
Electronic Communications of the EASST
Volume 17 (2009)

Workshops der
Wissenschaftlichen Konferenz

Kommunikation in Verteilten Systemen 2009
(WowKiVS 2009)

Management of Business Processes with the BPRules Language in
Service Oriented Computing

Diana Comes, Steffen Bleul and Michael Zapf

12 pages

Guest Editors: M. Wagner, D. Hogrefe, K. Geihs, K. David
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Management of Business Processes with the BPRules Language in
Service Oriented Computing

Diana Comes1, Steffen Bleul2 and Michael Zapf3

1 comes@vs.uni-kassel.de
2 bleul@vs.uni-kassel.de
3 zapf@vs.uni-kassel.de

Distributed Systems
Kassel University, Germany

Abstract: Quality of Service (QoS) concerns are an important topic for the realiza-
tion of business processes. While BPEL is considered the de facto standard for web
service compositions, QoS requirements are not part of its specification.

We present theBPRules(Business Process Rules) language for the management of
business processes with respect to QoS concerns. BPRules is a rule-based, declara-
tive language which brings novel benefits in the management of business processes,
like QoS dependability for sub-orchestrations and corrective actions tailored to the
specific needs of the clients. We present the main constructs of the BPRuleslan-
guage and how they support the flexible adaptation of the business process during
runtime. Decision making is done according to the behavior of several process ex-
ecutions. An illustrative scenario shows how BPRules is applied to a business pro-
cess.

Keywords: Business Process Management, quality of service, web service compo-
sition, orchestration, sub-orchestration, BPEL

1 Introduction

The constant growth of business processes across organizational boundaries inevitably leads to
the need for integrating services from business partners into business processes. By encapsulat-
ing applications into web services, platform-independent, distributed and heterogeneous appli-
cations may be integrated easily over the Internet. Web Services from different partners can be
composed into more complex workflows through web service compositions thatimplement the
business process.

Among those languages which support the definition of Web Service compositions, BPEL is
known as the de facto standard. The BPEL process has to fulfill certain functional and non-
functional criteria so that the expectations of its clients are satisfied. For business processes to
execute properly in real world scenarios, Quality of Service (QoS) is a major issue which needs
to be taken into consideration. However, BPEL does not contain any specification for dealing
with the QoS of business processes. In this paper we address non-functional requirements like
response time, capacity, throughput and availability.

The business process is made up of several building blocks, among whichservices from other

1 / 12 Volume 17 (2009)

mailto:comes@vs.uni-kassel.de
mailto:bleul@vs.uni-kassel.de
mailto:zapf@vs.uni-kassel.de

Management of Business Processes with the BPRules Language

business partners are triggered to achieve the desired business task. Thus, the global QoS of
the entire business process depends on the QoS of the building blocks, aswell as the binding of
services.

As it is often the case, the business process does not always behave as expected, since a lot
of unpredictable problems may occur, such as a service not being available or not responding
in the desired time interval, or a network failure. Therefore it is important to specify corrective
actions so that the business process will be appropriately managed to behave normally even in
unexpected situations. Still, within current research studies, QoS requirements and management
actions for the business process can be specified only on a broader level. Flexible and adaptable
service management is an important but open issue in service management.

Our proposed language addresses exactly these management shortcomings and provides a
solution to specify QoS requirements and corrections in a more refined and flexible manner.

The paper is structured as follows.Section 2describes our motivation for proposing the new
BPRules(Business Process Rules) language for the management of business processes. More-
over, the requirements for the BPRules language are stated.Section 3presents the related work,
by comparing the BPRules Language with similar research approaches.Section 4presents the
main constructs of the BPRules Language and provides several examplesfor their use.Section 5
describes how the prototype of the management system is build.

2 Motivation

We propose the BPRules language that allows to specify flexible managementcapabilities with
respect to QoS concerns over business processes. BPRules is an expressive language, providing
all the features that we identified as mandatory for business process management. According
to the assessment of the current quality of the business process, a specified set of management
actions may be selected and applied on the process. This assessment may, for instance, comprise
the number of services which have failed during the execution of the process. Depending on
the gravity of process malfunctions, rules with moderate impact on the business process are
exchanged by rules with stronger impact at runtime.

As the process behavior may change in time, getting better or worse, the corrective actions
need to be adjusted appropriately. Also, modifications that might occur, e.g.in the contract
terms, should be reflected in the rules. This requireschanging or updating rules dynamicallyat
runtime which is another novel aspect of process management.

Another important task isrelating QoS parametersand QoS constraintsbetween sub- orches-
trations, as a QoS parameter value from one sub-orchestration could be dependent on the value
that it takes in another sub-orchestration of the process.

In order to tailor the corrective actions to the specific requirements of the clients, we de-
fine a set ofinstances-subset functionsto select subsets of process instances to which the QoS
concerns should apply. For decision making we consider the behavior ofthe process in its sub-
orchestrations. BPRules supports the specification of dependencies between QoS constraints and
QoS parameters from several sub-orchestrations.

BPRules is a domain-specific language and intended to be used in conjunctionwith BPEL
processes.

Proc. WowKiVS 2009 2 / 12

ECEASST

The main design rationales for the BPRules syntax are simplicity, expressivity, reusability, and
separation of concerns.Rulesstate under which circumstances certain corrective actions must
be triggered on the business process. They are defined in XML and the syntax of a BPRules
document may be validated by the BPRules XSD schema.

BPRules allows to reference parts within the same document usingid attributes and external
documents using URI references, emphasizing the reusability aspects of the language. Separa-
tion of concerns is achieved in BPRules by defining the rules separately from the business logic
specified in BPEL. BPRules does not change or amend BPEL process descriptions.

In BPRules,process sectionsare sub-orchestrations that are defined as single blocks (like
a while statement together with its activity block) or as a sequence of activities, starting and
ending at two specified activities. In the following text, we will use the terms section and sub-
orchestration synonymously.

To demonstrate the requirements for a new management language we illustrate abusiness
process for renovating a house. We define two sections for the process. In the first section,
section1of the process, two services are bound, one for the retrieval of materials and another one
for having them installed into the house. Insection2, services are invoked for painting the house
and buying furniture. The two sections are triggered sequentially. For theprocess we specify
two rules, which we group in a rule set. The following two rules (shown in an informal way)
illustrate some aspects of the expressiveness of the language that we envisage.

Rule set 1-2

rule 1: if FORALL runningprocess instances theresponsetimein section1
is greater then 1/3 of thetotal responsetimeof the process
then replace allservices from section1.

rule 2: if minimum 50%of the instances arefailed
then activatethered ruleset

It should be possible to specify corrective actions according to the behavior of an arbitrary set
of process instances, thus, this set of instances must be dynamically adjustable. Therefore we
define a set of functions, e.g FORALL, EXISTS, MIN, that can be usedto specify to how many
instances the requirements apply to. For example, it is not the same, if 2 instances failed or over
50% percent of the instances failed. In the latter case, corrective actions withstronger impact on
the process (e.g. the red rule set) should be applied. The set of instances may be also created
by filtering the set of instances according to certain properties like state (e.g. CANCELLED or
RUNNING, see rule 1). It must be possible to trigger changes in the process and instances states.

Another important matter is relating QoS dimensions between sub-orchestrations, as it is the
case in rule 1. Rule 1 defines a proportion between the value of a QoS dimension (e.g. response-
time) of one section and the value of the QoS dimension of the entire process. Note that this is
not limited to proportions; any kind of mathematical functions defined between QoS dimensions
of sub-orchestrations is conceivable.

Another type of dependabilities are between QoS constraints for sub-orchestrations, which
should be linked through logic operators. Therefore an example would be”the throughputin

3 / 12 Volume 17 (2009)

Management of Business Processes with the BPRules Language

section1is less than 1000 and thethroughputin section2is less than thethroughputin section1”.
As all these features are beyond the capabilities of currently available languages, we propose

the new BPRules language.

3 Related work

TheQuality of Service Language for Business Processes(QoSL4BP) [BRL07] is a policy-based
language addressing QoS requirements for business processes. Thelanguage offers a series of
constructs for taking actions like detecting the violation of a SLA or violation of the QoS of a
scope, selecting and renegotiating a concrete service, or replanning. Their approach is similar
to ours in that it considers QoS requirements for sub-orchestrations. Incontrast, our BPRules
language is based on rules and rule sets that can be changed at runtime. We address other impor-
tant issues like relating QoS parameters of different sections and considering the dimension of a
subset of process executions, which are not possible with QoSL4BP. In addition, our language
is XML-based and we can parameterize expressions for different sub-orchestrations, offering
reusability of the QoS constraints. The languages also differ in the provided corrective actions.

[BGP06] present an approach for monitoring WS-BPEL processes, with a focus on security
constraints. They describe theWeb Service Constraint Languagewhich is based on policies
and is compliant with the WS-Policy framework. Policies are attached in WS-CoLonly on
service invocation activities, while our approach allows for defining ruleson any activity and
sub-orchestration.

Within WS-CoL and QoSL4BP, extra invoke activities are inserted into the BPEL process
for the monitoring purpose. We keep the BPEL description untouched, specifying the sensor
placement in external XML files which are interpreted by the Oracle BPEL PMserver.

The AO4BPEL framework [CSHM06] also addresses non-functional requirements in BPEL
processes. The approach focuses on reliable messaging, security and transactionality require-
ments. By choosing this area, the authors are concerned with some other important aspects of
the non-functional requirements in comparison to our approach. While we took advantage of
the Oracle BPEL PM server support for attaching sensors, they developed their own process
container where the processes are executed. They define the process requirements for the BPEL
activities in deployment descriptor files.

The Web Service Offerings Language(WSOL) [TPP02] and Web Service Level Agreements
(WSLA) [LKD+03] are similar to our language in the sense that they address the management
of web services by specifying QoS requirements and actions to be performed. Their focus is on
requirements for web service operations and port types. Therefore they do not consider specific
needs in orchestrations, like requirements attached to specific activities of the BPEL structure.
In case of violations, management actions like monetary penalties (in WSOL) ornotifications (in
WSLA) can be triggered. Both languages specify the responsible management parties. Within
our approach, the monitoring and management of the web service composition isthe responsi-
bility of the service provider, as they take place in the execution environmentof the business
process. We have adopted a similar syntax to WSLA for the specifications of expressions and
functions.

Proc. WowKiVS 2009 4 / 12

ECEASST

4 BPRules - Business Process Rules Language

The BPR rules are at the core of the BPRules language. A BPR rule defines the measures that
have to be performed if the specified QoS constraints are met by the business process. The QoS
requirements specified within rules are evaluated by the rules engine which isalso responsible
for triggering the corrective actions. An important concern in the management of processes
represents our state model that the process traverses during its lifecycle. Figure 1represents
the possible transitions of the process states. We derive the classification ofour management
actions from this state model. The most prominent feature is that each state canbe changed by
an action of our language and that we include a locked management state foran arbitrary amount
of management entities. The process starts in theStartstate where the BPEL process description
is available inside the system. Before the process can be invoked we have todeploy the process
on an execution engine, represented by theStoppedstate. In theRunningstate, instances of the
process appear for every client invocation. Afterwards there are twoways to stop the process.
From thePausedstate, instances may either be abruptly ended (destroy instances) or, the second
option is, that the process can’t be invoked, but existing instances remainrunning. In both cases,
the process reaches again theStoppedstate.

Running

Stopped

Paused

Managed

Start Deploy

Start Execution

Pause

Stop

Undeploy

ManageUnlock

Destroy Instances

Figure 1: Business Process States

Management actions inside the BPRules language can be classified as follows: First, we offer
management actions to change the state of a process with our rule actions, e.g. start, stop,
and undeploy. Second, management actions like updates, changes, andthe replanning of the
process description itself are only available in theManagedstate. In this state, the process is
already stopped and locked which means that only one manager is allowed to submit this class
of management actions. The third class of management actions triggers changes in the state of
process instances, e.g. start, stop, cancel.

The fourth class of management actions can be executed independently ofthe process state,
e.g. email notifications and logging. The first class represents a static classwhere new actions

5 / 12 Volume 17 (2009)

Management of Business Processes with the BPRules Language

cannot be introduced whereas the other two classes are flexible and canbe customized. This also
influences the system design of the runtime interpreter in order to easily adapt the language with
new elements, e.g. a semantic service registry.

Table 1provides an overview of the main corrective actions. Corrective actionson the business
process may be distinguished betweenmanagement actionsandgeneral actions. Themanage-
ment actionstrigger changes in the state of the business process or inform the interested parties
about changes occurred in the lifecycle of the process. Thegeneral actionstarget the rule sets.
For the sake of brevity, we will not describe all possible actions.

Table 1: Corrective Actions

1. Management actions
Class 1 - trigger changes in the state of the process
Deploy/Undeploy Deploys/ Undeploys the process.
Start/Stop Starts / stops the process and changes its state.
Class 2 - the process is in the managed state
Update Updates the BPEL process description by a URI-referenced de-

scription.
Replace-ws Replacesweb service1with an alternative service,web service2.
Replan Replaces all the web services in a specified section with alterna-

tive web services.
Class 3 - trigger changes in the state of an instance
Start/Stop-Instance Starts/ stops a process instance.
Cancel -Instance Cancels a process instance.
Class 4- can be executed independently of the process state
Notify-client Notifies the client.
Throw-event Generates an event.
Throw-exception Generates an exception.
2. General Actions
2.1 Rule Set
SetActive-ruleset Activates or Deactivates the rule set identified by an ID.
Reload-ruleset Reloads a new rule set at runtime.

Here is an example of aBPR documentcontaining several rule sets.

1 <b p r u l e s i d =”BPR−document1 ” p r o c e s s i d =” D r i v i ngL i cence1 ”>

2 < r u l e s e t i d =” g reen ” i m p o r t u r l =” u r l 1 ” a c t i v e =” t r u e ”/>
3 . . .
4 < r u l e s e t i d =” red ” a c t i v e =” f a l s e ”>
5 <r u l e > . . . < / r u l e>

6 </ r u l e s e t>
7 </ b p r u l e s>

Figure 2represents the main elements within a rule set.
Multiple rules can be grouped into a rule set. A rule set can be active, beingevaluated at

Proc. WowKiVS 2009 6 / 12

ECEASST

rule

condition action

Throw -

event

expression

select-instances

instances-subset

ruleset

Throw-

exception

SetActive-

ruleset

. . .
Logic

operator

constraints

Logic

operator

A B Element A has n subelements B

Legend

1..n

1

1

1

0..1

1

0..1

0..1

*

*

*

*
0..1

1..n
1..n

n

Figure 2: Rule elements

runtime, or inactive, being ignored temporarily. The various rule sets may beused for different
alarm states, analogously to atraffic light system. Also, our language allows for importing rules
from other documents, using theimporturl element. URLs can include parameters which are
utilized to adapt a rule document. In this case the name of the consumer or the name of the
service may be required to generate specific management actions, e.g. notifications. We envision
the dynamic rule set changing at runtime as a very important task. Accordingto the grade of
process behavior we are able to adapt the rules dynamically. For example,if the BPEL process
runs as expected, we only want to notify the interested parties. As opposite, if the process violates
the requirements, we wish to trigger more severe actions, like replacing some services inside the
process. By combining rules into rule sets and change them at runtime, we are able to adapt the
rules specifically to the process behavior. Thus we avoid the increasing of the complexity for the
evaluating rules process by removing rules that are no longer needed from the memory. This is
done simply byactivatingor deactivatingrule sets.

As flexibility and changes play the central role in a SOA, like: contract modifications between
partners, changes of partners, changing of endpoint URLs for services, or the service registry,
rules have to be adapted accordingly. Thereloadaction in BPRules permits reloading rules, by
adding new rules to a rule set or overwriting existing rules at runtime. Rules may be updated
from an URL.

A BPR rule consists of two parts: aconditionand anaction part. The condition specifies
the constraints regarding the QoS requirements for the process that haveto be evaluated. QoS
constraints can be specified for process instances and sections of the process. The action part
specifies what corrective actions are going to be undertaken in case that the condition was previ-
ously evaluated to true. The general form of a BPR rule may be seen below:

1 < r u l e i d =” ru lename1”>
2 <c o n d i t i o n i d =” cond1”>
3 <!−− t h e QoS c o n s t r a i n t s f o r t h e b u s i n e s s p r o c e s s−−>

4 </ c o n d i t i o n>

7 / 12 Volume 17 (2009)

Management of Business Processes with the BPRules Language

5 <a c t i o n i d =” a c t 1 ”>
6 <!−− t h e c o r r e c t i v e measures t o be under taken−−>

7 </ a c t i o n>

8 </ r u l e>

4.1 A Business Process Scenario

In order to illustrate the BPRules language, we will consider a business process for requesting
a driving license at the police office, also represented inFigure 3. Several web services are
involved in the process: thePolice Service (PS), theMedical Service (MS), two Bank Services
(BS1 and BS2)and thePhoto Service (PHS1). For the process we define three sections. In the

PS: Receive Person’s data

check

Section 1

PS: Have driving exam

PHS1: Make photo

BS2: Pay photo fee

Section 3

PS: Deliver Licence

PS: Reply person

BS1: Pay licence fee

MS: Ask medical records

check

Section 2

Figure 3: Driving Licence Business Process

first section, thePolice Servicecares about receiving the person’s data and this person has to
take his driving exam. If the driving exam was passed, the process continues with the sections
section2andsection3which are triggered in parallel. Withinsection 2the Medical Serviceis
asked for the medical records of the person which are then checked for the person’s health.Bank
Service 1is called to pay the license fee.Section 3is responsible for the photo session. Finally,
if everything went well, the driving license is delivered to the person by thePolice Service. If
the person hasn’t passed the driving exam or isn’t healthy, he will receive a message with this
information.

As an example we define two rules for the process. The first rule illustrateshow the behavior of
a set of process instances influences the future behavior of the process, by triggering appropriate
corrective actions. The rule states that if the process behaves extremelybadly, that means that at
least 30% of the process instances failed, thered rule set should be loaded at runtime. Thered

Proc. WowKiVS 2009 8 / 12

ECEASST

rule set is loaded only when some serious corrective actions need to be done, for example, the
replacement of services with alternative ones.

1 < r u l e i d =” s c e n a r i o−r u l e 1 ”>
2 <c o n d i t i o n i d =” f a i l e d i n s t ”>
3 <c o n s t r a i n t s>
4 < i n s t a n c e s−s u b s e t f u n c t i o n =”MIN”>30%</ i n s t a n c e s−subse t>
5 <e x p r e s s i o n>
6 <p r o p e r t y−check s e l e c t =” s t a t e ”>FAILED</ p r o p e r t y−check>
7 </ e x p r e s s i o n>
8 </ c o n s t r a i n t s>
9 </ c o n d i t i o n>

10 <a c t i o n i d =” a c t 1 ”>
11 <s e t a c t i v e− r u l e s e t i d =” red ” s e t a c t i v e =” t r u e ” />
12 </ a c t i o n>

13 </ r u l e>

4.2 Constraints

The BPR constraintsis the main construct to specify a condition of the process. Here we can
select between process instances with certain properties (e.g. RUNNINGinstances) and also
define the size of the set of process instances (seeTable 2, e.g. MAX 40 instances) to which the
QoS constraints apply. We can select, for example, process instances witha certain id or state
(e.g. CANCELLED) to which the QoS constraints should apply to.

With the instances-subsetfunctions we can specify the subset of process instances it takes for
the management actions to be executed. An advantage in comparison to previous languages is
that we can specify what should happen due to the behavior of a subsetof the process instances.
A set of functions gives the possibility to select a subset out of the entire set of process instances.
Table 2gives an overview of the functions that may be applied.

BPRules utilizes an expression and function syntax similar to WSLA [LKD+03]. Within
BPR expressions, QoS constraints are specified for the entire businessprocess or for the desired
sub-orchestrations. An expression is a Boolean statement and contains aspecific requirement
or other nested expressions. BPR expressions can be applied to multiple sub-orchestrations by
referencing an expression definition via theselectattribute, and using the attributeapplysection
to specifying the section to which the expression applies.

The next rule defined for ourdrivinglicenceprocess illustrates the QoS parameter dependabil-
ity between sections. Assection2andsection3are triggered in parallel, it makes sense that the
response time measured insection2is less or equal to the response time insection3(lines 3-8).
Also the cost insection3(line 11) should be less than 1/3 of the total cost of the entire process
(line 14).

1 <e x p r e s s i o n>
2 <and>
3 <e x p r e s s i o n i d =” e x p r e s s 1 ”>

4 <p r e d i c a t e t ype =” G r e a t e r ”>

5 <QoSParameter a p p l y s e c t i o n =” s e c t i o n 2 ”> r esponse t ime</QoSParameter>
6 <QoSParameter a p p l y s e c t i o n =” s e c t i o n 3 ”> r esponse t ime</QoSParameter>
7 </ p r e d i c a t e>
8 </ e x p r e s s i o n>

9 / 12 Volume 17 (2009)

Management of Business Processes with the BPRules Language

9 <e x p r e s s i o n i d =” e x p r e s s 2 ” a p p l y s e c t i o n =” s e c t i o n 3 ”>

10 <p r e d i c a t e t ype =” G r e a t e r ”>

11 <QoSParameter>cos t</QoSParameter>
12 <Func t i on t ype =” D iv ide ” r e s u l t T y p e =” doub le”>
13 <operand>
14 <QosParameter a p p l y s e c t i o n =” g l o b a l ”>cos t</ QosParameter>
15 </ operand>
16 <operand>
17 <Value>3</Value>
18 </ operand>
19 </ Func t ion>
20 </ p r e d i c a t e>
21 </ e x p r e s s i o n>
22 </and>
23 </ e x p r e s s i o n>

By using theselectattribute in the expression, we may put one expression in correspondence
to a previously defined expression identified by theid attribute, providing reusability. The next
listing illustrates how the same expressionexpress2, which was previously defined, is reused
for several sub-orchestrations. The expressionexpress2is applied once for the sectionsection1
and once for the sectionsection2. An expression may contain other expressions linked through
logic operators (e.g. AND, OR, NOT etc.). This is another possibility for creating relationships
between QoS constraints of sub-orchestrations.

1 <or>
2 <!−− r e u s e of t h e e x p r e s s i o n e x p r e s s 2−−>

3 <e x p r e s s i o n s e l e c t =” e x p r e s s 2 ” a p p l y s e c t i o n =” s e c t i o n 1 ”/>

4 <e x p r e s s i o n s e l e c t =” e x p r e s s 2 ” a p p l y s e c t i o n =” s e c t i o n 2 ”/>

5 </or>

Table 2: Instances subset functions for the set of process instances

Functions Semantics
MIN number (%) The minimum number of instances or a percent number from the

set of instances.
MAX number (%) The maximum number of instances or a percent number from the

set of instances.
EQUALS number(%) Equals to a certain number or a percent number from the set of

instances.
EXISTS There exists at least one instance.
FORALL All the instances from the set.

5 Monitoring and Management Prototype

This section gives an overview of the general workflow in our system. Atdevelopment time, the
business process is defined using the BPEL language. The architect proceeds with specifying the
sections over the business process. Additionally, for each of the sections and the entire business

Proc. WowKiVS 2009 10 / 12

ECEASST

process, he states the QoS requirements using declarative rules, written inthe BPRules language.
These are evaluated at runtime by the Drools Rules engine from JBoss.

For the monitoring purpose, sensors are attached to activities of the business process. The
monitoring system takes advantage of the BPEL engineOracle BPEL Process Manager[OPM08]
which supports attaching sensors without any changes to the business process. We use several
types of sensors: activation sensors, which fire just before the activity is executed, completion
sensors, which fire just after the activity is executed, and fault sensors, which fire when faults
occur during the execution of the activity. Sensors are attached to BPEL activities apart from the
process implementation, in separate XML files. The data received from the sensors is used for
QoS computation of the process and its sections. The QoS measurement values are evaluated
against the rules by the rules engine and the corresponding correctiveactions are triggered.

6 Conclusion

We proposed a rule-based language for the management of BPEL processes. Our main concerns
while designing the language were expressivity, reusability and separation of concerns. We
keep the monitoring and QoS artifacts separate from the business logic. TheBPRules language
provides a flexible way to perform corrective actions on a business process, dependent on process
executions.

By introducing QoS dependability between sections and loading rule sets at runtime, a more
refined specification of QoS requirements is possible with BPRules. We propose our new lan-
guage that offers features to react dynamically to changes in a flexible SOA.

In future we plan to extend our BPRules language with more constructs. We want to introduce,
for example, time intervals to be able to manage the business process and its services differently
during time. On the basis of the triggered management actions we will make evaluations and
rankings of the web services and process.

Bibliography

[BBLC07] F. Baligand, D. L. Botlan, T. Ledoux, P. Combes. A Language for Quality of Service
Requirements Specification in Web Services Orchestrations. In4th International
Conference, Workshops Proceedings, Service-Oriented Computing ICSOC 2006.
Pp. 38–49. Springer Berlin / Heidelberg, 2007.

[BCKZ08] S. Bleul, D. Comes, M. Kirchhoff, M. Zapf. Self-Integrationof Web Services in
BPEL Processes. InProceedings of the Workshop Selbstorganisierende, Adaptive,
Kontextsensitive verteilte Systeme (SAKS). 2008.

[BG05] L. Baresi, S. Guinea. Towards Dynamic Monitoring of WS-BPEL Processes. InPro-
ceedings of the Third International Conference, Service-Oriented Computing - IC-
SOC 2005. Pp. 269–282. Springer Berlin / Heidelberg, 2005.

[BGCK08] S. Bleul, K. Geihs, D. Comes, M. Kirchhoff. Automated Management of Dynamic
Web Service Integration. InProceedings of the 15th Annual Workshop of HP Soft-

11 / 12 Volume 17 (2009)

Management of Business Processes with the BPRules Language

ware University Association (HP-SUA). Infocomics-Consulting, Stuttgart, Germany,
Kassel, Germany, 2008.

[BGG04] L. Baresi, C. Ghezzi, S. Guinea. Smart monitors for composed services. InProceed-
ings of the 2nd international conference on Service oriented computing. Pp. 193–
202. ACM, 2004.

[BGP06] L. Baresi, S. Guinea, P. Plebani. WS-Policy for Service Monitoring. In 6th Inter-
national Workshop, Technologies for E-Services 2005. Pp. 72–83. Springer Berlin /
Heidelberg, Trondheim, Norway, 2006.

[BRL07] F. Baligand, N. Rivierre, T. Ledoux. A Declarative Approach for QoS-Aware Web
Service Compositions. In Krmer et al. (eds.),Proceedings of the Fifth International
Conference, Service-Oriented Computing ICSOC 2007. Pp. 422–428. Springer
Berlin/ Heidelberg, Vienna, Austria, 2007.

[CPEV04] G. Canfora, M. D. Penta, R. Esposito, M. L. Villani. A Lightweight Approach for
QoS-Aware Service Composition. Technical report, Research Centre on Software
Technology University of Sannio, New York, USA, 2004.

[CSHM06] A. Charfi, B. Schmeling, A. Heizenreder, M. Mezini. Reliable,Secure, and Trans-
acted Web Service Compositions with AO4BPEL. InProceedings of the European
Conference on Web Services (ECOWS’06). Pp. 23–34. IEEE Computer Society,
2006.

[Dro08] Drools. JBoss. 2008.
http://www.jboss.org/drools/

[JEA+07] D. Jordan, J. Evdemon, A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch,
F. Curbera, M. Ford, Y. Goland, A. Guı́zar, N. Kartha, C. Liu, R. Khalaf, D. K̈onig,
M. Marin, V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri, A. Yiu. Web Ser-
vices Business Process Execution Language Version 2.0. OASIS, Apr. 11, 2007.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

[LKD +03] H. Ludwig, A. Keller, A. Dan, R. P. King, R. Franck. Web Ser-
vice Level Agreement (WSLA) Language Specification. IBM, 2003.
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf.

[OPM08] Oracle BPEL Process Manager. 2008.
http://www.oracle.com/lang/de/appserver/bpelhome.html

[TPP02] V. Tosic, B. Pagurek, K. Patel. WSOL A Language for the Formal Specification
of Various Constraints and Classes of Service for Web Services. Technical report,
Carleton University, Canada, 2002.
http://citeseer.ist.psu.edu/674231.html

[ZBN+04] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, H. Chang. QoS-
Aware Middleware for Web Services Composition. InIEEE Transactions on Soft-
ware Engineering. Pp. 311–327. IEEE Press, 2004.

Proc. WowKiVS 2009 12 / 12

http://www.jboss.org/drools/
http://www.oracle.com/lang/de/appserver/bpel_home.html
http://citeseer.ist.psu.edu/674231.html

	Introduction
	Motivation
	Related work
	BPRules - Business Process Rules Language
	A Business Process Scenario
	Constraints

	Monitoring and Management Prototype
	Conclusion

