
Electronic Communications of the EASST
Volume 2 (2006)

Proceedings of the
Workshop on Petri Nets and Graph Transformation

(PNGT 2006)

A basic tool for the modeling of
Marked-Controlled Reconfigurable Petri Nets

Marisa Llorens and Javier Oliver

13 pages

Guest Editors: Paolo Baldan, Hartmut Ehrig, Julia Padberg, Grzegorz Rozenberg
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

ECEASST

A basic tool for the modeling of
Marked-Controlled Reconfigurable Petri Nets

Marisa Llorens1 and Javier Oliver2

1 mllorens@dsic.upv.es, 2 fjoliver@dsic.upv.es
Departamento de Sistemas Informáticos y Computación (DSIC)

Universidad Politécnica de Valencia (UPV), Valencia, Spain

Abstract: In previous studies, we have introduced marked-controlled net rewrit-
ing systems and a subclass of these called marked-controlled reconfigurable Petri
nets. In a marked-controlled net rewriting system, a system configuration is de-
scribed as a Petri net, and a change in configuration is described as a graph rewriting
rule. A marked-controlled reconfigurable Petri net is a marked-controlled net rewrit-
ing system where a change in configuration amounts to a modification in the flow
relations of the places in the domain of the involved rule in accordance with this
rule, independently of the context in which this rewriting applies. In both mod-
els, the enabling of a rule not only depends on the net topology, but also depends
on the net marking according to control places. Even though the expressiveness of
Petri nets and marked-controlled reconfigurable Petri nets is the same, with marked-
controlled reconfigurable Petri nets, we can easily and directly model concurrent
and distributed systems that change their structure dynamically. In this article, we
present MCReNet, a tool for the modeling and verification of marked-controlled
reconfigurable Petri nets.

Keywords: structural dynamic changes, modeling, verification, tools.

1 Introduction

In [BLO03, Llo03, LO04b], we introduced the model of net rewriting systems (NRS) and a
subclass of this model, reconfigurable Petri nets (RN), to analyze, simulate and verify concurrent
and distributed systems that are subject to structural dynamic changes. Both models arise from
two different lines of research that were conducted in the field of the Petri net formalism [Mur89,
Pet81]. The goal of these lines of research is to enhance the expressiveness of the basic model
of Petri nets so that it can support the description of structural dynamic changes in concurrent
and distributed systems. The first line covers various proposals for merging Petri nets with
graph grammars [Bal00, Cor95, Sch94], while the second line, which is best represented by
Valk’s self-modifying nets [Val78, Val81], considers Petri nets whose flow relations can vary at
runtime. Reconfigurable Petri nets attempt to combine the most relevant aspects of both of these
approaches and constitute a class of models for which each of the fundamental properties of Petri
nets (place boundedness, reachability, deadlock and liveness) are decidable. The translation of
this model into Petri nets is automatic [Llo03, LO04b]. This equivalence ensures that the model
is amenable to automatic verification tools. In contrast, the class of net rewriting systems is
Turing powerful [Llo03, LO04b].

1 / 13 Volume 2 (2006)

MCReNet Tool

In [LO04a], we introduced marked-controlled net rewriting systems (MCNRS) and marked-
controlled reconfigurable Petri nets (MCRN) as an extension of net rewriting systems and recon-
figurable Petri nets, respectively, where the enabling of a rewriting rule not only depends on the
net topology, but also depends on the net marking according to some net places named control
places. In MCNRS, a system configuration is described as a Petri net, and a change in configura-
tion is described as a graph rewriting rule, which consists of replacing part of the system (the part
that matches the left-hand side of the rewriting rule) with another one (given by the right-hand
side of the rewriting rule). A MCRN is a MCNRS where a change in configuration is limited to
the modification of the flow relations of the places in the domain of the rewriting rule involved;
i.e., the set of places and transitions is left unchanged by rewriting rules.

We are interested in developing a software tool to analyze the structure and dynamic behavior
of systems that are modeled using our nets in order to evaluate them and suggest improvements
or changes. The goal of our MCReNet tool is to study real systems that are modeled by MCRN.

Our work is closely related to the topic of net transformation systems. There are some works
in this area that perform the modification of the net topology and the modification of the system
current marking. These works cover the modification of Petri nets in a categorical instead of a
set theoretical way [EGP00]. In [LO04a] a detailed related work with respect to our models is
presented. In [LKL05], a hybrid process mining approach to dynamic business process is pro-
posed. The approach is based on reconfigurable Petri nets. This paper gives a method of mining
dynamic changes in different instances; finally, a Reconfigurable Workflow Net is generated. In
[Akr05], a framework for managing changes in service oriented enterprises (SOEs) is presented.
The author presents a taxonomy of changes using a combination of several types of Petri nets
to model the triggering changes and ensuing reactive changes. These changes are modeled by
reconfigurable Petri nets.

The remainder of the paper is organized as follows. Section 2 recalls marked-controlled re-
configurable Petri nets with an illustrative example and presents two algorithms: the first one
(previously defined in a formal way in [LO04a]) translates marked-controlled reconfigurable
Petri nets into Petri nets and the second one, in the opposite direction, obtains the current state
of the marked-controlled reconfigurable Petri net from its equivalent Petri net. In Section 3, we
describe the MCReNet tool in detail. Finally, Section 4 presents our conclusions.

2 Marked-Controlled Reconfigurable Petri nets

This section recalls the model of marked-controlled reconfigurable Petri nets introduced in
[LO04a].

2.1 Syntax and semantics

Definition 1 (Marked-Controlled Reconfigurable Petri net) A marked-controlled reconfig-
urable Petri net (MCRN) [LO04a] is a structure N = (P,T ,R,γ0), where P = {p1, . . . , pn} is a
non-empty and finite set of places; T = {t1, . . . , tm} is a non-empty and finite set of transitions
that is disjoint from P (P∩T = /0); R = {r1, . . . ,rh} is a finite set of rewriting rules; and γ0 is a
marked Petri net.

Proc. PNGT 2006 2 / 13

ECEASST

A rewriting rule r ∈ R is a structure r = (D,• r,r•,C,M), where:

• D ⊆ P is the domain of r;

• •r : (D×T)∪ (T ×D) → N and r• : (D×T)∪ (T ×D) → N are the preconditions and
postconditions of r, (i.e. they are the flow relations of the domain places before and after
the change in configuration due to rule r);

• C is a subset of places of D, C ⊆ D, called control places, and

• M is the required minimum marking of places of C so that the rule can be enabled.

A configuration of a MCRN is a Petri net Γ = (P,T,F).
A state γ of a MCRN is a marked Petri net γ = (Γ,M). The state γ0 is called the initial state

of the MCRN.
The events of a MCRN are the transitions and the rewriting rules: E = T ∪R.

We represent a rewriting rule using formal sums notation as

r = ∑p∈D p(∑t∈T
•r(p, t) · t −∑t∈T

•r(t, p) · t) B ∑p∈D p(∑t∈T r•(p, t) · t −∑t∈T r•(t, p) · t)

Definition 2 (Configuration Graph of a MCRN) The configuration graph G(N) of a MCRN
N = (P,T,R,γ0) is the labeled directed graph whose nodes are the configurations, such that there
is an arc from configuration Γ to configuration Γ′ labeled with rule r = (D, •r, r•, C, M) ∈ R,
which we denote Γ[r〉Γ′, if and only if the following holds:

∀p ∈C : M(p) ≥ M(p)

∀p ∈ D :
{

F(p, t) = •r(p, t) and F(t, p) = •r(t, p)
F ′(p, t) = r•(p, t) and F ′(t, p) = r•(t, p)

∀p /∈ D : F(p, t) = F ′(p, t) and F(t, p) = F ′(t, p)

Notice that we require the control places to be marked with at least marking M. The transition
relation must contain arcs of the exact multiplicity appearing in the left-hand side of the rewriting
rule, and we do not allow rewriting if arcs of a greater multiplicity are present.

The dynamic evolution of a MCRN is then given by its state graph.

Definition 3 (State Graph of a MCRN) The state graph of a MCRN N = (P,T,R,γ0) is the
labeled directed graph whose nodes are states of N and whose arcs (labeled with events) are of
two kinds:

1. firing of a transition: arc from state (Γ,M) to (Γ,M ′) that is labeled with transition t when
t can fire in the net Γ at marking M and leads to M ′, and

2. change in configuration: arc from state (Γ,M) to state (Γ′,M) that is labeled with rule
r ∈ R if Γ[r〉Γ′ is a transition of the configuration graph of N.

In other words, the set of labeled arcs of the state graph of N is given by

{(Γ,M)
t
→ (Γ,M′)|M[t〉M′ in Γ} ∪ {(Γ,M)

r
→ (Γ′,M)|Γ[r〉Γ′ in G(N)}.

3 / 13 Volume 2 (2006)

MCReNet Tool

2.2 Example

The following example shows a system modeled by a MCRN, and a change in configuration that
depends on both the net topology and the net marking. We have chosen an example that is related
to manufacturing processes since, in these types of problems, changes in the structure are very
frequent and they usually depend on the state of the manufacturing processes.

Example 1 (Glaze Manufacture) In the manufacturing process of a glaze, different glazes are
made by using different raw materials that, after firing, have certain characteristics.

t1

t2

t3

t4

t11

t5

t6

t7

p1

p2

p3

p4

p5

p6

p7

t8 p8

t9 p9

t10 p10

p11

t12 p12

t13 p13

t14 p14

t15 p15

t16 p16

Oxides

p1 = Fe2O3
p2 = TiO2

p3 = Al2O3

p4 = SiO2

p5 = ZrO2

p6 = HfO2

p7 = Na2O
p8 = K2O
p9 = CaO
p10 = MgO

Raw Materials

p11 = Clay
p12 = Zirconium Silicate
p13 = Nepheline
p14 = Dolomite
p15 = Quartz

p16 = Final Glaze

20

20

25

25

40 40

15

15

5 13

8

14

2

27

5

7

3

7

5

35

(a) The initial state

t1

t2

t3

t4

t11

t5

t6

t7

p1

p2

p3

p4

p5

p6

p7

t8 p8

t9 p9

t10 p10

p11

t12 p12

t13 p13

t14 p14

t15 p15

t16 p16

25

25

40 40

15

15

20

205 13

27

5

7

3

7

5

23

35

(b) The new state reached after applying
rule R1 to the state in Fig. 1(a)

Figure 1: Two states of the MCRN of Example 1

p3

p4

p5

p6

p9

t12 p12

t15 p15

t16

p3

p4

p5

p6

p9

t12 p12

t15 p15

t16

R1

25 25

25

25

8

14

2

23

(a) Rule R1

t11

p1

p2

p3

p4

p9

p10

p11

t14 p14

t16

t11

p1

p2

p3

p4

p9

p10

p11

t14 p14

t16

R2

15

15

20

20

35

35

3

7

5

10 225 13
2

(b) Rule R2

Figure 2: Rewriting rules R1 and R2 of the MCRN of Example 1

Figure 1(a) is the initial state γ0 = (Γ0,M0) of a MCRN that represents a glaze with the follow-
ing composition: 20% clay, 25% zirconium silicate, 40% nepheline, and 15% dolomite. Because
of its oxide composition, this glaze is bell-glazed and opaque, water does not mark it, and it has
a low lineal dilatation coefficient (LDC). If we substitute the zirconium silicate by quartz, the

Proc. PNGT 2006 4 / 13

ECEASST

opaque glaze turns into a semi-opaque glaze with a high LDC. If we remove all of the dolomite
and increase the clay, we obtain a glaze that water marks and that is disk-glazed. Changing the
composition of the glaze in our model means changing the net topology. To make these changes
possible, we define two rewriting rules using the formal sums notation previously introduced. We
show them (R1 and R2) graphically in Fig. 2(a) and Fig. 2(b), respectively. The subset of control
places C is empty for rule R1, whereas, for rule R2, this subset is C = {p11} and M(p11) = 35
(i.e., to remove all of the dolomite and increase the clay, at least 35% clay is needed in place
p11). Therefore, the MCRN consists of 16 places, 16 transitions, and 2 rewriting rules.

R1: p3(-t12)+p4(-8t12)+p5(-14t12)+p6(-2t12)+p9(/0)+p12(25t12-25t16)+p15(/0)
B

p3(-t15)+p4(-23t15)+p5(/0)+p6(/0)+p9(-t15)+p12(/0)+p15(25t15-25t16)

R2: p1(-t11)+p2(-t11)+p3(-5t11)+p4(-13t11-3t14)+p9(-7t14)+p10(-5t14)+p11(20t11-20t16)+p14(15t14-15t16)
B

p1(-t11)+p2(-2t11)+p3(-10t11)+p4(-22t11)+p9(/0)+p10(/0)+p11(35t11-35t16)+p14(/0)

Figure 1(b) shows the state that is reached when rule R1 (in Fig. 2(a)) is applied to the initial
state represented in Fig. 1(a). In this new state, all the zirconium silicate has been substituted by
quartz.

There are only four possible configurations. The initial configuration Γ0 and the configuration
Γ1 are the configurations of the states represented in Fig. 1(a) and Fig. 1(b), respectively.

2.3 Relationship between Petri nets and MCRNs

In [LO04a], we prove that MCRNs are equivalent to Petri nets, but they provide somewhat more
compact representations of concurrent and distributed systems whose structure evolves at run-
time. The substantial increase in the number of transitions with respect to the MCRN implies
that the size of the Petri net grows considerably. This can be observed in Fig. 4 that shows the
Petri net (20 places, 72 transitions) equivalent to the MCRN of Example 1. Watching this figure,
we can imagine how big the entire Petri net is and how we can best model the system with a
MCRN.

The Petri net
∼
N = (

∼
P,

∼
T,

∼
F,

∼
M) equivalent to a MCRN N = (P,T,R,γ0) is obtained following

Algorithm 1, that is completely defined in a formal way in [LO04a]. The set of places
∼
P is

P∪ {q0, . . . ,qk}, where P is the set of places of the original MCRN and each place qi is one

specific place attached to each possible configuration Γi ∈ G(N). The marking
∼
M for places of

the subset P is the marking that they have in the initial state γ0 of the MCRN N and for the added
places {q0, . . . ,qk} is 0 except for place q0 whose marking is 1. This marking shows that Γ0 is
the current configuration.

Now, we have developed an algorithm that acts in the other direction. That is, it is possible to

extract the state γi = (Γi,Mi) of a MCRN from the corresponding marked Petri net
∼
N = (

∼
P,

∼
T,

∼
F,

∼
M), at a given moment, following Algorithm 2. This algorithm starts from a marked Petri net,
whose topology is the result of Algorithm 1 and whose marking is the result of some transition
firing sequence applied to the Petri net obtained from Algorithm 1. Taking these facts as a

5 / 13 Volume 2 (2006)

MCReNet Tool

Algorithm 1 Petri Net equivalent to a Marked-Controlled Reconfigurable Petri net

1: We start from the initial configuration Γ0. For Γ0, we obtain all the possible configurations
due to the firings of all enabled rewriting rules, that is, we obtain all the nodes of the first
level of the configuration graph G(N). If we imagine places and transitions of a configuration
as if they were located in two different parallel planes, i.e., a plane with the set of places
and a plane with the set of transitions connected by the flow relations of the represented
configuration, we will have only one plane of places, and as many planes of transitions as
there are different configurations.

2: For each plane of transitions we add a place qi, connected by an input arc and an output arc
with all transitions of the plane.

3: We also add a transition r0i between place q0 of the initial configuration and each plane qi of
each reachable configuration from q0; this represents the change in configuration due to rule
r, Γ0[r〉Γi.

4: If there are control places involved in the change in configuration Γ0[r〉Γi, we connect tran-
sition r0i with each control place of rule r (in the plane of places) using an input arc and an
output arc whose weight is the required minimum marking of the control place for the rule
to be enabled.

5: We repeat this process for each configuration that is distinct from the initial configuration,
that is, for each plane of transitions obtained from the initial plane.

starting point, it is not very difficult to distinguish the subnet that represents the current state of
the initial MCRN (the input of Algorithm 1).

Theorem 1 It is possible to extract the state γi = (Γi,Mi) of a MCRN from the corresponding

marked Petri net
∼
N = (

∼
P,

∼
T,

∼
F,

∼
M), at a given moment.

Proof. The corresponding marked Petri net
∼
N has been obtained from Algorithm 1. It is straight-

forward to extract the state γi = (Γi,Mi) of a MCRN following Algorithm 2.

3 The MCReNet Software Tool

To study real systems that are modeled by MCRN, it would be useful to have a software tool
to analyze the structure and dynamic behavior of the modeled system in order to evaluate it and
suggest improvements or changes. The MCRN model is equivalent to the Petri net model and,
therefore, the decidable properties of Petri nets are still decidable for our model. It is possible to
obtain an automatic verification tool for MCRN. Our objective is to develop a tool to design and
verify systems modeled by MCRN. This tool has a graphical editor, a simulator and an analyzer
for several common properties.

Since there are numerous automatic design and verification tools based on Petri nets for both
business and academic use [Webb], and the fact that Petri nets and MCRN are equivalent, we
have developed a software tool that translates a MCRN into its equivalent Petri net. We start
from the following premises:

Proc. PNGT 2006 6 / 13

ECEASST

Algorithm 2 State of a Marked-Controlled Reconfigurable Petri Net from the corresponding
Petri Net

1: We start from the marked Petri net
∼
N = (

∼
P,

∼
T,

∼
F,

∼
M) where

∼
P is the set of places

∼
P =

P∪{q0, . . . ,qk},
∼
T is the set of transitions

∼
T = ({q0, . . . ,qk}×T) ∪

∼
R,

∼
F is the flow relation

and
∼
M is the marking of the net.

2: At marking
∼
M,

k
∑
j=0

∼
M(q j) = 1, that is, only one place qi of the subset of places {q0, . . . ,qk}

is marked with one token. From the subset of transitions {q0, . . . ,qk}× T ∈
∼
T only the

transitions in {qi}×T are enabled.
3: The current state γi = (Γi,Mi) of MCRN is composed by:

• the current configuration Γi = (Pi,Ti,Fi) where the set of places is Pi = P, the set of
transitions is Ti = {qi}×T , and the flow relation Fi is given by

∀p ∈ Pi,∀t ∈ Ti :

{

Fi(p, t) =
∼
F(p,(qi, t))

Fi(t, p) =
∼
F((qi, t), p)

• the current marking Mi is Mi(p) =
∼
Mi(p) ∀p ∈ P

• both the initial state and the rewriting rules of a MCRN are Petri nets;

• a MCRN is formally equivalent to a Petri net;

• an algorithm that obtains an equivalent Petri net from a MCRN is available (Algorithm 1).

The idea is to use an already existing graphical editor of Petri nets to draw the initial MCRN,
i.e., a Petri net. Our tool will use this net:

1. To make a syntactical analysis of the files generated by the editor and to store the relevant
information in the suitable data structures.

2. To implement the algorithm to translate a MCRN into an equivalent Petri net.

3. To create a file (from the resulting Petri net) that can be viewed from the editor.

We have chosen PIPE (Platform Independent Petri net Editor) [Webc, BCC+04, Akh05], a
free software for non business use that allows the design, analysis, and simulation of Petri nets.
This editor allows us to create, save and load Petri nets according to the last standard XML for
Petri nets, PNML (Petri Net Markup Language [Webd]).

The user draws the initial state of the MCRN, and the several rewriting rules using PIPE.
Figure 3(a) shows the user interface of PIPE, which basically consists of a pane for the analysis
modules and a graphical editing pane. The active window shows the initial state of the MCRN

7 / 13 Volume 2 (2006)

MCReNet Tool

(a) Initial state of the MCRN for Ex-
ample 1 in PIPE

(b) MCReNet Tool (c) MCReNet Tool 2

Figure 3: Main screens of PIPE and MCReNet Tool

for Example 1. The background windows contain the left and right-hand sides of the rewriting
rules.

Various XML files are obtained (one for the initial state, and two for each one of the rewriting
rules). These XML files have a well-defined structure where the division between places, transi-
tions, and arcs is clearly visible. Any file of this type has a headline that shows what language is
used, here PNML [Webd]. Next, the name and the type of the represented net appear.

<?xml version="1.0" encoding="iso-8859-1" ?> <pnml>
<net id="Net-One" type="P/T net">

For every place appears an identifier, the graphic coordinates, a label, and the initial marking.
For every transition appears an identifier, the graphic coordinates, a label, the orientation, a rate,
and if it is timed or not.

<place id="P0"> <transition id="T0">
<graphics> <graphics>

<position x="90.0" y="60.0" /> <position x="30.0" y="60.0" />
</graphics> </graphics>
<name> <name>

<value>P0</value> <value>T0</value>
<graphics /> <graphics />

</name> </name>
<initialMarking> <orientation>

<value>1</value> <value>0</value>
<graphics> </orientation>

<offset x="0.0" y="0.0" /> <rate>
</graphics> <value>1.0</value>

</initialMarking> </rate>
</place> <timed>

<value>false</value>
</timed>

</transition>

For every arc it is indicated if it is an arc from a transition to a place or from a place to a
transition (source and target), the arc weight, the begin and end coordinates, and if it is a curved
arc or not.

Proc. PNGT 2006 8 / 13

ECEASST

<arc id="T0 to P0" source="T0" target="P0"> <arc id="P0 to T0" source="P0" target="T0">
<graphics /> <graphics />
<inscription> <inscription>

<value>2</value> <value>5</value>
<graphics /> <graphics />

</inscription> </inscription>
<arcpath id="000" x="45" y="71" <arcpath id="000" x="115" y="70"
curvePoint="false" /> curvePoint="false" />

<arcpath id="001" x="86" y="71" <arcpath id="001" x="156" y="70"
curvePoint="false" /> curvePoint="false" />

</arc> </arc>

After this information, the headline labels are closed.

</net>
</pnml>

Figure 3(b) shows the initial screen of the MCReNet Tool. User introduces the XML files that
represent the initial state and the left-hand and right-hand side of all rules from this screen.

A syntactical analysis of these files is made in order to extract the information from them. The
name and its marking are obtained for each place. The name is obtained for each transition. The
weight and the places and transitions that the arc connects are obtained for each arc (the incidence
matrix of the net [Mur89]). A consistency check is made, that is, it is checked whether the initial
net together with pairs of nets representing rules create a MCRN (whether they differ only in
the flow relation). Since both the left-hand side and the right-hand side of the rules are Petri
nets with identical places and identical transitions, besides knowing its names, we are interested
in knowing the flow relation between them in each part of the rule (the incidence matrix of the
left-hand side and the incidence matrix of the right-hand side of the rewriting rule).

The process of translation begins when user presses the Create Petri net button. The translator
that obtains the Petri net that is equivalent to the initial MCRN is implemented in Java [Weba]
following Algorithm 1. The first step of this algorithm is to obtain the configuration graph
G(N) of the initial MCRN. We obtain a procedure that (from the initial state and the rewriting
rules) checks which rules are enabled and it obtains the resulting configurations of the firings of
these rules. The process is repeated for each one of the obtained configurations, as long as new
configurations are obtained and until no more rules are firable. All the possible configurations
of the MCRN must be stored indicating which configurations are immediately reachable from a
given configuration, due to the firing of which rules.

Once G(N) is obtained, the tool is ready to translate this net into its equivalent Petri net. Ac-
cording to Algorithm 1, the translation process consists in adding new places, new transitions,
and their corresponding flow relations to the places and transitions of the initial configuration.
Since the number of places and transitions of the equivalent Petri net is known [LO04a], the
dimensions of the incidence matrices can be known. The previous and posterior incidence matri-
ces are filled according to the flow relations of the configurations of G(N). A file with the same
format as the PIPE files is obtained from the resulting Petri net. Therefore, this Petri net can be
displayed on the PIPE editor (see Fig. 4).

After obtaining the equivalent Petri net, the process of analysis and simulation can begin. The
PIPE editor itself offers the possibility of doing simulation and analysis of properties. Figures
5(a), 5(b) and 5(c) show some of these analyses applied to the equivalent Petri net in Fig. 4;
specifically: (a) the Petri net classification results based on the connectivity between places and

9 / 13 Volume 2 (2006)

MCReNet Tool

Figure 4: Petri net equivalent to the MCRN of Example 1 in PIPE

transitions, (b) the invariant analysis and (c) the incidence and marking matrices and the enabled
transitions set.

(a) The classification results (b) The invariant analysis (c) The incidence matrices

Figure 5: Some analyses of the Petri net of Fig. 4

We have also implemented the Algorithm 2 that obtains the state of a MCRN from the cor-
responding Petri net in a given state. The idea is that users can animate the Petri net (firings of
enabled transitions) and, at any time, they can find and see the equivalent state of the equivalent
MCRN. The data capture for Algorithm 2 is performed from the screen of the MCReNet tool
showed in Fig. 3(c). After introducing the Petri net file and checking that the number of places
and transitions of the MCRN are correct, when user presses the State of MCRN button, the
current state of MCRN is obtained, as a PIPE file, following Algorithm 2.

Proc. PNGT 2006 10 / 13

ECEASST

4 Conclusions and further work

We have developed a tool to analyze, simulate, and verify systems that are modeled with MCRN.
On the basis of the equivalence between Petri nets and MCRN, we have initially opted to develop
a tool that exploits the capabilities of the Petri net tools that are currently available. The main
goal of our tool is the implementation of a translation algorithm of a MCRN into an equivalent
Petri net (Algorithm 1). We have chosen PIPE as the graphical editor, simulator and analyzer.
MCReNet integrates PIPE with the translator. Therefore, user can draw the initial state and
rewriting rules of the MCRN, which is then translated into its equivalent Petri net. In addition,
a simulation and an analysis of properties of this net can be performed. All these processes are
integrated in the MCReNet tool. The other goal of our tool is the implementation of Algorithm
2 to obtain the current state of a MCRN from its equivalent Petri net at a given moment.

As further work, we will develop a tool that is completely autonomous. Our new tool will be
able to directly carry out the editing, simulation and analysis of net properties on MCRN. We are
currently working on the theoretical aspects of the analysis methods for Petri nets in order to ap-
ply them directly to MCRN. Also we are studying the relationships between our approaches and
other existing proposals using rewriting techniques for providing a reconfiguration mechanism
for Petri nets (like, e.g., open Petri nets [BCE+06] and high-level replacement systems applied
to Petri nets [PER95, HEM05]).

Acknowledgements: This work has been partially supported by the EU (FEDER) and the
Spanish MEC under grant TIN2005-09207-C03-02 and by the ICT for EU-India Cross-Cultural
Dissemination Project ALA/95/23/2003/077-054.

Bibliography

[Akh05] N. Akharware. PIPE2: Platform Independent Petri Net Editor. Msc. project report,
Department of Computing, Imperial College, London, 2005.

[Akr05] M. S. Akram. Managing Changes to Service Oriented Enterprises. Master’s thesis,
Virginia Polytechnic Institute and State University, USA, 2005.

[Bal00] P. Baldan. Modelling Concurrent Computations: From Contextual Petri Nets to
Graph Grammars. Phd thesis, Computer Science Department, University of Pisa,
Italy, 2000.

[BCC+04] T. Barnwell, M. Camacho, M. Cook, M. Gready, P. Kyme, M. Tsouchlaris. PIPE.
Platform Independent Petri-net Editor. Final report, Petri Net Analyser - Group 4.
Department of Computing, Imperial College, London, 2004.

[BCE+06] P. Baldan, A. Corradini, H. Ehrig, R. Heckel, B. Knig. Bisimilarity and Behaviour-
Preserving Reconfigurations of Open Petri Nets. Technical report CS-2006-09, Dip.
di Informatica, Universit Ca’ Foscari Di Venezia, November 2006.

11 / 13 Volume 2 (2006)

MCReNet Tool

[BLO03] E. Badouel, M. Llorens, J. Oliver. Modelling Concurrent Systems: Reconfigurable
Nets. In Arabnia and Mun (eds.), Int. Conf. on Parallel and Distributed Process-
ing Techniques and Applications (PDPTA’03). Volume IV, pp. 1568–1574. CSREA
Press, Las Vegas, Nevada (USA), June 23-26 2003.

[Cor95] A. Corradini. Concurrent Computing: From Petri Nets to Graph Grammars. Elec-
tronic Notes in Theoretical Computer Science 2, 1995. Invited talk at the Joint COM-
PUGRAPH/SEMAGRAPH Workshop on Graph Rewriting and Computation.
http://www.elsevier.nl/locate/entcs/volume2.html

[EGP00] H. Ehrig, M. Gajewsky, F. Parisi-Presicce. High-Level Replacement Systems Ap-
plied to Algebraic Specifications and Petri Nets. In Handbook of Graph Grammars
and Computing by Graph Transformation, Vol. III: Concurrency, Parallelism and
Distribution. Pp. 341–400. World Scientific, 2000.

[HEM05] K. Hoffmann, H. Ehrig, T. Mossakowski. High-Level Nets with Nets and Rules
as Tokens. In Ciardo and Darondeau (eds.), Proc. 26th Int. Conf. on Applications
and Theory of Petri Nets (ICATPN’05). Lecture Notes in Computer Science 3536,
pp. 268–288. Springer, Miami, USA, June 20-25 2005.

[LKL05] N. Li, J. Kang, W. Lv. A Hybrid Approach for Dynamic Business Process Min-
ing Based on Reconfigurable Nets and Event Types. In Proc. IEEE Int. Conf. on e-
Businees Engineering (ICEBE’05). Pp. 289–294. IEEE Computer Society, Beijing,
Peoples Rep. China, 2005.

[Llo03] M. Llorens. Redes Reconfigurables. Modelización y Verificación. Phd thesis (in
spanish), Departamento de Sistemas Informáticos y Computación, Universidad
Politécnica de Valencia, Spain, 2003.

[LO04a] M. Llorens, J. Oliver. Introducing Structural Dynamic Changes in Petri Nets:
Marked-Controlled Reconfigurable Nets. In Proc. Int. Conf. on Automated Tech-
nology for Verification and Analysis (ATVA’04). Lecture Notes in Computer Sci-
ence 3299, pp. 310–323. Springer Verlag, Taipei, Taiwan, 2004.

[LO04b] M. Llorens, J. Oliver. Structural and Dynamic Changes in Concurrent Systems:
Reconfigurable Petri Nets. IEEE Transactions on Computers 53(9):1147–1158,
September 2004.

[Mur89] T. Murata. Petri Nets: Properties, Analysis and Applications. In Proc. of the IEEE.
Volume 77(4), pp. 541–580. April 1989.

[PER95] J. Padberg, H. Ehrig, L. Ribeiro. Algebraic High-Level Net Transformation Systems.
Mathematical Structures in Computer Science 5(2):217–256, 1995.

[Pet81] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Englewood Cliffs, NJ:
Prentice-Hall, USA, 1981.

Proc. PNGT 2006 12 / 13

ECEASST

[Sch94] H. Schneider. Graph Grammars as a Tool to Define the Behavior of Processes Sys-
tems: From Petri Nets to Linda. In Fifth International Conference on Graph Gram-
mars and their Application to Computer Science. Pp. 7–12. Williamsburg, USA,
1994.

[Val78] R. Valk. Self-Modifying Nets, a Natural Extension of Petri Nets. In Ausiello and
Bhm (eds.), Proc. of the 5th Int. Coll. Automata, Languages and Programming
(ICALP’78). Lecture Notes In Computer Science 62, pp. 464–476. Springer-Verlag,
Udine, Italy, 1978.

[Val81] R. Valk. Generalizations of Petri Nets. In Gruska and Chytil (eds.), Proc. of 10th.
Symposium on Mathematical Foundations of Computer Science (MFCS’81). Lec-
ture Notes in Computer Science 118, pp. 140–155. Springer-Verlag, Strbske Pleso,
Czechoslovakia, 1981.

[Weba] Sun’s Home for Java: http://java.sun.com/.

[Webb] The Home Page of Petri Net Tools on the Web: http://www.informatik.uni-hamburg.
de/TGI/PetriNets/tools/.

[Webc] The Home Page of PIPE: http://pipe2.sourceforge.net/.

[Webd] The Home Page of PNML: http://www.informatik.hu-berlin.de/top/pnml/.

13 / 13 Volume 2 (2006)

