
Electronic Communications of the EASST
Volume 15 (2008)

Proceedings of the
8th International Workshop on

OCL Concepts and Tools (OCL 2008)
at MoDELS 2008

Observations for Assertion-based Scenarios in the context of Model
Validation

Emine G. Aydal, Richard F. Paige and Jim Woodcock

16 pages

Guest Editors: Jordi Cabot, Martin Gogolla, Pieter Van Gorp
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Observations for Assertion-based Scenarios in the context of Model
Validation

Emine G. Aydal, Richard F. Paige and Jim Woodcock

aydal@cs.york.ac.uk, paige@cs.york.ac.uk, jim@cs.york.ac.uk
Department of Computer Science

University of York, York, UK

Abstract: Certain approaches to Model-Based Testing focus on test case generation
from assertions and invariants, e.g., written in the Object Constraint Language. In
such a setting, assertions and invariants must be validated. Validation can be carried
out via executing scenarios wherein system operations are applied to detect unsatis-
fied invariants or failed assertions. This paper aims to improve our understanding of
how to write useful validation scenarios for assertions in OCL. To do so, we report
on our experiences during the creation and execution of 237 scenarios for validating
assertions for the Mondex Smart Card application. We also describe key factors that
must be considered in transforming scenarios into test cases.

Keywords: Model-based Testing, OCL, Mondex, Scenario Validation

1 Introduction

In Model-Driven Engineering (MDE), models can be used for systematically deriving other arte-
facts needed within the engineering process, such as code and test cases. Applying MDE in
practice requires well-defined modelling languages, scalable and practical tools for constructing
and managing models, as well as means for validating models.

In this paper, we analyse the applicability and suitability of using UML and the Object Con-
straint Language (OCL) for model validation within the context of Model-Based Testing (MBT).
Some of the research in this area focus on determining a set of test targets and translating them
into abstract test cases [BGL+07, BL05]. These studies are valuable in introducing Require-
ments Traceability to MBT and finding test targets against these requirements, however, how
model validation is achieved against these criteria is kept outside of the scope.

The main focus, in this study is on validating models by constructing snapshots representing
system states at a particular point in time with objects, attribute values, and links. There are other
research studies based on the expressive power of snapshots such as [GBR03, GBR06, ZG03].
The difference of this work is that we base our scenarios both on invariants and assertions of
the system operations. Therefore, the scenarios not only check whether there is a state where all
the system invariants are satisfied, but they also check whether there are states that allow system
operations to run. For instance, if one of the preconditions of an operation can never be satisfied,
then either the operation is redundant or the operation is ill defined. The benefit of this approach
in addition to model validation is that, potentially, the scenarios can also be used for abstract test
case generation.

1 / 16 Volume 15 (2008)

mailto:aydal@cs.york.ac.uk
mailto:paige@cs.york.ac.uk
mailto:jim@cs.york.ac.uk

Scenario observations for Model Validation

1.1 Mondex Smart Card Application

The software system used as the basis of this validation experiment was the Mondex Smart
Card Application. Mondex is a global electronic payment scheme that provides digital form of
cash [Cla97]. The card holds values in several different currencies and provides direct money
transfer without signature, PIN or transaction authorization between card holders [Lim99].

Mondex was the first case study carried out in the implementation of the Grand Challenge
program that aims to populate a repository of formally specified and verified codes that are
useful in practice and serve as examples for the future applications [JW07]. Unlike other research
studies based on the monograph outlined in [SCW00], we follow a different path in the sense
that we created the model of the system from the informal requirements detailed in [Lim99]. In
doing so, we covered some of the functional requirements omitted in [SCW00] and in all the
other studies that have been based on this monograph.

In this experiment, we modelled the system using UML and OCL in USE tool. USE allows
users to specify system models, invariants, and pre- and postconditions textually, and allows
assertions to be checked. The class diagram of the Mondex Smart Card application populated in
this study is given in Figure 1. The system has 30 invariants, the classes given in Figure 1 have
31 operations and 197 assertions were written in order to cover these operations. These numbers
exclude utility classes such as Date and their associated operations.

Figure 1: Class Diagram - Mondex

1.2 Test Scenarios in UML Specification Environment (USE)

The USE tool provides a multi-level platform where the model is defined in a .use file, the
generation of an instance of the model is managed by an .assl file, the extra optional invariants
are imposed in a .invs file and all these files as well as other USE-related commands are executed
by calling .cmd files in command prompt of the tool. An example operation definition written in
.use file for creating pending logs in Mondex Smart Card Application is given in Table 1.

Proc. OCL 2008 2 / 16

ECEASST

context MondexPurse::CreatePendingLog(p PendingLog: PendingLog) :
Boolean
pre CreatePendingLogPre1: self.LockingState = ’Unlocked’
pre CreatePendingLogPre2: p PendingLog.isDefined()
pre CreatePendingLogPre3: pendinglog->isEmpty()
post CreatePendingLogPost1: pendinglog->includes(p PendingLog)
post CreatePendingLogPost2: pendinglog->size() = 1
post CreatePendingLogPost3: self.LockingState = self.LockingState@pre

Table 1: CreatePendingLog()

Once the operation definition is defined, there are other tasks to be completed before writing
a scenario. An instance of a system can be generated in USE by using ASSL (A Snapshot and
Sequence Language) [GBR03, GBR06] Once the instance is generated, the output can be written
into a command (.cmd) file and executed in the command prompt of the tool. Depending on the
strategy to be followed, the system and its environment may need adjustment. This is also called
Preamble in Model-based Testing terminology, i.e. bringing the system into a specific state
before executing an operation. The tasks carried out as part of an operation are written in a .cmd
file. Finally, by using openter and opexit features of USE, the preconditions and postconditions of
the operation are checked. The following is an example scenario written for CreatePendingLog
operation.

open c:/<root>/Mondex.use
gen start -b c:/<root>MondexInstance.assl PurseGenerator{2}
gen result
read c:/<root>/snapshot.cmd
read c:/<root>/pre_CreatePendingLog.cmd
!openter pendingLog1 CreatePendingLog(pendingLog1)
read c:/<root>/CreatePendingLog.cmd
!opexit true

Table 2 gives the structure of these scenarios with associated tasks. In Step 1, a basic, valid,
stable instance of the system model is created. This step is ideally the same for all the scenarios.
Step 2 prepares the system for the operation under investigation. At this point, we determine
the set of variables that the operation reads/writes from/to; this set is called Frame Variable Set
(FVS). Observation 6 in Section 2.3 explains this concept in detail. During Step 3, the operation
call is put into the call stack and the preconditions of the operation are checked. Step 4 is where
the actions of the operation are carried out. If the value of an attribute in the set of frame variables
should not change, it is also important to explicitly state this at this step. Note that if we aim
to write a scenario that creates a conflict with one of the postconditions of the operation under
investigation, it is Step 4 where we need to produce this conflict. In the final step, we exit the
operation and the postconditions are checked if the preconditions were satisfied.

3 / 16 Volume 15 (2008)

Scenario observations for Model Validation

Step No. Step Description
1 Initial loading of object model An instance of the model is loaded at this

stage.

2 Environment Setting (Preamble)
- Determine frame variables
- Creation of objects
- Setting attribute values

3 Access to operation The preconditions are checked.

4 Modification of the model
- Creation/Deletion of objects
- Setting/Modifying attribute values
- Coverage of frame variables

5 Exit from the operation The postconditions are checked.

Table 2: The steps of a basic scenario

1.3 Validation of Assertions and Generation of Abstract Test Cases

Validation is a crucial phase of the software development process in demonstrating that the sys-
tem under investigation meets its requirements. Assertion validation ensures that invariants, pre-
and postconditions of operations are expressed as intended. There are three ways of accomplish-
ing this:

1. Checking that the preconditions, invariants and postconditions of the Operation under
Investigation (OpuI) are satisfied at least once.

2. Ensuring that the OpuI does not execute when at least one of the preconditions fails.

3. Checking that at least one of the postconditions of the OpuI fails when a mutant is inserted
into the operation, provided that the preconditions and the state invariants are satisfied.

The first approach guarantees that the postconditions of the operation are not too strong and that
there is at least one case where preconditions and state invariants are satisfied. The second ap-
proach checks the response of the system when the preconditions are not satisfied. Finally, the
last approach verifies that the harmful modifications to the operation are caught by the postcon-
ditions and that the postconditions are not too weak. Note that the third approach needs mutants
to be generated and inserted into the system, and therefore constitutes white-box testing. We
included this for the sake of completeness in showing how the assertion can be used in different
ways for scenario generation, however, in the context of Model-Based Testing, this approach
cannot be used.

Table 3 summarises the statistics for all the scenarios we created in our experiment. 237
scenarios were created of which 32 presented the ideal cases, 94 violated a precondition, 104
violated one postcondition and 7 violated more than one postcondition. Of these 237 scenarios,
64 also contradicted an invariant. This means that if this scenario were to lead to an error in the
system, invariant failure would provide an alert as well. In addition to these, 98 scenarios require
creation/deletion of objects and 71 scenarios are involved in nested calls. The importance of
these numbers is made clear in the rest of this paper.

Proc. OCL 2008 4 / 16

ECEASST

Scenarios
Total number of scenarios 237
Scenario presenting ideal case 32
Scenario conflicting preconditions 94
Scenario conflicting postconditions 111

Invariant conflict
Scenarios conflicting one invariant 55
Scenarios conflicting two invariants 9
Scenarios satisfying all the invariants 170

State Change
Scenarios that requires state change within operation 40
Scenarios that requires state change outside the op. 23
Scenarios that requires no state change 171

Other information
Scenarios requiring object deletion/creation 98
Scenarios with nested calls 71
Scenarios that changes the value of at least one attribute 181

Table 3: Statistics for the scenarios created in this study

1.4 Contribution

The discipline of writing scenarios that allow developers both to validate models and generate
test cases from the scenarios is not yet fully understood. Thus, the main aim of this work is to
improve the understanding of how to validate assertions by reporting on the results of a large-
scale experiment in which validation scenarios were written and used to check assertions. By
doing so, we provide a structured set of observations from this set of experiments that provide
advice on how to go about validating assertions in a scenario-based way and to use them as a
basis for test case generation. One of the novelties of this work is that it explains the issues en-
countered from three different perspectives: Tool-related, scenario-related and assertion-related.
This classification not only facilitates the understanding the root cause of certain problems, but
also foresee the benefits/disadvantagesof the techniques applied.

One of the guidelines followed during the study was to keep the scenarios as general enough
as possible, so that they can be applied to different instances of the model with little or no mod-
ification. The rationale behind this is to ease the transformation of these scenarios to test cases
in a systematic manner with a good degree of automation. This principle has pointed out many
different issues that need consideration, but have been overlooked, such as frame variables, test
case sequencing, dependency of scenarios, etc. The rest of the paper explains our observations
in a structured format.

5 / 16 Volume 15 (2008)

Scenario observations for Model Validation

2 Observations on Scenario Creation in the context of MBT

In this section, we report our experiences in creating the scenarios described above. We structure
our observations into three categories: tool-related observations, assertion-related observations,
general scenario formation-related observations. The tool-related observations aim to reveal the
drawbacks and advantages of using the USE tool. The assertion-related observations address the
usage of the pre/postconditions as well as the invariants in the process of scenario creation. The
observations in this category focus on how to detect some of the errors related to assertions and
how to write better assertions. The final category outlines the observations regarding the sce-
narios that either show the ideal execution of an operation or violate a pre/postcondition. Each
observation is described using the template given below.

Short description of the observation
Aim: the aim of the action that produced the observation.
Context: in which environment the observation is made
Issue encountered: the unexpected behaviour
Detailed observation: a clear explanation of the issue
Conclusion: the effects of the problem.
Extra notes: extra comments about the issue and its impacts

2.1 Tool-related observations

In this section, tool-related observations during the validation of assertions are discussed in de-
tail.

Observation 1: How is the call stack managed in USE?

Aim: The aim is to find a scenario that contradicts a precondition of an operation.
Context: In USE, the preconditions of an operation are checked when the command for the op-
eration call -!openter- is executed. If the preconditions of the operation are satisfied, then the
operation is put into the call stack. If the operation is defined by OCL expressions, these are ex-
ecuted and the expected value is returned when the !opexit command is run. The postconditions
of the operation are also verified at this point.
Issue encountered: If the operation is not defined by using OCL, i.e. when the operation
changes the value of some variables, creates/deletes some objects, etc., then these changes are
performed via the commands introduced in USE between the !openter and !opexit commands.
!set, !create, !destroy are examples of such commands.

The problematic situation occurs if the operation is defined by USE commands and the pre-
conditions of the operation are not satisfied. In such a case, the operation is not put into the call
stack due to precondition failure, however, the commands after the operation call are still exe-
cuted, i.e. the changes that the operation would do are still performed. Then, when the !opexit
command is called, the tool states that the call stack is empty and do not check the postconditions
assuming that the operation is not executed anyway. The concern here is that the system may be
in a different state than it was in the beginning although the operation is not executed according

Proc. OCL 2008 6 / 16

ECEASST

to the tool.
Observations: One of the operations in which we observed this behaviour of the tool is given
in Table 4. This operation is called when the personal code is entered more than the number
of times stated by the attribute PersonalCodeAttempts. The attribute NumberofIncorrectEntries
counts the number of incorrect entries.

context MondexPurse::ChangeTheStateToLockedOut() : Boolean
pre ChangeTheStateToLockedOutPre1:

self.LockingState = ’Unlocked’ or self.LockingState = ’Locked’
pre ChangeTheStateToLockedOutPre2:

PersonalCodeAttempts<= NumberOfIncorrectEntries
post ChangeTheStateToLockedOutPost1: self.LockingState = ’LockedOut’
post ChangeTheStateToLockedOutPost2:

PersonalCodeAttempts=PersonalCodeAttempts@pre

Table 4: ChangeTheStateToLockedOut

The following generates a contradiction in the second precondition.

<ChangeTheStateToLockedOut_Pre2.cmd>
read basemodel.cmd
!set P1.LockingState := ’Unlocked’ --Setting the Frame Var.
!set P1._NumberOfIncorrectEntries := 1 --Conflict Creation
!set P1.PersonalCodeAttempts := 4
!openter P1 ChangeTheStateToLockedOut() --Enter the operation
!set P1.LockingState := ’LockedOut’ --Modification of Frame Var.
!opexit true --Exit the operation

Conclusion: In this example, we managed to reach our aim in the sense that we found a scenario
where the second precondition fails, however, the system is now in a different state than it was
and this may cause unexpected results when the next scenario is run.
Extra notes: The workaround we followed for this problem is that we executed the commands
that neutralise the modifications occurred during the execution of such a scenario. Observation
7 explains the process of neutralisation in more detail.

Observation 2: Reducing the dependency of scenarios on the model instance
Aim: In the creation of the scenarios, one of the rules we need to follow is that we need to be
reasonably independent of the instance of the model we created. What we mean by this is that
the instance of the model created for the test environment is just one of many possible, and the
objects that exist in one instance may not exist in another. In other words, the number of objects,
the number of links, the name of the objects, and the attribute values may all be different. Since
the scenarios in our approach are based on the instance of the model, it is true that they are
somewhat dependent on the instance chosen. Having said that, the level of this dependency can
be decreased by using more general statements in the scenarios.
Context: If deleting an object is one of the operations handled by an operation, some of the
postconditions of this operation must make sure that the deletion really occurs. The observation

7 / 16 Volume 15 (2008)

Scenario observations for Model Validation

that is explained in this section is made whilst trying to find a scenario that is related to one of
these postconditions and that deletes an object.
Issue encountered: Some of our attempts to write more general statements in our scenarios
have caused exceptions in USE especially during the deletion of an object.
Observations: The EnquireCurrencyInfo() function defined in our system provides information
about a given currency. One of the postconditions of this function states that that the operation
should not modify currency objects. In our approach, we created scenarios that present the ideal
functioning of an operation and that also generates conflicts with each different pre/postcondition
of the operation. The scenario that targets the postcondition above deletes a currency object and
observes the reaction of the system. Our first attempt to delete the currency object had the
following code:

let ObjectDel : MondexCurrency = Purse1.avCurrencies->
select(ISOCurrencyCode =’GBP’)->asSequence()->first()

!destroy ObjectDel

However, the ObjectDel object behaves like a pointer to the actual object and therefore the object
requested to be deleted is not removed and we receive a RunTime Exception - unbound variable
- error. Our next attempt was to define the object to be deleted as defined in ObjectDel:

!destroy Purse1.avCurrencies->
select(ISOCurrencyCode = ’GBP’)->asSequence()->first()

This expression states that the the first element in the set of Currencies in Purse1 whose ISOCur-
rencyCode is GBP should be deleted. This command deletes the first object in the selected
collection. However, when we execute the !opexit command to exit the operation, we received a
Null Pointer Exception and the postconditions are not checked.
Our final attempt was to execute the delete command by calling object’s name:

!destroy C_GBP1

After this, the object is deleted, the postconditions are evaluated and no exception is thrown.
Conclusion: When we examine the scenario statements written above, we see that the first
two need the same amount of information in order to proceed, i.e. the currency that is under
investigation. This information is passed to the function as a parameter anyway and therefore the
user does not necessarily have to know a lot about the current instance of the model. The third
one, on the other hand, needs knowledge of an object name which makes the scenario extremely
dependent on the selected instance of the model. We tried these options in different scenarios
and noticed that in some situations the second - and the more general - option works, however we
were unable to find a pattern that explains the rationale behind this varying behaviour. The main
message we here is that the tool must allow the user to write reasonably general, OCL-based
scenarios, and the rules related to creation and deletion of the objects must be clear.

2.2 Assertion-related observations

The observations made during the creation of pre/post-conditions are given in this section. The
situations where a scenario highlights the importance of a change in the assertions and in invari-
ants are also presented.

Proc. OCL 2008 8 / 16

ECEASST

Observation 3: Writing an invariant instead of an assertion tuple
Aim: Some of the most important characteristics our model should possess are clarity, consis-
tency and simplicity. The elements forming the model such as diagrams and OCL expressions
must also have these characteristics and should not introduce further complexity.
Context: Whilst creating the pre and postconditions of the operations, it is important to un-
derstand the context of the operation and the scope of the frame variables. In certain cases, the
change in one variable may affect another variable and these changes must be presented in post-
conditions.
Issue encountered: For two conditions X and Y, if Y must be true each time X holds, then this
relationship must be shown each time X appears in a pre/postcondition. If X is a widely-used
variable, i.e. is an element of frame variable set of many operations, then Y must be repeated as
many times as X appears.
Observations: We first noticed this whilst writing scenarios for ChangeTheStateToUnlocked()
function. Initially, the definition of the function had the pre/postconditions shown in Table 5.

context MondexPurse::ChangeTheStateToUnlocked() : Boolean
pre ChangeTheStateToUnlockedPre1:

LockingState = ’NonLocking’ or LockingState = ’Locked’
pre ChangeTheStateToUnlockedPre2:

LockingState = ’NonLocking’ implies
(not PersonalCode.isDefined or PersonalCode = 0)

post ChangeTheStateToUnlockedPost1: LockingState = ’Unlocked’
post ChangeTheStateToUnlockedPost2: PersonalCode.isDefined and Person-
alCode <> 0

Table 5: ChangeTheStateToUnlocked - First version

We then realised that each time the state is in Nonlocking state or changes from Nonlocking state
to any other possible state, we have to check the value of Personal Code even if the operation it-
self does not necessarily state a change in the value of Personal Code. This not only creates many
duplicates of the same requirement, but also creates a hole in the system when it is forgotten. To
avoid this, we created the following invariant:

inv iPerCode_Nonlocking:
(LockingState = ’Nonlocking’ implies
(PersonalCode = 0 or not PersonalCode.isDefined()))
and (LockingState <> ’Nonlocking’ implies
(PersonalCode <> 0 and PersonalCode.isDefined()))

This invariant states that if the system is in Nonlocking state, the Personal Code is either zero or
not defined. When the system is in any other state, the personal code has a value other than zero.
After the introduction of this invariant, the pre/postcondition definition of the above function
became as given in Table 6.
Conclusion: If there is a repetition of pre/postconditions, it is worth looking at the relationship
between the variables under investigation to see whether such a relationship would hold for all
cases. The example given above is a case where we noticed the need for an invariant due to this
repetition.

9 / 16 Volume 15 (2008)

Scenario observations for Model Validation

context MondexPurse::ChangeTheStateToUnlocked() : Boolean
pre ChangeTheStateToUnlockedPre1:
LockingState=’NonLocking’ or LockingState =’Locked’

post ChangeTheStateToUnlockedPost1: LockingState = ’Unlocked’

Table 6: ChangeTheStateToUnlocked - Second version

Observation 4: Incorrect invariant detection
Aim: The rationale behind creating scenarios that violates a pre/postcondition is to be able to
construct abstract test cases to challenge our system. One of the advantages of the process of
scenario-creation is that it also allows us to test a model for correctness and consistency.
Context: It is possible to find a set of scenarios that violates an assertion of an operation. The
choice of scenario to be used can be done simply by the user or a set of criteria can be defined
and the scenarios may be expected to comply with some/all of these criteria.
Issue encountered: Sometimes, we observed that the set of scenarios that aim to contradict a
pre/postcondition of an operation must also violate an invariant. In one of these situations, the
invariant that the scenario was supposed to violate seemed to be satisfied. After close examina-
tion, we found out that the predicate in the invariant was incorrectly written.
Observations: One of the preconditions of the function ReadPaymentLogs() is that the sys-
tem must either be in state Unlocked or Locked. There are two possible scenarios that would
violate this precondition: the scenario that sets the system state to Nonlocking and the scenario
that sets it to LockedOut. The invariant that deals with the cases where the state is Nonlocking
-iPerCode Nonlocking- was given in Observation 3. The invariant that checks the suitability of
system variables for the LockedOut state -iLockedOutState- is given below.

inv iLockedOutState :
LockingState = ’LockedOut’ implies (PurseExhaustionFlag = true

or _NumberOfIncorrectEntries >= PersonalCodeAttempts)

Both of these invariants require that some other variables of the system are set to certain val-
ues. In the scenarios created to contradict the precondition about the state of the system, we
first followed the approach where the system state is set to LockedOut or Nonlocking and all the
relevant variables such as Personal Code, PurseExhaustionFlag, etc. are excluded. This is why
we expected that each scenario would conflict at least with the relevant invariant. However, to
our surprise, the invariant iPerCode NonLocking was satisfied in both cases. When we analysed
the problem further, we realised that the invariant in the form of (p implies q) AND (NOT p implies
r) was written as (p implies q) AND NOT p implies r which was interpreted as ((p implies q) AND
NOT p) implies r by the tool and therefore the invariant was satisfied although it should not have
been. The issue was resolved when the fault in the invariant was corrected.
Conclusion: The example above presents a case where a scenario written with the aim of vio-
lating a pre/postcondition also detects a fault in the model itself. This means that the approach
supports the process of correctness and consistency check for the model itself. Further research
is needed to assess to what degree this support extends.
Extra notes: Note that, whilst creating the scenarios discussed above, the variables that the in-
variants are associated to are excluded, i.e. the scenario did not deal with the setting of variables
such as PersonalCode, PurseExhhaustionFlag, etc. As an alternative, we also created scenar-

Proc. OCL 2008 10 / 16

ECEASST

ios that add these variables to the FVS of the operation and that handles the correct setting of
these extra variables for the given scenario. By doing this, we bring the system in a different
stable state and then observe the cases where the precondition under investigation fails, but all
the invariants are satisfied. This issue is briefly discussed again in Observation 6 in Section 2.3.

Observation 5: Overlapping postconditions
Aim: In our experiments, we created the scenarios that ideally violated only one assertion at
a time. We believed that the possibility of finding an error increases when each scenario dealt
with a different assertion, since the domain of a possible error differs when the subject matter is
different in a scenario.
Context: In OCL, there may be several ways of navigating to reach an object. Some operations
may create even more links and increase the number of navigation possibilities. If such opera-
tions have postconditions, the postconditions may also use different navigation routes.
Issue encountered: We noticed that when postconditions use the links created by the operation
under investigation, they happen to assume that the links are created successfully. In other words,
they also check the creation of links in addition to their main goal. This conflicts with our initial
aim.
Observations: Following assertions were two of the postconditions initially written for the
function SendValue().

post SendValuePost1 :
pockets->select(Default = true and

currency.ISOCurrencyCode = p_ISOCurrCode)->size() = 1
post SendValuePost4 :

pockets->select(Default = true)->
asSequence()->first().Value@pre -

pockets->select(Default = true)->
asSequence()->first().Value = p_PaymentValue

SendValuePost1 states that the pocket that carries the requested currency given by the parameter
p ISOCurrCode is the default. This postcondition ensures that the pocket that carries the cur-
rency in which the amount will be transferred is set as the default pocket. The postcondition
SendValuePost4 ensures that the value held by the pocket from which the amount is transferred
is decreased by p PaymentValue.
Both conditions seem to match their definitions as given above. However, when analysed fur-
ther, we noticed that when the first condition fails, both postconditions fail even if the money is
transferred in correct currency. This is because SendValuePost4 assumes that the default pocket
is set properly and therefore tries to reach the object through a newly defined link. For instance,
if the transfer is made in GBP and the pocket that holds GBP is not set as default, but transfer
is made in GBP successfully, then we expect SendValuePost1 to fail and post SendValuePost4 to
pass. We observed that both of the above postconditions fail for such a scenario. This may seem
as an advantage at first sight, but when we try to detect the root cause of such a failure, it is more
difficult to find and we are unable to say which assertion is the main target of such a scenario.

The solution to this is to separate the concerns as much as possible for each pre / postcondi-
tion. This also requires withdrawing the sequential way of thinking to reach the outcome of an
operation. In the above example, one may think that the first action is the change of the default
pocket and then the value transfer occurs, so the rationale behind writing a postcondition like

11 / 16 Volume 15 (2008)

Scenario observations for Model Validation

SendValuePost4 may be the result of such reasoning. To overcome this issue, we changed the
SendValuePost4 as below:

post SendValuePost4 :
pockets->select(currency.ISOCurrencyCode@pre = p_ISOCurrCode)

->asSequence()->first().Value@pre -
pockets->select(currency.ISOCurrencyCode = p_ISOCurrCode)

->asSequence()->first().Value = p_PaymentValue

This new version of SendValuePost subtracts the previous and current values of the pocket that
holds the currency in which the payment is made. In this version, there is no assumption about
any of the actions that the function under investigation must take prior to money transfer. As a
result of this, the failure in SendValuePost1 does not necessarily mean a failure in SendValue-
Post4.
Conclusion: There are several conclusions we can reach by looking at this example. The first
one is the importance of demonstrating the independent effect of each pre/postcondition. This
is similar to that of Modified Condition/Decision Coverage (MC/DC), which is a structural cov-
erage criterion that requires that the effect of all conditions in a program are demonstrated and
that there is no condition that does not affect the outcome of a decision [MJ94]. Analogous to
this criterion, in our approach, we create scenarios - that would then form the abstract test cases
- based on the pre/postconditions and therefore, it is important to be able to see the independent
effect of each unit. By showing the independent effect, we not only avoid the possibility of an
assertion being masked by another assertion, but also let each assertion contribute to the final test
suite.
In addition to this, separation of concerns also makes root cause analysis easier when a fault is
detected. In other words, if an error occurs during the execution of a test case that is based on a
scenario created by using our approach, we can backtrack and reason about the error by looking
at the part of the program that deals with the postcondition under investigation.

2.3 General Scenario Formation-related observations

Scenarios form the core of our approach and therefore it is crucial to investigate carefully the way
they are written, how well they achieve the aim of contradicting an assertion, and the factors that
affect their execution. This section presents the issues encountered during the scenario creation
and execution.

Observation 6: Frame variables and treatments to frame variables

Aim: In most cases, the operations of a system do not have to read/write from/to all the at-
tributes of the model. The set of attributes that an operation is in contact with is called frame
variables [Kas06]. The Frame Variable Set (FVS) serves as a completeness check for the op-
eration in the sense that it includes all the variables that must appear in the definition of the
operation. The elements of FVS can be analysed under two categories: static elements (those
that are only read), dynamic elements (those that are modified by the operation). Correct deter-
mination of frame variables is essential in order to be able to systematically monitor the state
of the system after the execution of an operation, therefore in our observations we aim to find

Proc. OCL 2008 12 / 16

ECEASST

guidelines to reach a reasonably complete set of frame variables.
Context: By definition, if a variable is read/modified during the execution of an operation, it is
considered to be included in the FVS.
Issue encountered: During the course of scenario creation, we noticed that the above definition
alone is not sufficient to cover all the frame variables. There are various external factors such as
invariants, nested calls, etc. that require the use of other variables than those listed in the initial
form of FVS of an operation.
Observations: Following is a list of some of the cases that must be considered in the determi-
nation of FVS:

• If an operation calls another operation from within, either the elements of the FVS of the
called function is added to that of callee function, or the FVSs do not change. Note that,
in theory, a static element of callee function’s FVS should not be a dynamic element of the
called function’s FVS.

• As explained in Observation 4, the change of a variable value may cause an invariant
conflict. If the conflict is due to another variable that is not even considered in the scenario,
then we have two routes to follow. We either count these scenarios that conflict with
invariants as test cases, or frame variable set will be extended in order to cover the variables
required by the invariant and new scenarios that do not conflict with the invariants will be
created. So, the point to consider is whether to include the variables that are associated to
already existing frame variables through an invariant.

• Another issue that must be taken into account in FVS determination is the case of derived
attributes. OCL supports the definition of derived attributes that are prefixed with / in
UML and we explained briefly how we dealt with derived attributes in [APW07]. Cur-
rently, there is no automatic way of assigning the value of these attributes. In the context
of frame variables, this brings extra work since the operation may not directly use the de-
rived attribute, but if at least one of the dynamic variables included in its FVS set is the
variable that affects the value of the derived attribute, then the derived attribute should
also be modified accordingly. An example to this can be given by explaining the changes
in NumberOfUnusedExceptions. This derived attribute is calculated by subtracting the
exceptionlogs−> size() value from cMaxExceptionNo constant.

When an exception occurs, the system calls CreateExceptionLog() function. This function
creates an extra exception log if the current number of exceptions does not exceed a cer-
tain value. Since the value of CMaxExceptionNo is constant, but the size of exception logs
changes during the course of this operation, we have to include NumberOfUnusedExceptions in
the FVS and change the value of the attribute accordingly. This allows us to use it as a
counter in other functions.

Conclusion: The list presented above is not a complete list by any means, but we believe it
demonstrates the need for the extension of FVS through different channels and if this concept is
to be integrated into OCL tools, it is necessary that the aforementioned issues are considered.

13 / 16 Volume 15 (2008)

Scenario observations for Model Validation

Observation 7: Running sequences of scenarios

Aim: It is important to find the patterns that would help us automate our technique and/or
integrate it with other techniques. In the context of scenario creation, automation is not only
important in forming scenarios, but also in executing them one after the other.
Context: When the instance of the system model is exercised by a scenario, the scenario brings
the system into a certain state. This new state may be the same as the old one if the scenario does
not perform any changes on any of the existing objects and does not create/delete any objects. In
this case, a second scenario can be run straight after the first one, since the system is in its initial,
stable state. Clearly, each scenario assumes that the system is in a state that accepts the further
requests to be made by itself. This assumption comes from Step 1 in Table 2.
Issue encountered: If the first scenario makes modifications on the initial instance of the model,
then the assumptions made by the second scenario may not hold. Thus, the question that arise
in the context of scenario execution is that how the process of running several scenarios one
after the other can be achieved especially in the presence of those that modify the system. The
following are two solutions to this problem:

• System reset: After each scenario, the system can be reset to its initial state by performing
Step1 on Table 2.

• Neutralisation: Actions that erase the effects of the last scenario can be carried out.

Observations: During the execution of our scenarios, we used both of the above techniques.
Neutralisation requires undoing the actions taken by the scenario under investigation. For in-
stance, if the scenario creates an object, the object and all its links to other objects must be
deleted during the neutralisation process. This may seem straightforward, but it enforces to anal-
yse all sorts of different actions and executing commands that ultimately has the opposite effect
of these actions. This is a rigorous process especially if the scenario has nested calls and object
deletions.
In order to apply the Neutralisation technique, we need to undo the actions in the reverse order.
Adjusting the value in default pocket by addition, deleting the payment log that holds the details
for a transaction, changing the default pocket to its previous form, creating the previously ex-
isting exception logs are some of the actions carried out in order to neutralise the effect of the
scenarios. This list only gives a rough idea about the actions that needs to be done before execut-
ing the next scenario. When we examine further, we realised that the elaboration of neutralisation
process requires thorough analysis of program semantics and the process itself includes: storage
of the previous values (in order to restore them later); implementation of reverse functions, i.e.,
functions that have the opposite effect of existing functions.

On the other hand, system reset only requires the re-compilation of the model and the execu-
tion of the first line in the scenario -read basemodel.cmd-.
Conclusion: Neutralisation and system reset are two solutions to the problem of running scenar-
ios one after another. System reset may mean the initialisation of the whole model and depending
on the technology used and the system environment, this may require extra memory space and
adjustment of certain environment variables. However, during this research, system reset option
has been used extensively in order to save time.

Proc. OCL 2008 14 / 16

ECEASST

3 Future Work and Conclusion

In this paper, the observations made during the creation and execution of scenarios for valida-
tion of assertions have been outlined. The importance of independent scenarios, the effect of
overlapping postconditions, the importance of the frame variable set and the ability to carry out
successive executions of scenarios are some examples of observations that are not only appli-
cable in the context of the USE tool, but are also relevant for other tools that support scenario
creation and execution. We believe that these observations explain how scenarios can be defined
in a structured manner and what sort of obstacles can be experienced, thus leading us to a better
model, and helping to form the basis for test case generation through model artifacts.

The lessons learned during this study lead the work that compares several state-based mod-
elling tools and concretises the tasks performed during modelling and model validation [AUW08].
The outcome of this study also shows that the tasks carried out during these stages of Model-
based testing may vary from one tool to another, however, the main concerns about scenarios
(validity, generality, multi-platform applicability) that form the base of test cases are similar, if
not the same. By using the comparison results and the lessons learned during this study, we now
focus on on automatic generation, and concretisation of abstract test cases.

Bibliography

[APW07] E. Aydal, R. Paige, J. Woodcock. Evaluation of OCL for Large-Scale Modelling: a
Different View of the Mondex Smart Card Application. Ocl4All: Modelling Systems
with OCL, Workshop at MODELS’07,Nashville, USA, 2007.

[AUW08] E. Aydal, M. Utting, J. Woodcock. A Comparison of State-based Modeling Tools for
Model Validation. TOOLS-Europe’08, Switzerland, 2008.

[BGL+07] F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, N. Vacelet, M.Utting. A sub-
set of precise UML for Model-based Testing. Proceedings of the 3rd international
workshop on Advances in model-based testing, ISBN:978-1-59593-850-3, 2007.

[BL05] E. Bernard, B. Legeard. Requirements traceability in automated test generation: ap-
plication to smart card software validation process. A-MOST, 2005.

[Cla97] R. Clarke. The Mondex value-card scheme: a mid-term report. Chip-Based Payment
Schemes: Stored-Value Cards and Beyond, 1997.

[GBR03] M. Gogolla, J. Bohling, M. Richters. Validation of UML and OCL Models by Auto-
matic Snapshot Generation. Proc. UML 2003, Springer, LNCS 2863, 2003.

[GBR06] M. Gogolla, M. Buettner, M. Richters. USE: UML Specification Environment for
Validating UML and OCL. Science of Computer Programming, 2006.

[JW07] R. B. J. Woodcock. The Verification Grand Challenge. CSIC, 2007.

[Kas06] I. Kassios. Dynamic Frames: Support for Framing,Dependencies and Sharing with-
out Restrictions. Proc. FM 2006, Springer, LNCS, 2006.

15 / 16 Volume 15 (2008)

Scenario observations for Model Validation

[Lim99] M. I. Limited. Introduction to Mondex Purse Operation, Tech. report. Mondex Inter-
national Limited, 1999.

[MJ94] S. Miller, J.J.Chilenski. Applicability of modified condition/decision coverage to
software testing. Software Engineering Journal, 1994.

[SCW00] S. Stepney, D. Cooper, J. Woodcock. An Electronic Purse: Specification, Refinement
and Proof. Oxford University Computing Laboratory, Tech Report, 2000.

[ZG03] P. Ziemann, M. Gogolla. Validating OCL Specifications with the USE Tool: An
Example Based on the BART Case Study. Volume 80, Elsevier Science, 2003.
http://www.elsevier.nl/locate/entcs/volume80.html

Proc. OCL 2008 16 / 16

http://www.elsevier.nl/locate/entcs/volume80.html

	Introduction
	Mondex Smart Card Application
	Test Scenarios in UML Specification Environment (USE)
	Validation of Assertions and Generation of Abstract Test Cases
	Contribution

	Observations on Scenario Creation in the context of MBT
	Tool-related observations
	Assertion-related observations
	General Scenario Formation-related observations

	Future Work and Conclusion

