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Abstract: Petri net transformations have been defined formally in the abstract
framework of adhesive HLR categories, which allows rule-based rewriting of graph-
like structures, similar to graph transformation. In this paper we discuss differences
between Petri net rewriting and graph rewriting which makes it necessary to add
checks and conditions when implementing Petri net transformations using an exist-
ing graph transformation tool like AGG. The extensions concern the preservation
of Petri net transition firing behavior and the mapping of markings. As a running
example, we present the RON environment, a visual editor, simulator and net trans-
formation tool for reconfigurable Petri nets which has been developed as a plug-in
for ECLIPSE based on the graph transformation engine AGG.
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configurable Petri nets, Petri net tool

1 Introduction

Modeling the adaption of a system to a changing environment becomes more and more impor-
tant. Application areas cover e.g. computer-supported cooperative work, multi agent systems,
dynamic process mining or mobile networks. One approach to combine formal modeling of dy-
namic systems and controlled model adaption are Reconfigurable Petri nets [HEP07, EHP+07].
The main idea is the stepwise reconfiguration of place/transition nets by given net transformation
rules [EHP+08, EHP06]. Think of these rules as replacement systems where the left-hand side is
replaced by the right-hand side while preserving a context. This approach increases the expres-
siveness of Petri nets and allows in addition to the well known token game a formal description
of structural changes.

Since Petri nets can be considered as bipartite graphs the concept of graph transformations
[EEPT06] can be applied in principle to define also transformations of Petri nets [EP04]. Un-
fortunately, there are some differences between graph morphisms and our notion of Petri net
morphisms which lead to different transformation behaviors. The aim of this paper is to iden-
tify the differences in both approaches and to offer solutions that allow a simulation of Petri net
transformations by graph transformation. Note that other graph transformation-based simulation
tools also deal with structural transformations of Petri nets (e.g. [LVA04]), but they do not guar-
antee the preservation of firing behavior in Petri net transformations. Similarly, in the approach
of Llorens and Oliver [LO04], rewriting of Petri nets by graph transformation rules is used for
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the reconfiguration of nets, but does not preserve the firing behavior. Instead, reconfiguration
focuses on the modification of the flow relation, i.e. only arcs are added / deleted or reconnected.

Our paper is structured as follows: In Section 2 we review the formal definitions of graph
and net morphisms, as well as of graph and net transformations. Section 3 outlines the main
differences between both transformation formalisms, dealing in particular with markings and
the preservation of transition-firing behavior. We present solutions that allow a simulation of
Petri net transformations by graph transformation. Finally, in Section 4, we sketch a prototypical
implementation of a visual Petri net simulation and transformation tool, which converts Petri
nets and net transformation rules to graphs and graph transformation rules and uses the graph
transformation engine AGG [AGG] to compute net transformations.

2 Graph and Petri Net Transformation

2.1 Graph Transformation

The research area of graph transformation [EEPT06, Roz97] dates back to the early seventies.
Methods, techniques, and results from the area of graph transformation have already been studied
and applied in many fields of computer science such as formal language theory, pattern recog-
nition and generation, software engineering, concurrent and distributed system modeling, model
transformation, and visual language design.

For our aim to represent Petri net transformations by graph transformation we need typed,
attributed graphs and graph morphisms which are especially suited for visual language modeling:
a visual language (VL) is modeled by an attributed type graph capturing the definition of the
underlying visual alphabet, i.e. the symbols and relations which are available. Sentences or
diagrams of the VL are given by attributed graphs typed over (i.e. conforming to) the type graph.
Such a VL type graph corresponds closely to a meta model.

The following definitions are taken from [EEPT06]. The key idea is to model an attributed
graph with node and edge attribution, where the underlying graph G is a new kind of graph, called
an E-graph, which allows attribution edges not only from graph nodes to attribute nodes but also
from graph edges to attribute nodes. This new kind of attributed graph, combined with the
concept of typing, leads to a category AGraphsATG of attributed graphs typed over an attributed
type graph AT G. This category proved to be an adequate formal model not only for various
applications in software engineering and visual languages but also for the internal representation
of attributed graphs in our graph transformation tool AGG [TER99, AGG].

Definition 1 (E-graph and E-graph morphism) An E-graph G with G = (VG,VD,EG,ENA,EEA,
(source j, target j) j∈{G,NA,EA}) consists of the sets
VG and VD, called the graph and data nodes (or vertices), respectively;
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EG, ENA, and EEA called the graph edges, node at-
tribute edges, and edge attribute edges;
srcG : EG→VG, tarG : EG→VG, source and target
functions for graph edges;
srcNA : ENA → VG, tarNA : ENA → VD, source and
target functions for node attribute edges;
srcEA : EEA → EG, tarEA : EEA → VD, source and
target functions for edge attribute edges.
Consider the E-graphs G1 and G2 with Gk = (V k

G,V k
D,Ek

G,Ek
NA,Ek

EA,(sourcek
j, targetk

j ) j∈{G,NA,EA})
for k = 1,2. An E-graph morphism f : G1 → G2 is a tuple ( fVG , fVD , fEG , fENA , fEEA) with fVi :
V 1

i → V 2
i and fE j : E1

j → E2
j for i ∈ {G,D}, j ∈ {G,NA,EA} such that f commutes with all

source and target functions, for example fVG ◦ source1
G = source2

G ◦ fEG .

An attributed graph is an E-graph combined with an algebra over a data signature DSIG. In
the signature, we distinguish a set of attribute value sorts. The corresponding carrier sets in the
algebra can be used for the attribution.

Definition 2 (Attributed graph and attributed graph morphism) Let DSIG = (SD,OPD) be a
data signature with attribute value sorts S′D ⊆ SD. An attributed graph AG = (G,D) consists of

an E-graph G together with a DSIG-algebra D such that
�
∪s∈S′D Ds = VD.

For two attributed graphs AG1 = (G1,D1) and AG2 = (G2,D2), an
attributed graph morphism f : AG1→ AG2 is a pair f = ( fG, fD)
with an E-graph morphism fG : G1 → G2 and an algebra homo-
morphism fD : D1 → D2 such that (1) commutes for all s ∈ S′D,
where the vertical arrows are inclusions:

For the typing of attributed graphs, we use a distinguished graph attributed over the final
DSIG-algebra Z (see [EEPT06]). This graph defines the set of all possible types.

Definition 3 (Typed attributed graph and typed attributed graph morphism) Given a data sig-
nature DSIG, an attributed type graph is an attributed graph AT G = (T G,Z), where Z is the final
DSIG-algebra.
A typed attributed graph (AG, t) over AT G consists of an at-
tributed graph AG together with an attributed graph morphism
t : AG→ AT G.
A typed attributed graph morphism f : (AG1, t1)→ (AG2, t2) is an
attributed graph morphism f : AG1→ AG2 such that t2 ◦ f = t1:

As an example for typed, attributed graphs we refer to Def. 11 in Section 3.
The main idea of graph transformation is the rule-based modification of graphs where each

application of a graph transformation rule leads to a graph transformation step. The core of
a graph transformation rule p = (L l← K r→ R) is a pair of graphs (L,R), called left-hand side
(LHS) and right-hand side (RHS), an interface K = L∩R and an two injective graph morphisms
L l← K and K r→ R embedding the interface in the left- and right-hand sides. Applying the rule
p means to find a match of L in the source graph G and to replace this matched part by R, thus
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transforming the source graph into the target graph of the graph transformation.
Intuitively, the application of rule p = (L l← K r→ R) to graph G via a match m from L to G

deletes the image m(L) from G and replaces it by a copy of the right-hand side m∗(R). Note that
a rule may only be applied if the so-called gluing condition is satisfied, i.e. the deletion step must
not leave dangling edges, and for two objects which are identified by the match, the rule must
not preserve one of them and delete the other one.

Definition 4 (Typed attributed graph rule) Given an attributed type graph AT G with a data sig-
nature DSIG, a typed attributed graph rule, or “rule” for short, p = (L l←K r→R) consists of typed
attributed graphs L, K, and R with a common DSIG-algebra TDSIG(X), the DSIG-termalgebra
with variables X , and injective typed attributed graph morphisms l : K→ L, r : K→ R, where the
DSIG-part of l and r is the identity on TDSIG(X).

For the definition of graph transformations we need pushouts in the category AGraphsATG,
the existence of which is shown in [EEPT06].

Definition 5 (Typed attributed graph transformation) Given a rule p = (L l← K r→ R) as de-
fined above and a typed attributed graph G with a typed attributed graph morphism m : L→ G,
called match, a direct typed attributed graph transformation, or “direct graph transformation” for
short, G

p,m
=⇒ H from G to a typed attributed graph H is given by the following double pushout

(DPO) diagram in the category AGraphsATG, where (1) and (2) are pushouts. Informally, a
pushout in a category CAT is a gluing construction of two objects over a specific interface.
The rule r may be extended by a set of negative application
conditions (NACs) [HHT96, EEPT06]. A match L m−→ G
satisfies a NAC with the injective NAC morphism n : L→
NAC, if there is no injective graph morphism NAC

q−→ G
with q◦n = m.

NAC

q |
DD

DD

!!DD
DD

L

m
��

noo

(1)

K

k
��

r //loo

(2)

R

m∗

��
G D //oo H

A sequence G0⇒ G1⇒ ...⇒ Gn of graph transformation steps is called graph transformation
and denoted as G0

∗⇒ Gn.

Note that for flexible rule application, variables for attributes can be used in rules, which
are instantiated by concrete values by the rule match. Moreover, Boolean attribute conditions
(expressions over attributes) may be combined with a rule to control rule application.

2.2 Petri Net Transformation

Reconfigurable place/transition systems are Petri nets with initial markings and a set of rules
which allow the modification of the net during runtime in order to adapt the net to new require-
ments of the environment. Thus, not only the successor marking can be computed but also the
structure can be changed by rule application to obtain a new P/T-system that is more appropriate
with respect to some requirements of the environment. Moreover these activities can be inter-
leaved [EHP+07]. For rule-based transformations of P/T-systems we use the framework of net
transformations from [EHP+08, EHP+07].
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Definition 6 (P/T net, P/T system) A P/T-net is given by PN = (P,T, pre, post) with sets of
places P and transitions T , and pre- and post domain functions pre, post : T → P⊕, where P⊕ is
the free commutative monoid over the set P of places with binary operation ⊕ (e.g. the monoid
notation M = 2p1⊕3p2 means that we have two tokens on place p1 and three tokens on p2).

A P/T-system is given by (PN,M) with marking M ∈ P⊕, Note that M can also be considered
as function M : P→N where only for a finite set P′ ⊆ P we have M(p)≥ 1 with p ∈ P′. We can
switch between these notations by defining ∑p∈P M(p) · p = M ∈ P⊕. Moreover, for M1,M2 ∈ P⊕

we have M1 ≤M2 if M1(p)≤M2(p) for all p ∈ P.
A transition t ∈ T is M-enabled for a marking M ∈ P⊕ if we have pre(t)≤M, and in this case

the successor marking M′ is given by M′ = M	 pre(t)⊕ post(t) and (PN,M) t−→ (PN,M′) is
called firing step. Note that the inverse 	 of ⊕ is only defined in M1	M2 if we have M2 ≤M1.

In order to define rules and transformations of P/T-systems we introduce P/T-morphisms which
preserve firing steps by Condition (1) below. Additionally they require that the initial marking at
corresponding places is increasing (Condition (2)) or even stronger (Condition (3)).

Definition 7 (P/T-morphisms) Given P/T-systems PNi =(PNi,Mi) with PNi =(Pi,Ti, prei, posti)
for i = 1,2, a P/T-morphism f : (PN1,M1)→ (PN2,M2) is given by f = ( fP, fT ) with functions
fP : P1→ P2 and fT : T1→ T2 satisfying

(1) f⊕P ◦ pre1 = pre2 ◦ fT and f⊕P ◦ post1 = post2 ◦ fT and
(2) M1(p)≤M2( fP(p)) for all p ∈ P1.

Note that the extension f⊕P : P⊕1 →P⊕2 of fP : P1→P2 is defined by
f⊕P (∑n

i=1 ki · pi) = ∑
n
i=1 ki · fP(pi). (1) means that f is compatible

with pre- and post domain (as shown in the diagram to the right),
and (2) that the initial marking of PN1 at place p is smaller or
equal to that of PN2 at fP(p).

Moreover the P/T-morphism f is called strict if fP and fT are injective and

(3) M1(p) = M2( fP(p)) for all p ∈ P1.

The category defined by P/T-systems and P/T-morphisms is denoted by PTSys where the com-
position of P/T-morphisms is defined componentwise for places and transitions.

Remark 1 For our morphisms we do not always have f⊕P (M1)≤M2. E.g. M1 = p1⊕ p2,M2 = p
and fP(p1) = fP(p2) = p implies f⊕P (M1) = 2p > p = M2, but M1(p1) = M1(p2) = 1 = M2(p).

We now define the gluing of P/T-systems via P/T-morphisms by pushouts in the category
PTSys. Given the left-hand side of a rule (K,MK) l−→ (L,ML) (see Def. 9) and a match m:
(L,ML)→ (PN1,M1), we have to construct a P/T-system (PN0,M0) such that (1) becomes a
pushout. In particular, we are interested in pushouts with l being a strict morphism and c being
a general morphism (due to the construction of the category PTNet as weak adhesive HLR cat-
egory [EHP+07]).
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This requires the following gluing condition, which has to be sat-
isfied in order to apply a rule at a given match. The characteri-
zation of specific points is a sufficient condition for the existence
and uniqueness of the pushout complement (PN0,M0), because it
allows checking for the applicability of a rule to a given match.

(K,MK) l //

c
��

(1)

(L,ML)

m
��

(PN0,M0) // (PN1,M1)

Definition 8 (Gluing condition for P/T-systems) Let (L,ML)
m→ (PN1,M1) be a P/T-morphism

and (K,MK) l→ (L,ML) a strict morphism. We define the gluing points GP, dangling points DP,
and identification points IP of L as in [EHP+07]:

GP = l(PK ∪TK)
DP = {p ∈ PL|∃t ∈ (T1 \mT (TL)) : mP(p) ∈ pre1(t)⊕ post1(t)}
IP = {p ∈ PL|∃p′ ∈ PL : p 6= p′∧mP(p) = mP(p′)}

∪{t ∈ TL|∃t ′ ∈ TL : t 6= t ′∧mT (t) = mT (t ′)}

A P/T-morphism (L,ML)
m→ (PN1,M1) and a strict morphism (K,MK) l→ (L,ML) satisfy the

gluing condition, if

1. all dangling and identification points are gluing points, i.e DP∪ IP⊆ GP, and

2. m is strict on places to be deleted (see [EHP+07]), i.e. ∀p∈PL\ l(PK) : ML(p) = M1(m(p)).

Note that only places are considered as dangling points because a transition can be matched
only if its complete environment is matched too (see Def. 7).

Next, we present rule-based transformations of P/T-systems following the DPO approach of
graph transformations, which is restrictive concerning the treatment of unmatched transitions at
places which should be deleted. Here, the gluing condition forbids the application of rules in
this case. Furthermore, items which are identified by a non-injective match are both deleted by
or preserved by rule applications.

Definition 9 (P/T-system rule) A rule p = ((L,ML)
l← (K,MK) r→ (R,MR)) of P/T-systems

consists of P/T-systems (L,ML), (K,MK), and (R,MR), and two strict P/T-morphisms (K,MK) l→
(L,ML) and (K,MK) r→ (R,MR) [EHP+07].

Definition 10 (P/T-system transformation) A rule p =((L,ML)
l← (K,MK) r→ (R,MR)) is called

applicable at the match (L,ML)
m→ (PN1,M1) if the gluing condition is satisfied for l and m. In

this case we obtain a P/T-system (PN0,M0) leading to a net transformation step
(PN1,M1)

p,m
=⇒ (PN2,M2) consisting of the

following pushout diagrams (1) and (2). The
P/T-morphism n : (R,MR)→ (PN2,M2) is called
comatch of the transformation step.

(L,ML)

m
��

(1)

(K,MK)loo r //

c
��

(2)

(R,MR)

n
��

(PN1,M1) (PN0,M0)l∗
oo

r∗
// (PN2,M2)
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3 Simulating Petri Net Transformations by Graph Transformation

For the simulation of Petri net transformations with graph transformations, we need a suitable
Petri net representation in the domain of graphs. Hence, we define a type graph for the VL of
Petri nets.

Definition 11 (Type graph for Petri nets) The attributed graph below shows the type graph
modelling the Petri net VL. We use the concrete syntax from AGG, i.e. attribute type names and
data types are written inside their node type nodes or below their arc type names.
A PlaceNode has two attributes, a name (a String),
and a token number (for simplicity we took the
Java datatype int instead of defining a more suitable
datatype nat). Arc edges are attributed by a weight
number, and Transition nodes also carry a name at-
tribute. All graphs typed over this type graph are
considered as graph representations of Petri nets.

On the basis of the Petri net type graph, we now define the obvious translation from Petri nets
and Petri systems to typed attributed graphs. This translation can be extended in a straightfor-
ward way to the translation of P/T-morphisms and rules. We then discuss the problems with
this translation leading to graph transformations which do not correspond to original Petri net
transformations. As a solution, we propose extensions of the rule translation by adding negative
application conditions and attribute conditions to the graph rules. We claim that these extensions
lead to an equivalence of Petri net transformations by Petri net rules on the one hand and the
transformations of graphs (the translated Petri nets) by graph rules (the extended translated Petri
net rules) on the other hand (see Section 5).

Definition 12 (Translating P/T systems to typed, attributed graphs) Let (N,M) be a P/T system
with P/T-net N = (P,T, pre, post) and marking M ∈ P⊕ according to Def. 6. Then, the PT2Graph
translation of (N,M) is an attributed graph AG = (G,D) with D being a DSIG-algebra over the
datatype signature DSIG with sorts String and Integer, and the obvious operations, and G being
an E-graph according to Def. 1 which is typed over the type graph for Petri nets (Def. 11). G is
defined as follows:

• VG = PlaceNode∪TransitionNode, with PlaceNode = P and TransitionNode = T .

• EG = ArcPT ∪ArcT P is constructed from the pre- and post-domain functions:

– ∀t ∈ T : ∀p ∈ pre(t) : ∃e ∈ ArcPT with sourceG(e) = p and targetG(e) = t and
∃eweight ∈ EEA with sourceEA(eweight) = e and targetEA(eweight) = pre(t)(p)
(an ArcPT edge is attributed by the weight of the corresponding arc)

– ∀t ∈ T : ∀p ∈ post(t) : ∃e ∈ ArcT P with sourceG(e) = t and targetG(e) = p and
∃eweight ∈ EEA with sourceEA(eweight) = e and targetEA(eweight) = post(t)(p)
(an ArcTP edge is attributed by the weight of the corresponding arc)

• ∀p ∈ PlaceNode : ∃etoken ∈ ENA with sourceNA(etoken) = p and targetNA(etoken) = M(p)
(a PlaceNode is attributed by the number of tokens on the corresponding place).
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Note that this translation is not a functor between the corresponding categories PTSys and
AGraphsATG, because Petri net morphisms allow to map a place marking to a different marking,
but the corresponding graph morphisms do not allow to map place nodes with different token at-
tributes. The extension of Def. 12 to translate P/T morphisms and rules to graph morphisms and
rules is straightforward only for the net components, since place mappings are translated to Pla-
ceNode mappings, and transition mappings to TransitionNode mappings. The typing of graphs
over the P/T type graph in Def. 11 ensures that net components are mapped according to the P/T
morphism parts fP and fT . If we restrict to injective P/T morphisms only, then we get ArcPT
mappings and ArcTP mappings with identical weight attributes, which corresponds to translated
pre and post-domains. We would run into a problem if we had non-injective morphisms since
P/T morphisms allow to merge arcs, provided that the sum of arc weights remains constant. This
problem is still open (see Section 5).

In this section we discuss and solve two other problems:

1. Given a translated rule, a match into the graph of a translated net might be found, where
the match morphism does not correspond to a firing-behaviour-preserving P/T morphism;

2. The token attribute of a PlaceNode must be mapped to an identical token attribute of
another PlaceNode, which does not correspond to more general mapping of markings in
P/T morphisms.

3.1 Problem 1: Preserving Firing Behavior of Petri Net Transitions

As described in Section 2, Petri net morphisms preserve the firing behavior of the Petri nets by
preserving the pre- and post domains of transitions. Graph morphisms are not restricted in this
way and graph morphisms could match a TransitionNode even if its pre- and post domain in the
transition’s image is different from that of the original transition’s pre- or post domain.

Figure 1: Translation to firing behavior preserving graph rules

To solve this problem, we extend the translation of rules. We create two additional negative
application conditions for each TransitionNode in an LHS of a graph rule (see Fig.1, where map-
pings are depicted by numbering of corresponding nodes): one NAC that forbids an additional
place (different to 1 and 2) in the pre-domain of the transition and a second NAC for the post-
domain, respectively. Obviously, a transition in the LHS of a rule now can be matched only if its
pre- and post-domain are preserved by the match.
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3.2 Problem 2: Mapping the Marking for Petri Systems

Another problem is the use of tokens on places. By modeling tokens as attributes of PlaceNodes,
we restrict the matching of PlaceNodes to other PlaceNodes with the same number of tokens.
But Petri net morphisms (see Def. 7) allow matching of places to places that contain the same
number of tokens or more.

Let us consider a different possibility to model tokens that would solve this mapping problem:
In contrast to their definition as PlaceNode attributes, tokens could alternatively be represented
as nodes typed over an additional Token node type. As shown in Fig. 2, this would result in valid
graph morphisms that allow matching a PlaceNode with less tokens to a PlaceNode that contains
more tokens. However, in graph rules that delete PlaceNodes it would now be required to specify

Figure 2: Marking modeled as nodes

the exact number of token nodes connected to the PlaceNode that will be deleted. Otherwise the
graph rule is either not applicable (because of the gluing condition of the DPO approach) or
unconnected token nodes would remain in the graph (in the case of the SPO approach).

For this reason, we keep our attribute representation of tokens but replace the fixed number
of tokens in a PlaceNode in the LHS by a variable. Additionally, we add an attribute condition
which ensures that a match is valid only if the number of tokens in the PlaceNode in the graph
is at least as large as required (see Fig.3). For example, for a PlaceNode with 3 tokens in the

Figure 3: Marking modeled as token variables and attribute conditions in rules

LHS, the attribute value is replaced by a variable x, and the attribute condition x≥ 3 is added to
the rule. Attribute conditions must be true for a given match for the rule to be applicable. In the
example, the PlaceNode from the LHS can be matched to any PlaceNode with 3 or more tokens
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which is exactly the expected behavior of the corresponding Petri net match morphism.1

4 Implementing Petri Net Transformations based on AGG

The main idea behind Reconfigurable Object Nets (RONs) is to support the visual specification of
controlled rule-based net transformations of place/transition nets (P/T nets) [BM08, BEHM07].
RONs are high-level nets with two types of tokens: object nets (place/transition nets) and net
transformation rules (a dedicated type of graph transformation rules).

4.1 RON Architecture

In a student project in summer 2007 a visual editor for RONs has been realized as a plug-in
for ECLIPSE using the ECLIPSE Modeling Framework (EMF) [EMF08] and Graphical Editor
Framework (GEF) [GEF06] plug-ins. (GEF) [GEF06] is based on ECLIPSE’s Standard Widget
Toolkit (SWT) and provides implementing a visual editor based on the Model-View-Controller
pattern. It supports many operations and features common to most graphical editors like zoom-
ing, various layouting of figures, support for drag and drop etc.

The RON environment [BEHM07] consists of four main components, i.e. the RON tree view
based on an EMF model for RONs, and the visual editors for object nets, for transformation rules
and for high-level nets. The visual net editor also supports the simulation of an edited object net
or high-level net. Fig. 4 shows the RON environment including all views and editors.

RON Tree View. View 1 in Fig. 4 shows the main editor component, a tree view for the
complete RON model from which the graphical views can be opened by double-click.

Figure 4: The RON Environment for Editing and Simulating Reconfigurable Object Nets

1 The same restricting effect could be achieved by x NACs in this rule, each forbidding a certain number of tokens
less than x on the place. We use attribute conditions for the sake of lucidity and because AGG allows to use them.
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Object Net Editor. Fig. 4, View 2 shows the kernel component, a place/transition net edi-
tor with the possibility of the simulation of transition firing. The object net ProdCons models
producer-consumer interaction.

Transformation Rule Editor. The editor for transformation rules 3 in Fig. 4 consists of three
panels, one for the left-hand side (LHS), one for the right-hand side (RHS), and one showing one
of the rule’s negative application conditions (NACs). With the mapping tool in the palette, you
can define mappings from LHS objects to RHS objects and from LHS objects to NAC objects.

High-Level Net Editor. High-Level Net Editor, shown in Fig. 4, View 4 allows the editing
of a high-level net, which controls object net behavior and rule applications to object nets. The
blue containers marked by an “O” for Object Nets are NET places, the green marked by an “R”
for Rules are RULE places. Enabled HL-transitions are colored, disabled ones are gray.

4.2 Defining ON Transformation Rules

The rule editor (Fig. 5) provides a palette with the objects to generate: places. transitions and
arcs. In order to define mappings, the palette entry Map has to be selected, clicking on places first
in LHS, then RHS or NAC. Mapped places are high-lighted in the same color. By right-clicking
with the mouse on a panel there are several copy services provided like copying the object net
from the LHS to the RHS or to the current NAC.

Figure 5: Defining Rules

4.3 Translating ON Transformation Rules to AGG: The RON2AGG Converter

In order to calculate possible rule matches or transformation results, the graph transformation
engine AGG is used. Therefore, the RON editor is extended by a RON2AGGconverter, which
converts object nets to graphs and net transformation rules to graph rules using the extensions of
simple translations discussed in Sections 3.1 and 3.2.

If there are more than one possible match a match-dialog is opened. A possible match is shown
and can be confirmed or, by pushing the next-button, the next possible match is shown. The
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function calculate completions lets AGG compute all matches for the selected rule. For example
in Fig. 6 a), there are two places in the object net (p1 and p2) with equal and more tokens than
the place in the LHS of the rule. Hence, AGG computes two matches: p1→ p1 and p1→ p2.

Figure 6: Match Dialogs: a) places with different markings and b) transitions with different pre-
and post-domains

To ensure the user-specified mapping being a valid Petri net morphism, each mapped transi-
tion’s pre- and post-domain is checked if it is preserved by the mapping. E.g., consider Fig. 6
b) showing the state after application of calculate completions. A match from t1 to t2 would be
invalid, because t1’s pre-domain could not be preserved. Hence, AGG offers only the currently
high-lighted match.

5 Conclusion

We have defined a formal translation of Petri nets and Petri net transformation rules to graphs and
graph transformation rules. The result graphs of the application of translated rules to translated
Petri nets can be interpreted as Petri nets. With this encoding, transformation of Petri nets can be
simulated in common graph transformation tools. We presented a prototype that simulates Petri
net transformation systems by first translating rules and Petri nets to AGG rules and graphs and
then invoking the AGG graph transformation engine.

As future work, we plan to cover also non-injective matches of Petri nets with arc weights.
Merging weighted arcs has further compatibility properties, which constrain the applicability of
rules. These restrictions would have to be reflected by corresponding translated graph rules.

Furthermore, a formal proof showing the correctness and completeness of our translation is
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desirable to know for sure that the behaviour defined by a graph transformation rule (the result
of the translation) and the behaviour of the original Petri net rule are equivalent.

This means, we have to show that the diagram to the right com-
mutes, i.e. that a translation of a P/T-system followed by an ap-
plication of a translated rule results in the same graph as first ap-
plying the Petri net rule and afterwards translating the resulting
net.

N1
trans ///o/o/o/o/o/o/o

pN ,mN

��

G1

pG,mG

��

trans ///o/o/o/o/o/o/o/o/o

N2 trans
///o/o/o/o/o/o/o G2

As an important benefit of our approach, we could use the graph transformation analysis fea-
tures offered by AGG (e.g. Critical Pair Analysis and dependence analysis for sets of rules) also
for Petri net transformations.
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