
Electronic Communications of the EASST
Volume 15 (2008)

Proceedings of the
8th International Workshop on

OCL Concepts and Tools (OCL 2008)
at MoDELS 2008

How My Favorite Tool Supporting OCL Must Look Like

Dan Chiorean, Vladiela Petraşcu, Dragoş Petraşcu

17 pages

Guest Editors: Jordi Cabot, Martin Gogolla, Pieter Van Gorp
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

How My Favorite Tool Supporting OCL Must Look Like

Dan Chiorean1, Vladiela Petraşcu2, Dragoş Petraşcu3

1chiorean@cs.ubbcluj.ro, 2vladi@cs.ubbcluj.ro, 3petrascu@cs.ubbcluj.ro
Computer Science Research Laboratory

Babeş-Bolyai University, Cluj-Napoca, Romania

Abstract: At this time, to decide on which tool supporting OCL to use, is a difficult
task. This is influenced by a number of objective factors, including: the user’s needs,
knowledge of existing tools, knowledge of the Object Constraint Language and of
the various possibilities of using it. Today, each tool maker states about implement-
ing new features compared with the existent tools; moreover, different tools return
different results when evaluating identical OCL specifications in the same context.
A reason of this state of facts is due to the concepts which are incomplete or am-
biguous specified in the standard. Therefore, before describing the criteria proposed
for assessing tools supporting OCL, the following topics are examined: features
that distinguish OCL within the modeling languages family, some aspects incom-
plet or ambiguous described in the OCL specification, main functionalities that a
tool supporting OCL should implement, the universe of tools supporting OCL. In
the end, five representative tools are characterized with respect to the functionalities
proposed to be implemented by an ideal tool.

Keywords: OCL, modeling languages, tools supporting OCL, undefined values
in OCL, MDA, MDE

1 Introduction

Between languages and tools supporting their usage there is an interdependency relationship. On
the one hand, the languages precede the tools, on the other hand, the languages cannot be used
in the absence of appropriate tools. Tools facilitate the evolution of languages creating a suitable
framework for obtaining the feedback needed in order to validate and refine languages. Without
tools, such activities cannot be conceived!

At this time, the universe of tools supporting OCL counts more than fifteen members. Nev-
ertheless, compared to the overall number of UML or MOF-based tools, the number of those
which also provide OCL support is noticeably smaller. In spite of this, the universe is divers
because it can be said that there are no two tools implementing the same set of features. This
universe is not polarized like the universe of UML tools for example, where, 4 - 5 tools cover
the whole market. Moreover, excepting Together, a commercial tool, all the other representative
tools are free or open source. Therefore, having objective criteria for assessing tools supporting
OCL is very important.

In this context, the Object Constraint Language and the tools supporting it must be analyzed
together. For that reason, and in order to understand better the criteria we propose for assess-
ing these tools, the rest of the paper is structured around the following topics: features that

1 / 17 Volume 15 (2008)

mailto:chiorean@cs.ubbcluj.ro
mailto:vladi@cs.ubbcluj.ro
mailto:petrascu@cs.ubbcluj.ro

How My Favorite Tool Supporting OCL Must Look Like

distinguish OCL within the modeling languages family - presented in section 2, some aspects
incomplete or ambiguous described in the OCL specification - in section 3, efficient OCL spec-
ifications and the required tool support - in section 4, main functionalities that a tool supporting
OCL should implement - in section 5. In the last two sections, 6 and 7, five representative tools
are characterized with respect to the functionalities proposed to be implemented by an ideal tool
and some related works and the conclusions are presented.

2 OCL features

The following OCL features have a major influence on tools supporting this language.

• OCL is a complementary modeling language, which uses a textual formalism. The lan-
guage is used for: navigation (query models), specification of assertions, specification of
behaviour (all existing versions, including 2.0, allow only observers specification). The
fact that the OCL specifications complement an existing model description has a great
impact on tools, whereas they should support both navigation of models (which are repre-
sented in most cases using a graphical formalism) and navigation of OCL specifications.
Using two formalisms, one graphical and another textual, implies the existence of two
types of corresponding tools, one for each formalism.

• Any OCL specification is written in a well-defined context of the model complemented by
that specification. In order for the OCL specifications to make sense, the model must con-
form to the well formedness rules of its modeling language (WFR), rules specified at the
metamodel level. Therefore, verifying this conformance should precede the compilation
of OCL specifications, and, implicitly, their evaluation.

• The language specification is not sufficiently detailed in the following cases:

1. assessment of expressions containing undefined values,

2. managing exceptions that may occur in evaluating OCL expressions,

3. assessment of undeterministic functions (any, asSequence, asOrderedSet),

4. accessing properties from ascendants.

• Validating OCL specifications involves evaluating them on appropriate models. The eval-
uation can be done in a direct / static manner (by using the AST corresponding to the eval-
uated OCL expression), or a dynamic one (by evaluating the application obtained through
automatic code generation). In the static case, the AST contains all the values required by
the evaluation process. Comparing the results obtained by direct evaluation to those ob-
tained by evaluating the corresponding code (produced by converting the OCL expressions
in a programming language) is a test required in order to validate the OCL specifications.

• All the standard versions emerged so far treat OCL as a cohesive language. Neverthe-
less, many tools have implemented language extensions, useful for various application
domains. Furthermore, within Model Driven Engineering (MDE), languages referenced
as “OCL-based languages” have been introduced. For these reasons, and by also taking

Proc. OCL 2008 2 / 17

ECEASST

into account the language characteristics, OCL can be considered as a family of typed lan-
guages [CBC05]. This approach is advantageous for both users and for those who manage
the language evolution. Users must only know those components they use. Changes made
at any language in the family, except for the core part, does not affect the other components
[CBC05].

• The OCL ”dialect” used at the M3 (MOF) level, as well as the OCL-based languages,
used for navigating meta-metamodels and metamodels are restricted compared with the
OCL used in UML. This is due to the fact that within MOF or other meta-metamodels,
the concepts of qualified association and association class are missing (compared to the
language defined for UML) and all associations are binary (there are no n-ary associations
with n > 2).

3 Ambiguous or not enough detailed aspects in the OCL specifica-
tion

3.1 Evaluating expressions containing undefined values and managing evalua-
tion exceptions

OCL is meant to complement model description in order to support a more complete and rigorous
model specification. Therefore, the results obtained when evaluating OCL expressions have to
comply with the above mentioned goal. Working with undefined values is really important
when using models because, at different stages of software development, it happens that not all
decisions are taken or not all the information is known. However, even in these situations, for
modelers, it is crucial to work with models, and, by consequence, to evaluate OCL expressions
that may contain undefined values. Of course, in such situations it is expected to obtain
results as accurate as possible.

In the OCL specification [OCLS], undefined is used both for mentioning that some infor-
mation is missing and in case of some runtime exceptions such as division by 0 or accessing the
elements of an empty collection. As we will discuss in the following, this can cause unpleasant
situations.

Suppose that, by navigation, we obtain a collection of Integers representing some persons
ages, as in the expression below.

Bag{89,15,23,undefined}->exists(a|a>80),

Complying with the last OCL standard, this is not possible because the result of the evaluation
will be undefined, even if such a person exists. This situation is unacceptable, therefore,
in [CBC05], we have proposed a more detailed evaluation strategy for expressions containing
undefined values. In accordance with our proposal, we will obtain true in each case when
the collection iterated by the exists operation contains at least one element complying with
the rule specified in the body of exists.

Evaluating expressions containing undefined values is included in the benchmark test ad-
dressed in [GKB08]. Analyzing the results obtained when evaluating the following three OCL

3 / 17 Volume 15 (2008)

How My Favorite Tool Supporting OCL Must Look Like

expressions, we have noticed that the obtained results depend on the tool used. By using the
OCLE [OCLE] tool, the results obtained are those mentioned after each OCL expression.

Sequence{1..3}->iterate(i; c:Sequence(Boolean)=Sequence{} |
c->including(Sequence{1,8,7}->at(i) > Sequence{2,3,8}->at(i)))

result obtained: Sequence{false, true, false}

Sequence{1..3}->iterate(i; c:Sequence(Boolean)=Sequence{} |
c->including(Sequence{1,8,7}->at(i) > Sequence{2,3}->at(i)))

result obtained: sequence index out of range

Sequence{1..3}->iterate(i; c:Sequence(Boolean)=Sequence{} |
c->including(Sequence{1,8,7}->at(i) >

Sequence{2,3,oclUndefined(Integer)}->at(i)))
result obtained: Sequence{false, true, Undefined}

Using other tools, like USE [USE] or MDT-OCL [MDT], we will obtain the same result for
all three different OCL expressions, namely:

Sequence{false, true, false}.

We consider that the results obtained by using OCLE are more accurate than those obtained
with the other two tools. The differences in evaluation are due to the followings reasons:

• In OCLE,

Sequence{1,8,7}->at(i) > Sequence{2,3}->at(i)}

raises the exception “sequence index out of range” when i=3, because Sequence{2,3}
has only two elements. USE and MDT-OCL evaluate the same expression to false.

• Tis is because the expression 7 > oclUndefined(Integer) is evaluated to undefined
in OCLE and to false in both USE and MDT-OCL.

The results obtained using OCLE are the same with the results obtained in case of a dynamic
evaluation, at run time, when the expressions specified in Java would be transformed from the
above OCL expressions. In the context of the new Software Engineering paradigms (MDA,
MDE, LDD), the full conformance of static and dynamic evaluations is essential.

We suggest introducing a new class, Exception, in the OCL metamodel, in order to model
the exceptions that can be raised when evaluating OCL operations. In this manner, the results
obtained will be more accurate and the framework required for obtaining the same results at both
static and dynamic evaluation will be ensured.

In cases when is expected to obtain undefined values, we recommend taking a more se-
cure approach, namely using the standard oclIsUndefined() operation. This, because in
our oppinion it is not secure to say that the value of the expression oclUndefined(T) =
oclUndefined(T), is true. In this case, we agree with the standard. The above mentioned
value is undefined.

The OCL benchmark proposed in [GKB08] contains the following test:

Proc. OCL 2008 4 / 17

ECEASST

(1) Person.allInstances->select(husband =
Person.allInstances->any(wife->isEmpty).wife).

Analyzing this test, we notice that any evaluations of

Person.allInstances->any(wife->isEmpty).wife,

will result in undefined. So, we conclude that, in fact, the intent is to compute the set of
persons without husband. In our opinion, a simpler and safer expression equivalent to (1) is

(2) Person.allInstances->select(p|p.husband.oclIsUndefined()).

In OCLE for example, generating the Java code corresponding to the expression (1) will pro-
vide:

Set setAllInstances =
Ocl.getType(new Class[]{Person.class}).allInstances();

//evaluate
//’select(husband=Person.allInstances->any(wife->isEmpty).wife)’:
Set setSelect = CollectionUtilities.newSet();
final Iterator iter = setAllInstances.iterator();
while (iter.hasNext())
{

final Person iter1 = (Person)iter.next();
Person personHusband = iter1.getHusband();
Set setAllInstances0 =

Ocl.getType(new Class[]{Person.class}).allInstances();
//evaluate ’any(wife->isEmpty)’:
Object temp = null;
final Iterator iter0 = setAllInstances0.iterator();
while (temp == null && iter0.hasNext())
{

Object temp0 = iter0.next();
Person iter2 = (Person)temp0;
Person personWife = iter2.getWife();
boolean bIsEmpty = CollectionUtilities.isEmpty(personWife);
if (bIsEmpty) temp = temp0;

}
Person personAny;
if (temp == null) personAny = null;
else personAny = (Person)temp;
Person personWife0 = personAny.getWife();
boolean bEquals = personHusband.equals(personWife0);
if (bEquals) CollectionUtilities.add(setSelect, iter1);

},

Executing this code, we will get

5 / 17 Volume 15 (2008)

How My Favorite Tool Supporting OCL Must Look Like

Exception in thread "main" java.lang.NullPointerException,

since the equals function would be called on a null personHusband. On the contrary,
executing the Java code generated by OCLE for the expression (2), the result returned for the
same snapshot will be identical to the result obtained through an OCLE static evaluation.

In USE, evaluating the expression

Set{oclUndefined(Integer)}->exists(e | e <> i)},

the result obtained is true, irrespective of the value of i:Integer. So, by induction, we can
conclude that the value of oclUndefined(Integer) is not an Integer, which is false.
Therefore, we consider that undefined is the correct result obtained when comparing two
values from which at least one is undefined.

3.2 Evaluating undeterministic operations - any, asSequence, asOrderedSet

From a tool maker perspective, the OCL standard [OCLS] gives an incomplete specification for
the any(iterator | <boolean expression>) operation defined on Collections.
Therefore, the results obtained when evaluating OCL expressions that include any depend on
the tool. For example, in USE

Set{9,1,7,oclUndefined(Integer)}->any(true) = oclUndefined(Integer),

while in OCLE

Set{9,1,7,oclUndefined(Integer)}->any(true) = 9.

The results will be the same, irrespective of the number of times the evaluation is performed.
As both outputs comply with the standard, we consider that, in this case, the algorithm for
evaluating the any operation must be included in the OCL specification. Moreover, modelers
must use this operation carefully, taking into account the different results that can be obtained by
evaluation.

In the standard, the collection operations asSequence and asOrderedSet are specified
as undeterministic operations. Therefore, the results obtained when evaluating these operations
depend on the used tool. For example, in USE

Set{9,1,7,oclUndefined(Integer)}->asSequence() =
Sequence{oclUndefined(Integer),1,7,9},

while in OCLE

Set{9,1,7,oclUndefined(Integer)}->asSequence() =
Sequence{9,1,7,oclUndefined(Integer)}

It is enough clear that the evaluation strategies implemented in these tools are different. In
OCLE, both asSequence and asOrderedSet operations do not change the “order” in which
the set elements are listed. In USE, asSequence is equivalent to sortedBy(i | i). That
is why in USE we obtain:

Proc. OCL 2008 6 / 17

ECEASST

A

at1 : Boolean

o1() : Integer

B

at1 : Integer

C

o1() : Integer

Figure 1: Accessing features with the same name, from ascendents

Set{9,1,7,oclUndefined(Integer)}->sortedBy(i | i) =
Sequence{oclUndefined(Integer),1,7,9}.

The results obtained with USE show that, in the 2.4.0 version of this tool, OrderedSet was
not yet implemented, and that oclUndefined(Integer) < 1. However, when we eval-
uated the expression oclUndefined(Integer) < 1 separately, the result obtained was
false. In our opinion, the solution adopted by OCLE gives the opportunity to keep the order
of terms when including new terms in the collection.

3.3 Accessing features with the same name, from ascendants

Accessing features defined in parents is an usual operation in object-oriented applications. Sup-
pose that we are in the C context and that we need to redefine the operation o1():Integer,
initially defined in A. In order to do this, normally there are at least two possibilities: (1) using
an upcast, as in:

context C::o1():Integer
body: self.oclAsType(A).o1() + 1

or (2) using an explicit notation, like in C++:

context C::o1():Integer
body: self.A::o1() + 1

A similar situation happens if, in the C context, we need an invariant such as:

context C
inv: self.oclAsType(A).at1 implies self.oclAsType(B).at1 > 0

The OCL standard specification ([OCLS], page 25) mentions only the downcast, but not the
upcast. We consider that this is a mistake, at least for two reasons: (1) upcasts (to an ascendent)
are always safe and (2) sometimes it is really necessary to be able to access features defined in
ascendents, as we have discussed before.

7 / 17 Volume 15 (2008)

How My Favorite Tool Supporting OCL Must Look Like

4 Efficient OCL specifications and the required tool support

By efficient OCL specification, we denote a specification that, when evaluated, provides the
modeler with the information needed in order to understand faster the model and to take the
best decision. As we will show in the following, many times it happens that the most efficient
OCL specification is not the shortest or the easiest to understand. However, the obtained benefits
justify the effort. Beyond the specification, the OCL supporting tool must implement partial
evaluation and a natural navigation between different views of the same element.

Usually, when evaluating an invariant, users are only warned that it fails in a certain context.
Most of the times, a simple failure message is not enough, requiring deeper investigations. The
example presented in the following is mentioned in [OLI06].

It involves libraries that lend book copies to their members. The first invariant, found in
[OLI06], checks that all copies currently lent are from libraries whose members are the loan-
ers. This first invariant, named usual, is similar with almost all the invariants currently spec-
ified for such a constraint. The only information obtained when evaluating it is represented
by the members having wrong loans. When the evaluation fails, the second invariant, named
moreUsefull, may provide, by partial evaluation, a member’s list of wrong loans. More than
that, the third invariant gives the list of wrong loans, and for each such loan the list of copies and
libraries owning these copies. If in [CTE07] the moreUsefull invariant could be obtained
automatically, the last invariant (oferring the richest information) cannot. In case of real applica-
tions, containing an important volume of data, it is highly important to be able to identify as soon
as possible and with a minimum effort the reasons of a possible failure. The last specification is
the most helpful in this purpose.

context Member

inv usual:
self.currentLoans->forAll(l|l.copies.library->forAll(li|

li=self.memberOf))

inv moreUsefull:
self.currentLoans->select(l|l.copies.library->exists(li|

li<>self.memberOf))->isEmpty

inv moreUsefullThanPrec:
let wrongLoans:Set(Loan)=self.currentLoans->select(l|

l.copies.library->exists(li|li<>self.memberOf)) in
(wrongLoans->iterate(l;

sLC:Set(TupleType(a:Loan,b:Set(Copy),c:Set(Library)))=Set{} |
if l.copies.library->select(li|li<>self.memberOf)->notEmpty
then sLC->including((Tuple{a=l,b=l.copies,

c=l.copies.library->asSet}))
else sLC
endif))->isEmpty

Proc. OCL 2008 8 / 17

ECEASST

Figure 2: Navigating the evaluation snapshot in OCLE, in order to identify the failure reasons

As shown in Figure 2, the result of iterating the wrongLoans collection is posted on the
output pane, the lowest located in the tool window. The expression evaluated is highlighted in the
OCL editor window, located on the top right of the tool window. Just clicking on the first element
of the first tuple printed on the output pane, l1, the corresponding model element is automatically
selected on the model browser and on the snapshot. In a similar manner, the other two elements
of the first tuple, the copies and the libraries, can be navigated. So, when the invariant fails,
by means of partial evaluations and navigations, the modeler can easy identify the loans, the
corresponding copies, and the libraries that do not comply with the invariant requirement.

5 Functionalities that our ideal OCL tool should implement

The functionalities discussed in this section have been suggested by the experience we acquired
while conceiving, implementing, and using the OCLE tool, as well as while working with vari-
ous other tools, such as USE, OCL Dreseden Toolkit, Octopus, MDT-OCL, Together, or XMF,
to mention just the most used by us. Each of these tools (including OCLE) has offered us both
satisfactions and frustrations. We are deeply convinced that a tool expresses more or less the
vision that its realizers have on OCL and on different possibilities of using OCL specifications.
Our experience proved that, at the moment, there are no tools implementing ad literam the stan-
dard. Moreover, there are significant differences between the current tools, both in the way they
implement the standard, and in their utility. Therefore, comparing the existent OCL tools is, in
our point of view, on the one hand, a very difficult and risky task, and, on the other hand, a not
very useful activity. We spoked about “ideal” OCL tool, because ideal is something not very
easy to obtain. Moreover, the ideal differs from one person (tool user) to another. However, we
hope that the functionalities discussed will provide a set of useful evaluation criteria for both tool

9 / 17 Volume 15 (2008)

How My Favorite Tool Supporting OCL Must Look Like

makers and existing/potential users.
Tools must allow working with models and specifications irrespective of their size. It is ex-

tremely important that they provide strong support for managing big models and large specifica-
tions.

Tools must adhere to the standards. In case there is no full conformance, all the differences
have to be explicitly and clearly described. Standards cannot be tested, validated, and improved
without appropriate tools. Moreover, it would be very useful if tools supported automated trans-
formation of models/specifications having differences from the standards in standards-compliant
models/specifications. A consequence would be an unrestricted exchange of models and specifi-
cations between existing tools.

Tools’ constituents (editors, compilers, browsers) must implement the functionalities estab-
lished by IDEs. This implies the existence of text beautifiers, auto-completion, diagram filtering
facilities a.s.o. Tools must promote automation whenever possible and suitable. To give an
example, this may include support for snapshot generation, as implemented in USE.

Any tool’s documentation must state explicitly the main objective for which the tool was
conceived and implemented. Also, suitable examples of its use are recommended.

Tools must support reuse. This includes the possibility of attaching and detaching in a very
simple manner different kind of OCL rules specified at M2 or M3 levels, as allowed by OCLE.

Our “ideal” OCL tool should:

1. Support users in managing models by means of both graphical and textual formalisms.

Justification: A graphical formalism is easier to understand. Models’ persistency is ac-
complished by the XMI standard. After the first UML standard was released, in 1997,
two opposite modeling tendencies were proposed: one suggesting to represent even con-
straints as diagrams [BKP06], the other [GKR08] allowing model specification only in
a textual form. Having both graphical and textual editors, users may take advantage of
both or use the preferred one. Managing both graphical and textual formalisms means that
users are able to import, export, update, and to browse models. All these functionalities
are mandatory.

2. Enable working with OCL expressions at three abstraction levels (meta-metamodel,
metamodel and model) in case of MDA or DSML tools, and at least the last two levels
in case of UML tools.
Justification: In case of MDA or DSML tools, the modeling languages specified using
metalanguages such as MOF, Ecore, or KM3, have to be checked against the WFRs spec-
ified at the highest level. The same requirement applies for models, that must be verified
against the WFRs specified at the metamodel level. The correctness of OCL expressions
specified at the model level must be checked against the OCL specification. Only if the
model has been proved to be consistent with respect to the metamodel WFRs, the last
mentioned operation can be realized in good conditions. Therefore, model’s consistency
must be ensured before verifying the OCL expressions specified on it.

3. Allow compilation and statical evaluation of all kind of OCL expressions (pre & post-
conditions, invariants, observers, guards or modifiers - for OCL extended specifica-
tions as in XMF [CSW08]).

Proc. OCL 2008 10 / 17

ECEASST

Justification: Statical evaluation of the above mentioned OCL expressions is important
since it is very intuitive. It provides users with the possibility of comparing the values
obtained by evaluating different OCL sub-expressions with the states of the corresponding
parts of the evaluated snapshot. Therefore, statical evaluation is the best way of testing
OCL specifications.

4. Include code generation facilities, for different target programming languages.

Justification: First of all, comparing the results otained in case of static evaluation with
those obtained at dynamic evaluation represents a way for increasing the confidence of
modelers in the OCL specifications. Moreover, MDA, MDE, and LDD promote M2T
transformations. Therefore, it is important that OCL tools implement this functionality.
Fortunately, important advances have been achieved in this area [OAW]. As a conse-
quence, powerful and flexible code generators can be implemented with a minimum efort.
The code corresponding to OCL specifications has to be injected within the application
code. In this context, two approaches may be distinguished. The first one covers the situa-
tion in which the model code was either produced by another tool or was manually written.
In this case, examples on how the assertion code could be injected must be provided. The
most time consuming operation is the management of invariants’ evaluation. The second
approach treats the case when the entire code is generated by the OCL tool. This one
offers a stronger automation support. Even the code containing invariants’ calls can be
generated, if users specify in advance the strategy. The drawback of this approach con-
cerns OCL tools makers, which must provide users enough flexibility in order to customize
code generation in accordance with their requirements. In both mentioned approaches, the
management of execution exceptions (assertion failures) must be considered.

5. Offer browsing facilities: from the textual editor to the output pane, from the output
pane to the (meta)model browser, from (meta)model browser to different diagrams
representing the model element selected in the browser.

Justification: This functionality is probably less important compared with the others. How-
ever, we have included it since it enables users to understand quickly the results of evaluat-
ing OCL specifications on different model instantiations and to take advantage of efficient
specifications.

In recent years, different research groups have studied various aspects related to OCL spec-
ifications such as: refactoring OCL specifications, patterns in OCL specifications, translating
OCL specifications in other formalisms (HOL, CSP) in order to prove their correctness. We have
not yet included these functionalities in our requirements list since we consider that implement-
ing those from the list should be a precondition for taking a real advantage of the latters. Before
translating an OCL specification into any other formalism, we must confide that this specification
is correct and complies with our intent.

11 / 17 Volume 15 (2008)

How My Favorite Tool Supporting OCL Must Look Like

6 An overwiev of the existing tools supporting OCL

There are two different positions regarding tools supporting OCL. One is represented by modular
tools especially conceived to be integrated with other modeling tools and Integrated Development
Environments (IDEs). The most known is the Dresden OCL Toolkit. Octopus, MDT-OCL, KMF,
and most of the existing tools are included in this category. The second is represented by stand
alone tools. Together, USE, XMF and OCLE are included in this group. Each group offers a set
of advantages and has also some drawbacks.

The tools from the first group are well integrated at least in a host modeling tool, or better,
in different other tools like in case of Dresden OCL Toolkit. Their weakness is mainly due to
the strong dependency on the host tool. The tools of the second group have the advantage of
independency, but are probably less integrated with other tools.

Analyzing the latest versions of the most used commercial UML tools, we can notice that,
except for Together [TOG], the OCL support offered by Rose [ROSE], MagicDraw [MGCD],
Poseidon [POS], Telelogic Tau [TAU] and Telelogic Rhapsody [RHAP] lacks or is insignificant.
Even more strange, on the Objects by Design web page [OBD], among the 16 criteria proposed
for choosing a tool, there are neither explicit nor implicit references to OCL.

An incontestable criterion for classifying tools supporting OCL groups these in commercial
and non-commercial (free or open source) tools. In the first group, Together is from far the
leader with respect to the functionalities offered, since it supports OCL both at the metamodel
and model level. Together implements also model transformation support by means of QVT.
However, not even Together is very closed to the ideal tool that we would like to work with. The
UML metamodel it uses is not standard-compliant and its metamodel’s documentation is not
fully available. Therefore, working with OCL specifications at the metamodel level is awkward.
Static evaluation of OCL expressions specified at the M1 level is not possible. The Java code
obtained by transforming the OCL specification is large and, by consequence, understanding it
requires significant effort.

Other tools, such as Oclarity - the Empowertech Rose AddIn [OCLA], only offer compilation
support for OCL specifications. For this reason, their analysis was not included in this paper.

Within the second group, that of non-commercial tools, the great majority have emerged from
academia. ATL [ATL], Dresden OCL Toolkit [DRES], E-Platero (formerly Pampero) [EPLA],
Epsilon Object Language (EON) [EPS], GME [GME], HOL-OCL [HOL], Key [KEY], KMF
[KMF], MOVA [MOVA], Naomi [NAOM], OCLE [OCLE], RoclET [ROCL], USE [USE] -
listed in alphabetical order, have been all developed in academia. Each of the above mentioned
tools is focused on one or more aspects of interest for the teams involved. In our point of view,
Dresden OCL Toolkit and USE must both be considered for their influence on the other tools, for
the functionalities they were the first to implement (some of them still unique in the universe of
tools supporting OCL), and for their continuous improvement end extension. Also, HOL-OCL,
ATL, GME, Key, RoclET, MOVA provide different useful functionalities, not yet implemented
by other tools. KMF must be mentioned as well, since its OCL library is used by different tools
supporting OCL. EMF MDT-OCL [MDT], oAW [OAW], and XMF [XMF] have a distinct place
within the non-commercial tools. EMF MDT-OCL is an open source tool using the KMF library
that offers OCL support within the EMF framework. oAW, developed by the oAW consortium,
supports an OCL like language, named Check. We consider that, among the three, XMF has

Proc. OCL 2008 12 / 17

ECEASST

 Dresden
OCL Toolkit USE MDT-OCL OCLE Together

support graphical
& textual formalisms

by means
of host tools YES YES YES YES

support 2 or 3
abstraction levels one level one level one level 2 levels 2 levels

static evaluation
for invariants

& pre/postconditions
NO YES YES only

invariants
only

invariants

code generation YES NO NO YES YES

browsing between
different views NO NO NO YES NO

facilities
of text editor few facilities few facilities YES missing

autocompletion YES

comply
with standards mainly YES proprietary

model format - mainly YES mainly YES
metamodel

exchange
of models YES NO - UML 1.5

in XMI 1.1 partially

focused on modularisation
& code generation

evaluating
pre/postconditions
& shell commands

Ecore validating
UML models

OCL support
for UML

Table 1: An overview of the existing tools supporting OCL

a priviledged position since it uses an extended OCL version (supporting model transformation
and modifiers’ specification). This is the first tool offering an unconditioned support for LDD.

At this time, the non-commercial tools are from far more numerous compared to commer-
cial ones. The functionalities implemented in free or open source tools are more varied and
interesting. These are mainly research tools. As consequence, their available documentation
does not contain all the needed information. HOL-OCL and USE are two notable positive ex-
amples. Therefore, we think that, for now, the non-commercial tools are not in the position of
being widespread used in modeling, at an industrial level. They can be successfully used, but
only by the OCL community researchers or by mixed teams (from research and industry), as
acknowledged by different reports.

Are the tools supporting OCL the only barrier against a widespread use of OCL or OCL
like languages now? Our answer is no. How many modelers are convinced about the need of
checking models’ consistency against WFRs? How many developers use Design By Contract?
Trying to answer to the last two questions, we assume that these numbers are not as significant
as they should be. Moreover, as discussed in Section 3, some OCL-specification aspects are still
waiting for a better answer. As mentioned by this workshop’s organizers in the Call for Papers,
it seems that the time for a new generation of tools supporting OCL has arrived. We totally agree
with that.

13 / 17 Volume 15 (2008)

How My Favorite Tool Supporting OCL Must Look Like

7 Related works & conclusions

The topics addressed in this paper are also analyzed in [TRF03], [GKB08] and [DEM04].
In [TRF03], Toval and others mention that in 2003, almost all the analyzed tools were in the

development stage, and “that most of the existing tools have progressed slowly and have been
available only as beta versions”. They also mention that “The future regarding OCL tools is
rather uncertain”. Now, five years after Toval’s analysis, we can notice that tools have improved
their functionality (especially Dresden OCL Toolkit and USE) and many new other tools hav
been released, including commercial tools like Together. From the five groups of criteria used
in [TRF03] to evaluate tools supporting OCL, excepting the first group - “Static Analyze and
Type checking” and the last one - “The version of the OCL standard”, all the other criteria have
been included in our requirements in different forms. Normally, in order to be synchronized
with tools’ evolution, the criteria have been updated. In our requirements, new criteria such as:
comparing the results of static and dynamic evaluations, browsing between different views of the
same model element, working with large models and so on were included.

In [GKB08], Gogolla and collaborators propose a first OCL benchmark for evaluating OCL
engines. For sure, the proposed tests are useful. In case of OCLE for example, the benchmark
helped us in identifying an evaluation bug related to exceptions’ management. However, some
of these tests, especially those related to the evaluation of expressions containing undefined
values, need a more careful analysis, as mentioned in Section 3.

An interesting approach within the universe of tools supporting OCL, that of the Dresden OCL
Toolkit, is described in [DEM04].

The results presented in this paper highlight some aspects related to the improvement of OCL
specifications. Moreover, by means of the presented examples, we hope to contribute to the im-
provement of OCL benchmarks, such as the one proposed in [GKB08]. Our experience proved
that validating models before compiling and evaluating OCL specifications is mandatory. As
WFRs are specified in OCL, the model conformance with its modeling language’s rules is a re-
quired functionality for all tools supporting OCL. By means of examples illustrating evaluation
exceptions, we have shown that both static and dynamic evaluations are required in validating
specifications. The model description is realized by weaving the specification made in the mod-
eling language with the specification made in OCL. Therefore, the tools must enable a natural
navigation between the evaluation result and the model elements represented into the browsers
and appropriate diagrams. Moreover, tools must implement functionalities related to the support
for specifications’ reuse at M2 and M3 levels. The above mentioned functionalities are required
irrespective of the kind of applications considered. Complying with standards ensures a greater
number of users and feedbacks. By contrast to Domain Specific Modeling Languages (DSMLs),
which are different one from another, being conceived to better manage diversity, the expression
language (OCL) is the same for all DSMLs. Therefore, the language evolution and tool makers
must take advantage of the experience acquired in different domains.

Hoping that knowledge resulting from different applications of OCL specifications attained
the critic point enabling the raise of new more useful tools supporting OCL.

Proc. OCL 2008 14 / 17

ECEASST

Bibliography

[CTE07] Cabot, J., Teniente, E.: Transformation Techniques for OCL Constraints. Science of
Computer Programming Journal, vol. 68/3, 179–195. Elsevier (2007)

[CBC05] Chiorean, D., Borteş, M., Coruţiu, D.: Proposals for a Widespread Use of OCL. In:
Proceedings of the MoDELS’05 Conference Workshop on Tool Support for OCL
and Related Formalisms - Needs and Trends, Montego Bay, Jamaica (2005). Tech-
nical report LGL-REPORT-2005-001. Online at: http://lgl.epfl.ch/members/baar/
oclwsAtModels05/technicalReport.pdf

[CSW08] Clark, T., Sammut, P., Willans, J.: Applied Metamodeling - a Foundation for Lan-
guage Driven Development, Second Edition. Ceteva (2008)

[DEM04] Demuth, B.: The Dresden OCL Toolkit And Its Role In Information Systems De-
velopment. In Proceedings of 13th International Conference on Information Sys-
tems Development: Methods and Tools, Theory and Practice (ISD’2004). Vilnius,
Lithuania (2004)

[OLI06] Oliver, I.: Using Class Relationships for Identifying Invariants. Technical report
NRC-TR-2006-006, Nokia Research Center (2006). Online at: http://research.
nokia.com/files/NRC-TR-2006-006.pdf

[GKB08] Gogolla, M., Kuhlmann, M., Buttner, F.: A benchmark for OCL Engine Accu-
racy, Determinateness, and Efficiency. In Krzysztof Czarnecki, editor, Proc. 11th Int.
Conf. Model Driven Engineering Languages and Systems (MoDELS’2008), LNCS
5301, 446–459. Springer, Berlin (2008)

[GKR08] Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Vlkel, S.: MontiCore: a frame-
work for the development of textual domain specific languages. ICSE Companion
(2008), 925–926

[BKP06] Bottoni, P., Koch, M., Parisi-Presicce, F., Taentzer, G.: Consistency Checking and
Visualization of OCL Constraints. In LNCS, vol. 1939, pp. 294–308. Springer, Hei-
delberg (2006)

[TRF03] Toval, A., Requena, V., Fernandez, J.L.: Emerging OCL tools. Software and Sys-
tems Modeling, vol. 2, nr. 4, 248–261. Springer Berlin / Heidelberg (2003)

[ATL] ATL web page.
http://www.eclipse.org/m2m/atl/

[DRES] Dresden OCL Toolkit.
http://dresden-ocl.sourceforge.net/index.php

[EPLA] E-Platero web page.
http://www.oneclipse.com/plugins/education/eplatero/view

15 / 17 Volume 15 (2008)

http://lgl.epfl.ch/members/baar/oclwsAtModels05/technicalReport.pdf
http://lgl.epfl.ch/members/baar/oclwsAtModels05/technicalReport.pdf
http://research.nokia.com/files/NRC-TR-2006-006.pdf
http://research.nokia.com/files/NRC-TR-2006-006.pdf
http://www.eclipse.org/m2m/atl/
http://dresden-ocl.sourceforge.net/index.php
http://www.oneclipse.com/plugins/education/eplatero/view

How My Favorite Tool Supporting OCL Must Look Like

[EPS] Epsilon web page.
http://www.eclipse.org/gmt/epsilon/about.php

[GME] GME web page.
http://www.isis.vanderbilt.edu/projects/gme/

[HOL] HOL-OCL web page.
http://www.brucker.ch/projects/hol-ocl/

[KEY] Key web page.
http://www.key-project.org/

[KMF] KMF web page.
http://www.cs.kent.ac.uk/projects/kmf/

[MGCD] MagicDraw web page.
http://www.magicdraw.com/

[MDT] MDT-OCL web page.
http://www.eclipse.org/modeling/mdt/?project=ocl

[MOVA] MOVA web page.
http://maude.sip.ucm.es/mova/

[NAOM] Naomi web page.
http://mocl.sourceforge.net/

[TOG] Borland Together web page.
http://www.borland.com/us/products/together/index.html

[OAW] openArchitectureWare web page.
http://www.openarchitectureware.org/

[OBD] Objects by Design web page.
http://www.objectsbydesign.com/tools/modeling tools.html

[OCLB] OCL benchmark.
https://muse.informatik.uni-bremen.de/wiki/index.php/OCL Benchmark 0 -
CivilStatus

[OCLS] OCL Specification v2.0.
http://www.omg.org/docs/formal/06-05-01.pdf

[OCLA] Oclarity web page.
http://www.empowertec.de/products/rational-rose-ocl.htm

[OCLE] OCLE web page.
http://lci.cs.ubbcluj.ro/ocle/index.htm

Proc. OCL 2008 16 / 17

http://www.eclipse.org/gmt/epsilon/about.php
http://www.isis.vanderbilt.edu/projects/gme/
http://www.brucker.ch/projects/hol-ocl/
http://www.key-project.org/
http://www.cs.kent.ac.uk/projects/kmf/
http://www.magicdraw.com/
http://www.eclipse.org/modeling/mdt/?project=ocl
http://maude.sip.ucm.es/mova/
http://mocl.sourceforge.net/
http://www.borland.com/us/products/together/index.html
http://www.openarchitectureware.org/
http://www.objectsbydesign.com/tools/modeling_tools.html
https://muse.informatik.uni-bremen.de/wiki/index.php/OCL_Benchmark_0_-_CivilStatus
https://muse.informatik.uni-bremen.de/wiki/index.php/OCL_Benchmark_0_-_CivilStatus
http://www.omg.org/docs/formal/06-05-01.pdf
http://www.empowertec.de/products/rational-rose-ocl.htm
http://lci.cs.ubbcluj.ro/ocle/index.htm

ECEASST

[POS] Poseidon web page.
http://www.gentleware.com/products.html

[RHAP] Telelogic Rhapsody web page.
http://modeling.telelogic.com/products/rhapsody/index.cfm

[ROCL] RoclET web page.
http://www.roclet.org/

[ROSE] Rational Rose web page.
http://www-306.ibm.com/software/awdtools/developer/rose/index.html

[TAU] Telelogic Tau web page.
http://www.telelogic.com/products/tau/index.cfm

[USE] USE web page.
http://www.db.informatik.uni-bremen.de/projects/USE/

[XMF] XMF web page.
http://www.ceteva.com/xmf.html

17 / 17 Volume 15 (2008)

http://www.gentleware.com/products.html
http://modeling.telelogic.com/products/rhapsody/index.cfm
http://www.roclet.org/
http://www-306.ibm.com/software/awdtools/developer/rose/index.html
http://www.telelogic.com/products/tau/index.cfm
http://www.db.informatik.uni-bremen.de/projects/USE/
http://www.ceteva.com/xmf.html

	Introduction
	OCL features
	Ambiguous or not enough detailed aspects in the OCL specification
	Evaluating expressions containing undefined values and managing evaluation exceptions
	Evaluating undeterministic operations - any, asSequence, asOrderedSet
	Accessing features with the same name, from ascendants

	Efficient OCL specifications and the required tool support
	Functionalities that our ideal OCL tool should implement
	An overwiev of the existing tools supporting OCL
	Related works & conclusions

