strategy is to compute in a constant attribute all the drawable elements, so
that the transformation can be rewritten in the following way:

helper def : drawableElements : Set(CD!Classifier) =
CD!Drawable.allInstances()->collect(e | e.element);

rule Classifier2Node {
from source : CD!Classifier (
thisModule.drawableElements->includes(source)

) ...
}

3.5.1 Experiments

The rule shown above has been executed for several input models (the same number of elements
of type Classifier and Drawable is assumed). Figure 8 shows the results for the following
three cases: (1) without pre-computing the common query code into a constant, and using the
original ATL version of exists, (2) the same but using an optimized version of existswhich
finishes the iteration as soon as it finds the required element, and (3) using the strategy of pre-
computing a constant.

As can be seen the third strategy has a cost which is significantly lower than the two others,
and does not grow as fast (the algorithm complexity is O(n + m)), while the first one has a cost
of O(n ·m), where n is the number of elements of type Classifier and m is the number of
elements of type Drawable.

13 / 16 Volume 15 (2008)



Deriving OCL Optimization Patterns from Benchmarks

Figure 8: Performance impact of the factorization a a common expression into a constant.

3.5.2 Recommendations

It is possible to easily identify expressions within rules and helpers which can be factorized into
some constant because they usually rely on allInstances() to get model elements without
navigating from the rule’s source element. Therefore, the transformation developer should be
aware of this kind of optimization and apply it whenever possible.

Also, it is worth noting that using a let statement (or similar) is a good practice to factorize
expressions at the local level.

4 Related work

In [KG07] the need for developing benchmarks to compare different OCL engines is mentioned.
The authors have developed several benchmarks that can be found in [Ocl]. However, they are
intended to compare features of OCL engines, rather than performance.

In [MLC06] and [MLC07] the authors present several algorithms to optimize the compilation
of OCL expressions. They argue that its optimizing OCL compiler for the VMTS tool can
improve the performance of a validation process by 10-12%.

Regarding performance of model transformation languages few work has been been done.
In [VSV05] a benchmark to compare graph-based transformation languages is proposed. In
[LEB06] some general recommendations about how to improve performance of model driven
development tools are presented, but neither concrete examples or experimental data are given.

Proc. OCL 2008 14 / 16



ECEASST

5 Conclusions and future work

In this paper we have presented several optimization patterns for OCL-based transformation
languages. These patterns address common navigation problems in model transformations from
a performance point of view. For each pattern we have provided several implementation options
along with performance comparison data gathered from running benchmarks.

The contribution of this work is twofold, on the one hand these patterns may be useful as a
reference for model transformation programmers to choose between different implementation
alternatives. On the other hand, they provide some empirical data which is valuable for tool
implementors to focus on the optimization of some common performance problems.

As future works we will continue defining benchmarks for model transformations in order
to identify more patterns related to performance. We are also improving our framework for
benchmarking to consider other transformation languages. Beyond the individual patterns that
are being identified, we are also looking at improving and generalizing a method for finding,
identifying and classifying transformation patterns.

Bibliography

[AU77] A. V. Aho, J. D. Ullman. Principles of Compiler Design (Addison-Wesley series in
computer science and information processing). Addison-Wesley, 1977.

[Bec06] K. Beck. Implementation Patterns. Addison-Wesley Professional, 2006.

[CM07] J. S. Cuadrado, J. G. Molina. Building Domain-Specific Languages for Model-Driven
Development. IEEE Softw. 24(5):48–55, 2007.
doi:http://dx.doi.org/10.1109/MS.2007.135

[JK05] F. Jouault, I. Kurtev. Transforming Models with ATL. In MoDELS 2005: Proceedings
of the Model Transformations in Practice Workshop. Oct 2005.

[KG07] M. Kuhlmann, M. Gogolla. Analyzing Semantic Properties of OCL Operations by
Uncovering Interoperational Relationships. In Ocl4All: Modelling Systems with OCL,
MoDELS 2007 Workshop. Nashville, Tennessee, 2007.

[KPP08] D. S. Kolovos, R. F. Paige, F. A. Polack. The Epsilon Transformation Language. In
1st International Conference on Model Transformation, ICMT’08. Pp. 46–60. 2008.

[LEB06] B. Langlois, D. Exertier, S. Bonnet. Performance Improvement of MDD Tools. In
EDOCW ’06: Proceedings of the 10th IEEE on International Enterprise Distributed
Object Computing Conference Workshops. P. 19. IEEE Computer Society, 2006.
doi:http://dx.doi.org/10.1109/EDOCW.2006.54

[MLC06] G. Mezei, T. Levendovszky, H. Charaf. Restrictions for OCL constraint optimization
algorithms. Technical report, Technische Universitat Dresden, Genova, Italy, October
2006.

15 / 16 Volume 15 (2008)

http://dx.doi.org/http://dx.doi.org/10.1109/MS.2007.135
http://dx.doi.org/http://dx.doi.org/10.1109/EDOCW.2006.54


Deriving OCL Optimization Patterns from Benchmarks

[MLC07] G. Mezei, T. Levendovszky, H. Charaf. An optimizing OCL Compiler for Metamod-
eling and Model Transformation Environments. In Software Engineering Techniques:
Design for Quality. Pp. 61–71. Springer, 2007.

[Ocl] OCL Benchmarks, http://muse.informatik.uni-bremen.de/wiki/index.php/
OCL_Benchmark_-_Core.
http://muse.informatik.uni-bremen.de/wiki/index.php/OCL_Benchmark_-_Core

[OMG05] OMG. Final adopted specification for MOF 2.0 Query/View/Transformation. 2005.
www.omg.org/docs/ptc/05-11-01.pdf.

[VSV05] G. Varro, A. Schurr, D. Varro. Benchmarking for Graph Transformation. In VLHCC
’05: Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-
Centric Computing. Pp. 79–88. IEEE Computer Society, 2005.
doi:http://dx.doi.org/10.1109/VLHCC.2005.23

Proc. OCL 2008 16 / 16

http://muse.informatik.uni-bremen.de/wiki/index.php/OCL_Benchmark_-_Core
http://dx.doi.org/http://dx.doi.org/10.1109/VLHCC.2005.23

	Introduction
	Benchmarking framework
	Performance patterns
	Short-circuit boolean expressions evaluation
	Experiments
	Recommendations

	Determining an opposite relationship
	Experiments
	Recommendations

	Collections
	Experiments
	Recommendations

	Usage of iterators
	Experiments
	Recommendations

	Finding constant expressions
	Experiments
	Recommendations


	Related work
	Conclusions and future work

