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Technische Universität Berlin

Abstract: This paper introduces negative application conditions for reconfigurable
algebraic high-level systems. These are algebraic high-level systems, i.e. algebraic
high-level nets with an initial marking, together with a set of rules for changing the
system dynamically. Negative application conditions are a control structure for re-
stricting the application of a rule if a certain structure is present. The use of negative
application conditions is motivated in a short example. Subsequently, the underly-
ing theory is sketched and the most significant results are presented. Finally, the
example is resumed and the main results and their usefulness within the example
are discussed.

Keywords: AHL net, AHL system, net transformation, control structure, negative
application condition

1 Introduction

As the adaptation of a system to a changing environment gets more and more important, Petri
systems that can be transformed during runtime have become a significant topic in recent years.
Their application area ranges over the description of adaptive workflows, the simulation of dy-
namic processes, multi-agent systems and mobile networks. The extension of these so called
reconfigurable P/T systems by data types to reconfigurable algebraic high-level (AHL) systems
provides the advantage that the underlying net structure is usually much smaller than the cor-
responding net without data types. Moreover, the approach of reconfigurable AHL systems in-
creases the expressiveness of AHL systems and allows a formal description of dynamic changes.

In this context, the double pushout approach, presented in [EEPT06], is used for transforming
AHL systems. This approach is based on pure categorical constructions and has a lot of instan-
tiations, for example graphs, hypergraphs, Petri nets, Petri systems but also non-visual instan-
tiations like algebraic specifications. In [Pra08], the theory of adhesive high-level replacement
(HLR) systems [EEPT06], which is the categorical framework of the double pushout approach,
have been instantiated to AHL nets and systems.

In most transformation systems, there exist basic conditions for the applicability of transfor-
mations. For example, a transformation should not be applied in some situations, although a
consistent match can be found. For conditions like this some kind of control structure for the
applicability of rules is required. Control structures are necessary if rules are applied automated
and also reasonable if the rules are applied manually for preventing human failures. Negative
application conditions (NACs), introduced in Chapter 7 in [EEPT06], are such a control struc-
ture for adhesive HLR systems. They restrict the application of a rule if a certain structure is
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present. Such a constraint influences each rule application and, therefore, the properties of the
replacement system are changed significantly.

For generalizing well-known and important results like Local Church-Rosser Theorem, Com-
pleteness Theorem of Critical Pairs, Concurrency Theorem, Embedding and Extension Theo-
rem and Local Confluence Theorem to the use of NACs, the notion of weak adhesive HLR
categories with NACs, basing on weak adhesive HLR categories [EEPT06], is introduced in
[Lam07, LEOP08].

By proving that AHL systems are a weak adhesive HLR category with NACs, we can transfer
all these results to reconfigurable AHL systems.

In [RPL+08], we introduced NACs for reconfigurable P/T systems and motivated their use
with the help of a short example. This paper represents the extension of the results to reconfig-
urable AHL systems with a changeable data type. Moreover, the airport example of [RPL+08]
is extended to AHL systems with some additional features.

This paper is organized as follows: First we introduce our example and discuss the need
of additional control structures for the application of rules in Section 2. Then we review the
formal notions of reconfigurable AHL systems in Section 3. Based on these notions we define
negative application conditions and present the main results concerning parallelism, concurrency
and confluence in Section 4. We discuss some of the general results with respect to the example
in Section 2. Concluding remarks concern future and related work.

2 Example: Airport

This section contains an example for a reconfigurable AHL system with NACs. We model an
airport control system (ACS) which is supposed to prevent accidents in the airport area. The
system has to ensure that certain safety properties of an airport are satisfied, for example that
some areas of the airport such as the actual runways and gates are secure, i.e. exclusively used
by one airplane at the time. The system can handle airplanes and gates of different sizes and
manage the coordination of the airplanes at the gates. Thereby, the condition that airplanes can
only use gates of exactly the same size has to be fulfilled.

ACS can adapt to various changes of the airport. Every transformation step of the AHL system
represents the rearrangement of the airport and every firing of a transition reflects a process at
the airport. In this small example, changes at runtime may only concern adding and removing of
gates of arbitrary sizes.

Figure 1 shows all required algebraic specifications. Specification SP-ACS0 forms the base
of ACS. The sort apSize stands for airplane size. Remaining sorts blackToken and airplane and
the operation getSize are self-explanatory. ASP-ACS0 is the algebra to this specification, where
N+ = N\{0} is the set of all positive integers. The carrier set of the sort airplane is a tuple of
two positive integers – the first number represents the ID of an airplane and the second one the
size.

In this example, the names of places are neglected and only labels and types are visualized,
i.e. l : t denotes a place p of the type t with a label l, which means λ (p) = l ∈ L and type(p) = t.

Figure 2 pictures the startsystem of ACS with one landing runway, one starting runway and
one gate of size 1. Firing transition approach represents the arrival of an airplane in the airspace
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SP-ACS0 =
sorts: airplane, apSize, blackToken
opns: • :→ blackToken, getSize : airplane→ apSize
vars: b1 : blackToken
eqns: b1 = •

ASP-ACS0 = ((N+×N+),N+,{•},•,(a,s)
getSize7−→ s)

SP-ACS1 = SP-ACS0 + opns: size1 :→ apSize

ASP-ACS1 = ASP-ACS0 with the additional constant size1ASP-ACS1
= 1

SP-ACS2 = SP-ACS1 + opns: size2 :→ apSize

ASP-ACS2 = ASP-ACS1 with the additional constant size2ASP-ACS2
= 2

SP-ACS = SP-ACS1 + sorts: nat, opns: getID : airplane→ nat

ASP-ACS = ASP-ACS1 with ASP-ACSnat = N+ and getIDASP-ACS(a,s) = a

Figure 1: Algebraic Specifications of ACS

of the airport (place Arrival). This transition is only enabled if there is a token of the size of the
airplane at the place Support. So, only airplanes of supported sizes may enter the airspace and use
the airport. The place AddRemSupport with the two adjacent transitions is only a help place for
adding and removing the support of airplane sizes by applying rules and should not be used in the
regular operation of the airport. For each arrived airplane, an airplane token is placed at Arrival
and a size token of the corresponding size is placed at Counter. This place represents a counter
for all airplanes at the airport and stores their sizes. Each runway and each gate consists of two
places – representing the runway (resp. the gate) itself and a complement place that ensures the
exclusive use. Additionally, every runway consists of two transitions landing and arrived, resp.
depart and takeoff. The transition landing of a landing runway is enabled if the runway is not
in current use and an arriving airplane is in the airspace of the airport. Firing of this transition
leads to a token representing an airplane on the runway. In the lower part of the AHL system,
the gate area is modeled. The tokens at place TowerGateArea represent the capacity of the gate
area. To simplify matters, this capacity is fixed in this example. The first and only gate of the
airport is represented by the places Gate and the complement place TowerGate of this gate. So
the exclusive use of the gate by only one airplane is guaranteed. The condition of the transition
enterGate ensures that only airplanes of size 1 can use this gate.

In the following, the transformation rules of ACS, depicted in Figure 3, are described. To
apply a rule to an AHL system a match from the left-hand side L of the corresponding rule to the
AHL system has to be found. Then the satisfication of the NACs has to be checked. A NAC is
satisfied if a morphism from the NAC to the AHL system via the match does not exist.

Rule 1 and 2 in the top of Figure 3 describe the adding and the removing of airplane sizes.
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Support:apSize

newSups
s

remSup

s
s
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approach

s
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LandingRunway:airplane

a
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●
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1

a
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Gate:airplane

a a leaveGate

●●
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aTowerGateArea:blackToken
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arrived a

a●

● StartingRunway:airplane

takeoff
TowerDeparture:blackToken

a
Departure:airplane

getSize(a)=s quitting
a

s

TowerGate:blackToken

1

AddRemSupport:apSize

SP-ACS,
ASP-ACS

Figure 2: ACS Startsystem

These rules have an empty net component and change only the specification of an airport net.
Adding a new size is modeled by adding a new constant of the sort apSize to the AHL system.
Its value is determined by the match. Note that arbitrary sizes can be added through different
matches. This is feasible although algebra homomorphisms are restricted to isomorphisms be-
cause the carrier sets are not changed. A negative application condition is required to prevent
the creation of multiple constants with the same value. The second constant of the sort apSize in
the right-hand side is required to prevent a mapping from sort apSize to sort nat and operation
getSize to getID. Removing the last constant of the sort apSize is restricted by the gluing condi-
tion since the last gate cannot be removed. This transformation can be revoked by applying rule
2, which is inverse to rule 1 without the negative application condition.

Adding a gate to the airport requires two rules (3a and 3b in Figure 3). The procedure for
the first gate of a size, which is expressed by rule 3a, requires the additional treatment that the
support of this size is added to the airport. After applying rule 3a, the transition newSup is fired
so that airplanes of the new supported size can use the airport. A negative application condition
is required to restrict this rule from being applied if a token of this size is at place Support, i.e.
at least one gate of this size exists. Note that this rule cannot be applied if there is a token at
the place AddRemSupport because of the gluing condition (see point 8. in Definition 8). This
is because this rule formally deletes the place AddRemSupport with the two adjacent transitions
and then re-adds this structure with a token at this place. In contrast, rule 3b can only be applied
if a token of the size of the gate to be added exists, i.e. the airport already has a gate of this size.
This rule simply adds the new gate.

To remove gates, the use of the inverse rules of the rules for adding gates is not sufficient
because of the additional condition that the last gate of the airport may not be removed. This
procedure is described by rules 4a and 4b in the bottom of Figure 3. Rule 4a expresses the
removal of a gate under the assumption that at least one gate of the same size exists and rule 4b
models the removal of the last gate of a size. Two negative application conditions are required
for rule 4b. The first one (NAC1) restricts the rule from being applied if there are still airplanes
of this size at the airport. The second NAC (NAC2) guarantees that this rule can only be applied
if the gate to be removed is the last gate of its size. Note that identifying the constants size1 =
1 and size2 = 2 by a match is not possible since this would need a non-isomorphic algebra
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Rule 1: addNewSize
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Figure 3: The Rules of ACS
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homomorphism.

3 Reconfigurable Algebraic High-Level Nets

In this section, reconfigurable AHL systems are formalized. We use the algebraic notation of
“Petri nets are Monoids” in [MM90], extended by a data type and a labeling function for places.
So, an AHL net is given by AN = (SP,P,T, pre, post,cond, type,A,λ ) with algebraic specifica-
tion SP = (S,OP,E,X) with additional variables X for the net, (S,OP,E)-algebra A, pre- and
post-domain functions pre, post : T → P⊕, firing conditions cond : T →P f in(Eqns(S,OP,X)),
typing of places type : P→ S and a labeling function λ : P→ L, where L is a fixed alphabet
for places and P⊕ is the free commutative monoid over the set P of places. An AHL system is
given by an AHL net with an initial marking (AN,M), where M ∈ CP⊕ with CP = (A⊗P) =
{(a, p)|a ∈ Atype(p), p ∈ P}.

In order to define rules and transformations of AHL systems, we introduce AHL morphisms
which are compatible with pre- and post-domains, fire conditions, typing of places and labeling.
Additionally, they require that the initial marking at corresponding places is equal or increasing.

Definition 1 (AHL Morphism) Given AHL systems ASi = (SPi,Pi,Ti, prei, posti,condi, typei,
Ai,λi,Mi) with SPi = (Si,OPi,Ei,Xi) for i = 1,2, an AHL morphism f : AS1→ AS2 is given by
f = ( fSP, fP, fT , fA), where ( fSP, fA) is a generalized algebra homomorphism with specification
morphism fSP = ( fS, fOP, fX) : SP1 → SP2 with a seperate injective mapping of the additional
variables fX = ( fXs)s∈S1 : X1→ X2 and algebra isomorphism fA = ( fAs)s∈S1 : A1→VfSP(A2) and
fP : P1→ P2 and fT : T1→ T2 are two functions mapping the places and the transitions such that

λ1 = λ2 ◦ fP (1)

∀(a, p) ∈ (A1⊗P1) : M1(a, p) ≤ M2( fA(a), fP(p)) (2)

and the following diagrams commute:

P f in(Eqns(S1,OP1,X1))

P f in( f #
SP× f #

SP)
��

(=)

T1
cond1oo

fT

��

pre1 //
post1

//

(=)

(TOP1(X1)⊗P1)⊕

( f #
SP⊗ fP)⊕

��

P1

fP

��

type1 //

(=)

S1

fS

��
P f in(Eqns(S2,OP2,X2)) T2cond2

oo
pre2 //
post2

// (TOP2(X2)⊗P2)⊕ P2 type2
// S2

Remark 1

1. f #
SP is the extension of specification morphism fSP to terms and equations which maps the

(specification) variables bijectively.
2. VfSP is the forgetful functor with respect to fSP.
3. P f in is the power set functor that maps a set to its power set.
4. fX injective implies Var(t)⊆Var( fT (t)) that ensures the preservation of firing.

Moreover, the AHL morphism f is called strict if and only if f is componentwise injective,
f #−1

SP (E2)⊆ E1 (strict injectivity) and ∀(a, p)∈ (A1⊗P1) : M1(a, p) = M2( fA(a), fP(p)) (marking
strictness).
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The category defined by AHL systems and AHL morphisms is denoted by AHLSystems
where the composition of AHL morphisms is defined componentwise. The class of all strict
AHL morphisms is denoted by M .

The gluing condition is a sufficient and necessary condition for the applicability of a rule
L l←K r→R at a given match m : L→G. The so called pushout complement, which is required for
the first step of a transformation, exists if and only if the gluing condition is satisfied. Therefore,
gluing points, identification points and dangling points are defined. In this context, points means
places, transitions, sorts, operations, terms or equations. Gluing points are all points of L that
have a preimage in K, identification points are all points of L that are not mapped injectively by
m and dangling points are all points in L with an image in G that is adjacent with a structure
without a preimage in L. The gluing condition is satisfied if all identification and dangling points
are also gluing points. The formal definition of the gluing condition for AHL systems can be
found in the appendix (Definition 8).

Next, we present rule-based transformations of AHL systems following the double-pushout
(DPO) approach of graph transformations in the sense of [Roz97, EEPT06].

Definition 2 (AHL System Rule) Given AHL systems ASi = (SPi,Pi,Ti, prei, posti,condi, typei,

Ai,λi,Mi) with SPi = (Si,OPi,Ei,Xi) for i ∈ {1,L,K,R}, then a rule rule = (ASL
l← ASK

r→ ASR)
consists of AHL systems ASL, ASK , and ASR, called left-hand side, interface, and right-hand side
of rule and two strict AHL morphisms l : ASK → ASL and r : ASK → ASR.

The rule rule is applicable at the match m : ASL → AS1 if and only if the gluing condition
(see Definition 8) is satisfied for l and m. In this case, we obtain AHL system AS0 leading to a

transformation step AS1
rule,m⇒ AS2 consisting of the following pushout diagrams (1) and (2). The

AHL morphism n : ASR→ AS2 is called comatch of the transformation step.

ASL

m
��

(1)

ASK
loo r //

c
��

(2)

ASR

n
��

AS1 AS0l∗
oo

r∗
// AS2

Now we are able to define reconfigurable AHL systems, which allow the modification of the
net structure using rules and transformations of AHL systems.

Definition 3 (Reconfigurable AHL System) Given an AHL system AS and a set of rules RULES,
a reconfigurable AHL system is defined by (AS,RULES).

In the example in Section 2, the reconfigurable AHL system consists of the AHL system
depicted in Figure 2 and the set of rules pictured in Figure 3. Note that the application of some of
these rules is restricted by NACs and we will present the notion of reconfigurable AHL systems
with NACs in Section 4.
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4 Negative Application Conditions

In this section, we first introduce the main technical result that AHLSystems is a weak adhesive
HLR category with NACs. This means, the category is a weak adhesive HLR category and
satisfies some additional properties such that negative application conditions can be used within
AHL system transformations without losing important qualities of adhesive HLR systems like
Local Church-Rosser Theorem, Parallelism Theorem, Completeness Theorem of Critical Pairs,
Concurrency Theorem, Embedding and Extension Theorem and Local Confluence Theorem. All
these theorems are introduced in [EEPT06] and their extension for the use of NACs is presented
in [LEOP08, Lam07].

In addition to morphism class M , presented in Section 3, two other morphism classes are
required. On the one hand there is morphism class Q connecting the NAC and the source net,
which is the class of all (componentwise) injective morphisms, and on the other hand there is a
class of morphism pairs E , which is mainly used for constructions and proofs. This morphism
class consists of jointly equation strict and minimal jointly surjective AHL morphisms. Minimal
means that the markings in the codomain are as small as possible and equation strict means that
the codomain contains exactly the translated equations of both domains, i.e. for f1 : AS1→ AS3,
f2 : AS2→ AS3 with ( f1, f2) ∈ E we have that (1.) f1, f2 are (componentwise) jointly surjective,
(2.) M3(a3, p3) = max({M1(a, p)|a ∈ f−1

1A
(a3)∧ p ∈ f−1

1P
(p3)} ∪ {M2(a, p)|a ∈ f−1

2A
(a3)∧ p ∈

f−1
2P

(p3)}) (are minimal) and (3.) E3 = f #
1SP

(E1)∪ f #
2SP

(E2) (are jointly equation strict).

Definition 4 (Morphism classes in AHLSystems) Given the category AHLSystems of AHL
systems and AHL morphisms, then the following morphism classes are defined:

M : strict AHL morphisms
Q : injective AHL morphisms
E : jointly equation strict and minimal jointly surjective AHL morphisms

Theorem 1 (AHLSystems is a Weak Adhesive HLR Category with NACs) The category
AHLSystems with the morphism classes M , Q and E as defined above is a weak adhesive
HLR category with NACs, i.e. a weak adhesive HLR category with the following additional
properties:

1. unique E -Q pair factorization,
2. unique epi-M factorization,
3. M -Q pushout-pullback decomposition property,
4. initial pushouts over Q-morphisms,
5. Q is closed under pushouts and pullbacks along M -morphisms,
6. induced pullback-pushout property for M and Q and
7. Q is closed under composition and decomposition

The proof that AHLSystems is a weak adhesive HLR category can be found in [Pra08] and a
description and the proof of the additional properties can be found in [Rei08]. Now we can state
negative application conditions for reconfigurable AHL systems.
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Definition 5 (Negative Application Condition) A negative application condition of a rule rule =
(L l← K r→ R) in the weak adhesive HLR category with NACs (C,M ,E ,Q) is of the form
NAC(n), where n : L→ N is a C-morphism.
A morphism m : L→G satisfies NAC(n), written m |= NAC(n), if there does not exist a morphism
q : N→ G ∈Q with q◦n = m.

Definition 6 (Rule with NACs) A rule in a weak adhesive HLR category with NACs (C,M ,
E ,Q) with a set of negative application conditions NACS is called rule with NACs.

Definition 7 (Applicability of a Rule with NACs) Given a rule rule = (L l← K r→ R) with a set
of negative application conditions NACS and a match m : L→ G such that rule without NACs is
applicable at m, then the rule rule with NACs is applicable if and only if m satisfies all NACs of
the set NACS.

For these new rules and their restricted application we obtain the same results as known for
net transformations in general. These results have been shown for NACs at the level of weak
adhesive HLR categories in [LEOP08, LEO06, Lam07]. Their instantiation to AHL systems
requires Theorem 1 above.

Results (For Reconfigurable AHL Systems with NACs)

1. Local Church-Rosser and Parallelism: Simplified, the Local-Church Rosser property
states that the order of two sequential transformations does not matter if they are sequen-
tially independent, i.e. one transformation does not create or delete some structure that the
other one requires. In this case, a parallel transformation that performs both transforma-
tions in one step exists.

In the airport example of Section 2, it makes no difference if a gate of size 1 or a new size
is added first to the startsystem. The adding of a gate of size 1 is obviously still possible
after adding a new size and the inverse direction also holds. Moreover, both transformation
steps can be combined to a parallel transformation, which adds both a new size and a gate
of size 1 to the airport.

2. Conflicts and Critical Pairs: A critical pair describes a conflict between two transfor-
mations in a minimal context. A conflict between two transformations means in particular
that either one transformation deletes some structure that is used by the other one or one
transformation produces a structure that is forbidden by the NAC of the other transforma-
tion. The critical pairs and their completeness are a significant concept because an infinite
number of transformations, which are in conflict, can be reduced to a finite number of
critical pairs (under the assumption that the set of rules is finite). Critical pairs are used to
show the (local) confluence of a transformation system, which is described later.

Consider in the airport example of Section 2 an airport system corresponding to the start-
system shown in Figure 2 with a second constant size2 = 2. The transformation that re-
moves the size size2 is in conflict with the transformation that adds a new gate of size2 to
the airport system. This pair of transformations causes a delete-use conflict (with respect
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to constant size2), which is expressed by the critical pair shown in Figure 4.

P1
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s
s

GateEArea:airplane

GateLArea:airplane
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SP-ACS1, ASP-ACS1
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remSup

s
s

GateEArea:airplane

GateLArea:airplane
AddRemSupport:apSize

SP-ACS2, ASP-ACS2

=⇒

P2

Support:apSize

newSups
s

remSup

s
s GateEArea:airplane

getSize(a)=size
2

a
enterGate

Gate:airplane

a a leaveGate

●●

a

GateLArea:airplane

TowerGate:blackToken

2
AddRemSupport:apSize

SP-ACS2, ASP-ACS2

Figure 4: Critical Pair for Rules remSize and addFirstGate

3. Concurrency: Through parallelism, the summary of several independent direct transfor-
mations into one equivalent direct transformation is possible. However, in general there are
dependencies between several direct transformations of a transformation sequence. In this
case, the Concurrency Theorem with NACs that allows to translate every transformation
sequence into an equivalent direct transformation by a concurrent rule with NACs can be
applied. The construction of such a concurrent rule with NACs is explained in [LEOP08].
A concurrent rule summarizes in one rule which parts of the net should be present, pre-
served, deleted and produced when applying the corresponding rule sequence to this net.
Moreover, we have a summarized set of NACs on the concurrent rule expressing which
net parts are forbidden when applying the corresponding rule sequence with NACs to the
net.

Consider in the airport example of Section 2 the airport system described in the last item
and the following transformation sequence. First, size2 is removed, then size2 is added
again and, finally, a gate of size2 is added. This sequence can be expressed by the con-
current rule depicted in Figure 5. Note that the interface object K of this rule contains the
specification SP-ACS1 and not SP-ACS2. This concurrent rule holds two NACs, which
originate by the translation of the NACs of the single rules [Lam07].

NAC1

Support:apSize

newSups
s

remSup

s
s

GateEArea:airplane

GateLArea:airplane
AddRemSupport:apSize

2

SP-ACS2, ASP-ACS2

NAC2

Support:apSize

newSups
s

remSup

s
s

GateEArea:airplane

GateLArea:airplane
AddRemSupport:apSize

SP-ACS2 +size2, ASP-ACS2+size2A=2

←−

L

Support:apSize

newSups
s

remSup

s
s

GateEArea:airplane

GateLArea:airplane
AddRemSupport:apSize

SP-ACS2, ASP-ACS2

=⇒

R

Support:apSize

newSups
s

remSup

s
s GateEArea:airplane

getSize(a)=size
2

a
enterGate

Gate:airplane

a a leaveGate

●●

a

GateLArea:airplane

TowerGate:blackToken

2
AddRemSupport:apSize

SP-ACS2, ASP-ACS2

Figure 5: Concurrent Rule with NACs

4. Embedding and Extension: Under several conditions, a transformation t : G0
∗⇒ Gn

can be extended to a transformation t ′ : G′0
∗⇒G′n via an extension morphism k0 : G0→G′0.

The transformation t ′ is based on the same rules as t. The Embedding Theorem with NACs
describes a condition for the existence of this so called embedding and the Extension The-
orem with NACs states that this condition is not only sufficient, but also necessary.
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For the embedding of a transformation, the extension morphism k0 has to be boundary
consistent [EEPT06], which means intuitively that places which are deleted by the trans-
formation t cannot be embedded into places connected with new transitions in the bigger
AHL system G′0, and NAC-consistent [LEO06], which means intuitively that the extended
match satisfies the NACs of the rule.

5. Local Confluence: Confluence describes the behaviour of a whole transformation sys-
tem. A pair of transformations of the same source object is called confluent if it is possible
to transform the two results of the single transformations into the same object. A trans-
formation system is called locally confluent if this property holds for every pair of trans-
formations. Confluence is the main property of interest for adhesive HLR systems (with
NACs). The reasons therefore are quite obvious. Every transformation system which pro-
vides multiple possibilities to transform the start object into a different object shows this
behaviour for at least one pair of transformations. In the small example of this paper, this
result is almost obvious since every transformation step is reversible, although, this result
is nontrivial in general, e.g. for transformation systems with non-reversible transformation
steps. A sufficient condition for the local confluence of an adhesive HLR system with
NACs is if every critical pair is strict NAC-confluent [Lam07]. Intuitively, this means that
a strict solution for every critical pair exists, i.e. both results of the critical pair can be
transformed into the same result and this solution preserves everything that is preserved
in common by the critical pair itself. Moreover, whenever the embedding of a critical pair
into some larger context is possible, the extension morphism should be NAC-consistent
with respect to the critical pair solution. This means in particular that all NACs occurring
in the solution of the critical pair are still satisfied by the embedding into the larger context.

Consider in the example of Section 2 the critical pair shown in Figure 4. The solution of
this critical pair is shown in Figure 5 for the left-hand side P1. This solution is strictly
confluent because the places Support, GateEArea and GateLArea are preserved both by
the critical pair and the solution. The satisfaction of the first NAC of the concurrent rule
of this solution (see Figure 5) is directly implied by the NAC of the critical pair (i.e. the
NAC of rule addFirstGate). The second NAC is always fulfilled in the case of ACS since
two constants with the same value cannot be created by applying rules to the startsystem.
Therefore, strict NAC-confluence [Lam07] holds with respect to the language generated
by grammar ACS, which is sufficient for a reconfigurable AHL system since a startsystem
is always included. This result means that every conflict, where this critical pair can be
embedded, can also be resolved. If every critical pair of a transformation system is strictly
NAC-confluent, then the whole system is locally confluent.

5 Conclusion

We conclude with a short discussion of related and future work:
Related Work: Reconfigurable nets base on arbitrary net transformations. This approach can
be restricted to distinguished transformations that preserve specific properties as safety or live-
ness (see [PU03]). A different approach for changing Petri nets is presented in [LO04, LO06a,
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LO06b], where rewriting of Petri nets in terms of graph grammars is used for the reconfiguration
of nets. These marked-controlled reconfigurable nets (MCRN) are extended by some control
technique that allows changes of the net for specific markings. The enabling of a rule is not only
dependent on the net topology, but also dependent on the marking of specific control places.
MCReNet [LO06a] is the corresponding tool for the modeling and verification of MCRNs.
Future Work: One ongoing research task is the extension of this paper’s results to open alge-
braic high-level systems, which are AHL systems with additional open places and communica-
tion transitions (see [Ull08]). Therefore, the same conditions have to be proven for the category
OAHLSystems of open AHL systems and open AHL morphisms. Another one are algebraic
higher order (AHO) nets (see [HEM05]), which allow the existence of dynamical tokens like
Petri systems and transformation rules. These nets are used for modeling workflows of mobile
ad-hoc networks. Up to now, neither NACs nor AHL systems can be used within AHO nets.
Therefore, the data type of AHO nets has to be upgraded, such that both AHL systems and
NACs are formalized in this data type.
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A Gluing Condition

In this section, we formalize the gluing condition for AHL systems. It is a sufficient and nec-
essary condition for the applicability of a rule via a match. The proof therefore can be found in
[Rei08].

Definition 8 (Gluing Condition for AHLSystems) Given AHL systems ASi = (SPi,Pi,Ti, prei,
posti,condi, typei,Ai,λi,Mi) with SPi = (Σi,Ei,Xi) and Σi = (Si,OPi) for i ∈ {1,L,K} and AHL
morphisms l : ASK → ASL ∈M and m : ASL → AS1, then the gluing points GP, the dangling
points DP and the identification points IP are defined by

GP(P) = lP(PK),
GP(T ) = lT (TK),
GP(S) = lS(SK),

GP(OP) = lOP(OPK),

IP(P) = { p ∈ PL|∃p′ ∈ PL : p 6= p′∧mP(p) = mP(p′)}
IP(T ) = { t ∈ TL|∃t ′ ∈ TL : t 6= t ′∧mT (t) = mT (t ′)}
IP(S) = { s ∈ SL|∃s′ ∈ SL : s 6= s′∧mS(s) = mS(s′)}

IP(OP) = { op ∈ OPL|∃op′ ∈ OPL : op 6= op′∧mOP(op) = mOP(op′)}

DP(P) = { p ∈ PL | ∃t ∈ T1\mT (TL) :

pre1(t) =
n

∑
i=1

λi(ri, pi) with λi 6= 0 and mP(p) = pi

for some i or

post1(t) =
n

∑
i=1

λi(ri, pi) with λi 6= 0 and mP(p) = pi

for some i}
DP(S) = { s ∈ SL | ∃op ∈ OP1\mOP(OPL) which contains mS(s) as one of

the sorts in its signature}
∪ { s ∈ SL | ∃p ∈ P1\mP(PL) : type1(p) = mS(s)}

DP(TOP) = { r ∈ TOPL(XL) | ∃t ∈ T1\mT (TL) :

pre1(t) =
n

∑
i=1

λi(ri, pi) with λi 6= 0 and m#
SP(r) = ri

for some i or

post1(t) =
n

∑
i=1

λi(ri, pi) with λi 6= 0 and m#
SP(r) = ri

for some i}
DP(EQNS) = { e ∈ EQNS(ΣL,XL)

| ∃t ∈ TL\mT (TL) : m#
SP(e) ∈ cond1(t)}

Note that the dangling points of the additional variables X are implicitly defined by DP(TOP)
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and DP(EQNS).
The match m satisfies the gluing condition with respect to p if and only if

1. IP(P)∪DP(P)⊆ GP(P)

2. IP(T )⊆ GP(T )

3. DP(S)∪ IP(S)⊆ GP(S)

4. IP(OP)⊆ GP(OP)

5. the set EC =(E1\m#(EL))∪m#
SP(l#

SP(EK)) is a set of equations over the signature (SC,OPC),
where SC = (S1\mS(SL))∪mS(lS(SK))

OPC = (OP1\mOP(OPL))∪mOP(lOP(OPK))

6. DP(TOP)⊆ l#
SP(TOPK (XK))

7. DP(EQNS)⊆ l#
SP(EQNS(ΣK ,XK))

8. m is marking strict on places to be deleted, i.e. ∀(a, p) ∈ (AL⊗ (PL\lP(PK))) : ML(a, p) =
M1(mA(a),mP(p))
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