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Abstract: Modeling the computational platforms is necessary to analyze the exe-
cution characteristics of systems developed using a model-based approach. In this
paper, we introduce a novel platform modeling language: PML that is based on
(a) transformational concepts borrowed from graph transformation languages, and
(b) generative concepts from platform modeling, like ’kernel skeleton’. PML relies
on higher-level, compact constructs that represent a special case of model transfor-
mations, and which are then used to specify platform semantics. The paper also
illustrates how PML constructs can be compiled into lower-level constructs of more
traditional model transformational languages, such as GReAT.
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1 Introduction

During the implementation of component-based software systems, high-level system models
are mapped onto platform primitives, just like programs in high-level languages are compiled
into machine code instruction sequences. Platform is defined in the general sense as a collec-
tion/abstraction of hardware, software, or middleware primitives and services used to implement
the design. The notion of platform is flexible — even within a particular design one can define
multiple levels of “platform” abstractions.

For a software engineer, a platform could be an operating system (offering services/primitives
such as processes and shared memory), or the CPU with its machine instruction set. For an
Internet applications designer, the TCP/IP protocol or XMLRPC might be an useful platform
abstraction. For a component-based software system, a component framework, like real-time
CORBA can be chosen.

By designing for the right platform abstraction, designers take advantage of existing platform
implementations, reducing the required implementation effort. This definition of the platform
concept is discussed by Sangiovanni-Vincentelli and Grant in [SM01].

For design-time analysis, one constructs the analysis model of the system being designed.
The design-time analysis model captures the implementation’s behavior. Obviously, in platform-
based design, the properties of the platform implementation influence the system’s behavior, thus
platform properties have to be considered when formulating the analysis model. Analysis models
usually rely on formalisms allowing formal verification, such as timed automata [AD94].
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We assume that a design expressed in a domain-specific modeling language (DSML). Then
generating a platform-specific analysis model takes two steps:

1. DSML→Platform translation (the “compiler”)

2. Platform→Analysis model translation

The first step maps platform-independent design models into platform-level models. The sec-
ond step maps these latter models composed of platform-level primitives onto analysis model
structures. For example, this step might generate timed automata models for CPU-level instruc-
tions, so that the temporal behavior of the implementation on a particular CPU can be analyzed.
Note that the first stage is reusable if CPU-s with the same instruction sets are used, but the sec-
ond stage must be different if the timing properties of the same instruction are different across
CPU-s.

This paper introduces a language for explicit platform modeling. With this approach, analysis
models are generated at design time, based on the analytical models of different implementation
platforms and the design model of the application. Using explicit platform models, designers
can evaluate their system’s behavior over multiple platform implementation candidates before
committing themselves to one particular implementation.

The Platform Modeling Language described below assists in specifying these platform mod-
els; specifically the Platform→Analysis mapping.

In the following text, output model refers to the analysis model. DSM is the domain-specific
model (or design model), also known as the platform-independent model or PIM. PSM is the
platform-specific model, which is a refinement of the PIM with platform-specific implementation
details.

For example, the DSM can describe an image processing system in a high-level design lan-
guage. The PSM describes the system as implemented over a particular dataflow hardware. The
analysis model then captures the behavior of this PSM in a (timed or untimed) finite transition
system formalism (such as Timed Automata or SPIN [Hol97] model).

2 Previous work

The need for a language to capture explicit platform models was first outlined in [SK04], where
we argued for the automatic generation of analysis models in design-time. In the above paper,
we specified a DSML→Analysis mapping using the GME [LBM+01] modeling environment
and the GReAT [KASS03][GZS+05] graph transformation language.

In GME, one defines a modeling language via a metamodel specified using an UML-like for-
malism. Then, the modeling paradigm is established by configuring GME with this metamodel
to enable working with model instances. GReAT is a graph transformation tool in the GME
environment. When GReAT transformations are modeled, one imports the source and target
metamodels into the modeling tool to establish the pattern language. Rewriting rules are formu-
lated at the metamodel level. GReAT provides context propagation (i.e. subsequent rules can
refer to objects matched earlier). Additionally, GReAT offers sophisticated control structures for
rule sequencing, such as test/case, parallel execution, iteration and recursion.
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(a) The Kernel skeleton in UP-
PAAL

(b) Creating the Kernel skeleton in a GReAT rule

Figure 1: Creating an analysis model fragment in GReAT

In [SK04], both the DSM and analysis models were defined via their respective UML meta-
models. Then, GReAT was used to specify transformation rules at the metamodel level. This
way, the analysis model, describing the behavior of the system as implemented over a given
platform, was obtained from the DSM in one, rather complex, transformation step.

The above paper demonstrated implicit platform modeling: the analysis model of the platform
was embedded in the transformation specification. The demonstrated transformation was very
complex. Since it was specified as a DSML→Analysis mapping, it (implicitly) contained both
DSML→Platform and Platform→Analysis mappings. Furthermore, the general-purpose graph
transformation language used was a poor fit for some of the recurring transformation tasks, as
discussed below.

In the demonstrated example, the platform was a dataflow network. Each actor was mapped
onto a timed automaton in the analysis model. These automata were synchronized by an automa-
ton modeling the scheduler for the network: the Kernel automaton.

Building the analysis model for a platform actor consisted of two steps:

1. Creating a generic “skeleton” timed automaton with generic states and transitions, such as
start and idle. This “skeleton” was the same for all actors.

2. Extending this “skeleton” with details (states, transitions and conditions) specific to the
actor being mapped.

As Fig. 1 shows, the GReAT rule creating a simple FSM is rather complex and hard to read.
This is due to the fact that GReAT rules operate at the metamodel level. For example, creat-
ing a simple transition (connection) requires 7 objects in the GReAT rule: {source, destination,
connector object, parent object and 3 associations}. Furthermore, it is often the case that switch-
ing to a different (e.g. more detailed) analysis model requires changes to the “skeletons” only.
Since these are implicitly encoded in the transformation, the changes also require editing the
transformation itself.

As mentioned above, GReAT also supports different control structures for rule sequencing
that enable its use in many different graph transformation scenarios. The price one pays is the
complex (and often awkward) way bound objects (i.e. the context) are passed between rules.
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Sophisticated rule sequencing constructs are typically needed in DSML→Platform ”compiler”
transformations, as these tend to be complex (examples for such transformations can be found in
[TS06] and related publications). Platform→Analysis transformations are usually much simpler:
These transformations typically map each platform “component” (e.g. dataflow actor) onto a cor-
responding fragment of the analysis model. The basic structure of the platform-level model and
the analysis model is the same, thus a less generic transformation language suffices. Using a less
generic language for these transformations could result in simpler, more concise transformation
specifications.

The PML language, discussed in the following section, was designed with these considerations
in mind.

3 PML: the Platform Modeling Language

PML is a simple, declarative language to specify the Platform→Analysis model mapping out-
lined above. The language supports the building of analysis (target) models by inserting, cus-
tomizing and composing target model fragments (called “skeletons”) into the model being built.
These skeletons model platform-level structures. PML uses graph patterns to identify, locate
and insert these skeletons in the source and target models. Furthermore, PML includes a sim-
ple declarative graph transformation language for the composition and customization of these
skeletons (“mappings language”).

A PML model consists of 4 basic parts:

1. The UML metamodels for the source (platform) and target (analysis) models that estab-
lish a visual language for patterns over models. PML provides an import tool to include
GME metamodels into platform models. Additionally, PML models may contain optional
crosslinks definitions. Crosslinks are associations that link model elements across different
metamodels (i.e. source and target. They are used to simplify subsequent pattern matching
by ”marking” certain elements and to maintain state information about the transformation.

2. The construction of the output model starts with the instantiation of the Kernel model
(given as a partial analysis model). This model provides the basic structure of the output
model being built. During the construction of the analysis model, this skeleton is extended
by attaching PSM-specific elements or modifying attributes.

3. Next, components are identified in the source (PSM) model via pattern matching. A target
model skeleton is associated with each component in the output model, and instantiated
and then customized. The destination within the target model for the copy operation is
also designated by a pattern. Crosslinks are automatically generated to link the source
component with the corresponding target model structure copied.

4. Finally, the rules in the mappings language further customize and extend the analysis
model.

The following sections discuss the component concept and the mappings language.
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Figure 2: Visualization of the ComponentModel concept

3.1 Component Skeletons

The concept of a component is central to PML. Components are a related group of elements in
the source model, identifiable by a pattern. The pattern designates a single element to represent
the component. Components are mapped onto corresponding structures in the output model.
This concept is modeled through ComponentModels in PML. ComponentModels contain:

• A reference to an analysis model, containing the skeleton.

• A pattern to locate the component within the source model (IdentifyComponent)

• Definitions of one or more target model fragments, onto which the component is mapped
in the analysis model (ComponentParts).

The idea of a ComponentModel is visualized in Figure 2. In the figure, components are defined
as Node objects within a System. In the skeleton model, a FSM fragment is designated by the
ObjectPath identifier. This fragment is copied into the output model (as a Template object hier-
archy) within the Nta container (ComponentPart pattern). Here, the Instantiation code box can
be used to set the attributes of the newly instantiated elements.

3.1.1 Identifying Components

Components in the source (platform) model are identified by an IdentifyComponent pattern. This
pattern defines what a component is in terms of source metamodel elements. The pattern also
designates a representative element for the component (shaded in the visual language – Node
in the figure). The transformation creates associations between this representative element and
the corresponding analysis fragments. Thus, for each analysis fragment the originating source
component can be found at a later stage.

3.1.2 Component Parts

A single component might map to corresponding elements or structures at multiple locations in
the analysis model. For example, each dataflow actor has a timed automaton, and it also has
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corresponding constants or states in the automaton modeling the platform scheduler. In order to
facilitate this, ComponentModels may contain one or more ComponentParts. ComponentParts
define the following:

• The location of the fragment within the component skeleton model (ObjectPath attribute)

• The destination of the fragment in the analysis model being built.

The destination within the target model is defined by a pattern. The pattern is formulated over
target model elements, and designates a single element (shaded grey in the visual language).
During the mapping process, this element is created within the target model, and the skeleton is
copied into it. In Fig. 2, a Template is created for each Node and the contents of the skeleton
model (shown on the right) are copied into it. The ComponentPart pattern might also contain a
procedural code fragment (Instantiation box), that computes and sets the attributes of the inserted
fragments.

Using this approach, the “skeletons” forming the backbone of the analysis model can be com-
fortably edited and reviewed within the analysis paradigm.

3.2 Mappings

In addition to the skeleton instantiation language, PML also features a simple graph transforma-
tion language (Mappings). This language facilitates fine-grained customization of the analysis
model, after the skeleton instantiations have taken place.

The language uses rewriting rules based on graph patterns. The patterns are UML class
diagram-like graph patterns. Typing is implemented by the nodes being references to metamodel
elements.

A PML mapping identifies PSM patterns through filter patterns (the left-hand side, LHS), and
maps them onto analysis structures as specified by action patterns (the right-hand side, RHS).
Filter patterns can be annotated by C++ code snippets as boolean-valued guard functions over
the attribute values of pattern elements.

A filter pattern is satisfied if it matches a sub-graph of the input model and the optional guard
expression evaluates true. Filters are assumed to be side-effect free.

With the associated filter(s) satisfied, an action could get executed, creating the elements spec-
ified in the action pattern and setting attribute values as specified in optional SetAttribute C++
code fragments.

Filters and actions contain two kinds of pattern elements:

1. MetaClasses are metamodel element references to be matched (in filters) or created (in
actions).

2. MatchReferences refer to elements matched by previous filters, implementing context
propagation (more about filter hierarchy in the next section).

Pattern matching always starts from top-level model containers (in our case, RootFolders).
Matched objects can be propagated “downstream” to subsequent patterns, as explained in the
next section.
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Figure 3: Example PML Block hierarchy

3.3 PML block hierarchy

Mapping blocks can be organized into hierarchy to simplify filter patterns. Figure 3 illustrates
this (filters are named fi, actions a j and blocks bk):

The topmost filter f1 (in block b1) matches Systems. Sub-block b2’s filter f2 refers to the
System matched using a MatchReference object, and matches all Nodes within the system, along
with their associated Template objects. (SrcComponent → DstComponent associations were
created by component skeleton instantiations).

Inside b2, sub-block b3’s filter ( f3) matches the Template’s Declarations block and all Methods
within. f4 matches all such Methods with no Location associated by a zero-cardinality pattern,
marked in the Figure. Action a1 creates the Location and maps the Method’s BCET and WCET
values onto constant declarations within the Template.

Filter conditions in sub-blocks use MatchReferences (dashed frame), which refer to to ele-
ments matched by the immediate parent block’s filter. This enables breaking up filter patterns
into simpler ones. (Some – not all – MatchReferences are visualized by dashed arrows in Fig. 3).
A mapping block has one filter condition, and zero or more actions.

Note that the hierarchy does not imply scheduling for action execution, it is only to aid logical
organization. Action execution order is discussed in the following section.
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3.4 Mappings semantics

3.4.1 Global Filter Condition

For each action ai, a Global Filter Condition(GFCi) can be constructed by composing associated
filter conditions along the block hierarchy:

Definition 1 Global Filter Condition Let fi be the filter of the block containing ai. Let fi−1 be
the filter of the immediate parent block (i.e. one level up in the hierarchy). Comp( fi, fi−1) is a
filter obtained by joining fi and fi−1 together as follows:

1. the glue graph, Glue( fi, fi−1) is the set of elements of fi−1 referenced in fi (dotted frame
in the diagrams) along with the associations internal to the set. Start the composition with
the glue graph, c0 = Glue( fi, fi−1).

2. construct c1 = Attach(c0, fi \Glue( fi, fi−1)): add the rest of fi and attach the associations
between fi and the glue graph.

3. c2 = Attach(c1, fi−1 \Glue( fi, fi−1)): add the rest of fi−1 and attach the dangling associa-
tions between c2 and the rest of fi−1.

4. Comp( fi, fi−1) = c2.

Then, let us define the composition of filters along the block hierarchy as:

Comp( fi, fi−1, . . . , f0) = Comp(Comp(Comp( fi, fi−1), fi−2), . . .), f0)

and the global filter condition for action ai as

GFCi = Comp( fi, fi−1, . . . , f0)

where fi is the filter associated with action ai.
For example, GFC1 = Comp( f4, f3, f2, f1) = Comp(Comp(Comp( f4, f3), f2), f1) in Fig. 3 for

action a1.

3.5 Execution semantics for actions

The execution semantics for actions is shown in Algorithm 1:

Algorithm 1 Action execution semantics
while ∃i such that (GFCi) is true do

Execute actioni

end while

If there are multiple actions eligible for execution, one is selected non-deterministically. There
is no explicit ordering. Implicit ordering can be established by referring to elements to be created
by “previous” actions.
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Figure 4: High-level overview of the PML→GReAT transformation

4 Implementing PML over GReAT

GReAT is a general-purpose graph transformation language sharing key concepts with PML,
thus implementing PML over GReAT is a straightforward idea. The implementation is done
by mapping (translating) a PML specification into an equivalent GReAT transformation — by a
“compiler” transformation, specified also in GReAT.

Figure 4 provides a high-level overview: Each component in the figure is a model, and the
corresponding metamodel’s name is written above the model in a rectangle. The “compiler” takes
a PML model (referred as Mi in the following discussion) and a GReAT Platform→Analysis
transformation template. During compilation, this template is extended with rules generated
based on Mi.

Mi contains the UML-style metamodels (using an encoding suitable for PML) of the source
and target models (platform, analysis), and optional crosslinks. Most importantly, it also contains
the
Platform→Analysis mapping definition, with references to external analysis model fragments
(skeletons), which are used in Kernel and Component mappings.

The “compiler” GReAT transformation inputs Mi and a GReAT template. This template con-
tains the appropriate metamodels, and skeletal configuration and transformation specifications
(rule-blocks). The “compiler” works by extending these configuration and rule-block skeletons
to implement the mapping given in Mi.

This creates a GReAT transformation, which is the Platform→Analysis transformation at the
bottom of the Figure 4. The generated transformation inputs the platform-level model (PSM),
the analysis model skeletons, as specified in Mi, and creates the corresponding analysis model.
The resulting analysis model captures the behavior of the PSM as implemented over the platform
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modeled in Mi.
The PML→GReAT “compiler” transformation has the following major phases:

1. Mapping metamodels and crosslinks. Ultimately, the transformation maps PML patterns
onto GReAT patterns. Thus, the “compiler” first associates the PML and GReAT meta-
models, as both Mi and the GReAT template contain them, in different formats.

2. Extending the template transformation’s configuration such that the appropriate compo-
nent skeletons are read and input by the main transformation block, as specified in Mi.

3. The template rule block Components (on the right side of Fig. 4, within block “GReAT
Transformation”) is extended to implement the mapping of components captured in the
PML model.

4. The template rule block Mappings (block next to is Components) is extended to im-
plement the mappings defined in the PML model.

5 Evaluation

As a case study, we repeated the DSML→Analysis transformation discussed in [SK04]. For
DSML the SMOLES language was used, the DFK dataflow package was the implementation
platform, and the analysis model was given in UPPAAL (these languages are discussed in
[SK04]). This time, with the platform level explicitly present, two transformations were specified
(both in GReAT):

1. The SMOLES→DFK implementation mapping (DSML→Platform)

2. The DFK→UPPAAL analysis transformation (Platform→Analysis)

Then, the analysis mapping was also specified using PML. The following table gives a rough
complexity comparison of the DFK→UPPAAL mapping in PML and in GReAT. The columns
give the counts of GME modeling elements in the models containing the mapping specifications.
Both approaches model the “pattern to be matched” (the key concept) almost identically to each
other. Thus, the patterns take up approximately the same number of modeling elements. The rest
is the overhead required by the language.

Transformation Atoms Models Connections Total
Hand-optimized GReAT 162 43 936 1142 (100%)
PML 77 59 642 778 (68%)
PML compiled into GReAT 567 86 2760 3413 (299%)

As we can see, the PML model is more compact than even a hand-optimized GReAT solution.
The reason behind the larger number of atoms and connections in the GReAT transformation is
GReAT’s more complex context passing mechanism: where PML uses a simple MatchReference,
GReAT uses In and Out ports and a propagation connections. For this example, the number of
models (containers) is larger in the PML model. This is mainly due to the separation of LHS /
RHS patterns: in GReAT, they can be combined into a single rule.
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The last row shows the number of elements in the GReAT transformation generated by the
PML→GReAT compiler. This compiler is only a prototype, “proof-of-concept” implementation,
and it is far from optimal.

6 Related efforts

OMG’s QVT RFP [Gro03] and the proposals it solicited (esp. the ATL [BDJ+03] language) were
influential during the specification of PML. Due to practical considerations, we chose UML over
the MOF modeling favored by OMG. Due to its limited scope, PML – unlike ATL – includes no
imperative rules, thus it is not a hybrid approach. This makes formal arguments on transforma-
tion properties easier.

The idea of using UML model transformations in order to obtain analysis models is demon-
strated by the VIATRA [CHM+02] approach. VIATRA does not have the concept of platform,
thus leveraging on existing DSML→Platform “compiler” implementations is more problematic.

With pattern-based languages, expressing the lack of structures is an important question. The
AGG [Tae03] approach (and VIATRA as well) uses negative application conditions (NACs).
PML uses zero-cardinality patterns (with certain limitations) which is a less powerful concept,
but so far it seems to be sufficient.

Similar efforts to our platform modeling research were recently published in the middleware
community ([SGSS05] and related publications). The authors compose timed automata fragment
to model middleware structures. These results are very important as they come from domain
experts. They provide generic “recipes” for the formulation and composition of the analysis
model fragment. Our research offers a systematic, comprehensive and automated framework.

7 Conclusions

The introduced language, PML keeps and leverages the most useful concepts of general-purpose
graph transformation languages (such as GReAT). Such concepts include the UML-inspired vi-
sual language and constructing the patterns over metamodel elements, enforcing correctness. At
the same time, PML is clean and simple. LHS and RHS are separated, the execution semantics
is straightforward, context passing is intuitive.

Using the skeleton concept, key output model elements can be edited in their native modeling
environments. This allows analysis experts to focus on the details of the analysis model, instead
of trying to map them into complex transformation rules, like the one in Fig. 1.

The output is generated as a GME model, conforming to the analysis language metamodel.
This model can be exported into various tool-specific concrete syntaxes, such as UPPAAL,
HyTech [HHW97] etc.

As the evaluation shows, using PML also results in simpler, more compact and easier to main-
tain models for the Platform→Analysis mapping than a general-purpose graph transformation
language. The PML→GReAT compiler is an important and interesting result, as it shows the
maturity of the GReAT language.
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