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Abstract: Due to their sensitivity to user positions, actions, and visibility, Dis-
tributed Virtual Environments (DVEs) are well served through a focused load char-
acterization effort. Quantified load can then be evaluated through models of the
system behavior, resulting in expected behavior. A discussion of determining some
characterized load from system requirements and instrumenting a DVE to provide
validation metrics is also provided.
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1 Introduction

DVE systems are often created with a specific range of user load in mind, often within the context
of supporting specific user activities. In order to design, deploy, and maintain a DVE filling those
requirements, the load must be transformed into more specific metrics that may then be used as
performance objectives. Model-based transformation of that load may derive relationships be-
tween these and potentially other metrics to provide additional insight into system performance.

Load characterization efforts should support:

1. Software Design — During development, the performance objectives can assist in algo-
rithm and data structure determination. Back of the envelope estimates can provide useful
guidance for meeting the objectives.

2. Engine Development — Software Performance Engineering (SPE) techniques [SW02] can
use the metrics and iteratively guide the development of a system that meets their crite-
ria. Additionally, feedback from early prototypes provides useful insight on development
progress.

3. Asset Design — Geometric models, terrain, and graphical assets can affect system perfor-
mance significantly. Derived metrics covering these assets can provide design guidance to
help ensure satisfaction of the objectives.

4. Testing — During development, validation, and continuous quality checks after deploy-
ment, the system will require testing to ensure that performance goals are met. Objectives
may be derived from the originals to support measurement and testability.

5. Operations Management — After deployment, changes in user behavior can affect system
performance. In response, changes to the deployed system configuration, or the system
design may be necessary.

1 / 12 Volume 17 (2009)



Load Characterization

To support these activities we discuss methods to derive measurable metrics to characterize
load, measure system performance, and identify components’ response and behavior under load.
All of the activities may be supported through the conversion of the DVE system from a “black
box” into a set of componentized models. Each model represents a software component in the
DVE. Each converts incoming load to resource requirements. Additionally, they are individually
predictable from inputs, and are individually observable through known input, output, and inter-
mediate variables. Finally, the outputs of the models may include resource requirements, such
as memory, processor time, or network I/O.

Once the “black box” has been broken into models, load may be characterized within the
context of one or more component models. Within this context, any incoming value to any
component or pure resource can represent load. The definition of that value specifies the format
for characterizing that part of the system load.

Within the SPE process, the performance characteristics of the system are maintained through
design and development for both the software and assets. Initially, a model is constructed to es-
timate resource requirements, represented as a set of software components. A system design that
satisfies the approximate scalability and performance requirements is selected. Once develop-
ment has started, the model is updated to match the developed system, and then used for analysis
of current performant progress. Evaluation of the model can provide insight into performance
characteristics at each development iteration, allowing fast adaptation to discovered problems.
Additionally, the model provides benchmark values for validation during the load testing of the
system.

After deployment, the model provides a baseline for health monitoring of the system. Changes
in user behavior or system configuration on the server, client, or network, can be interpreted in
terms of their system ramifications, enabling adaptation to current or expected future changes.

This paper begins with a discussion of analytical tools for derivation, follows with a focus on
spatial metrics common for DVEs, and finishes with a case study. The terms “level” and “terrain”
are used interchangeably, to refer to the virtual space for users provided by a DVE.

2 Load Analysis

Load is characterized within the context of a model. Models of the software system often base
themselves upon the software components, data structures, or algorithms used. This discussion
will focus on component-centered models of the system.

The software system may be considered as an interconnected graph of software components,
with workload applied from one end of the graph to the other. Figure 1 illustrates the concept.
The bottom-most line indicates the flow of load from original inputs into the system, finally
finishing as load applied to the operating system and hardware resource level.

At the far left of the diagram, top-level performance requirements are listed in original form.
They are transformed into observable metrics once they are considered within the context of the
software components that implement the functionality in question.

Before a modeling effort begins, some analysis may be necessary to reduce the scope of work.
The minimal set may be determined from the top-level requirements; sufficient modeling must
be done to determine the set of validation metrics required.
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Figure 1: Refining the System Performance Model

Additional concerns for different phases of the system lifecycle: design evaluation, engine
development (for Software Performance Engineering [SW02] activities), asset design, testing, or
operations management will also drive the creation of additional models.

Models may also require further data, driving the creation of additional dependent models
to provide the required parametric data. Alternatively, placeholder versions of the inputs could
be created from simplified models of the values. For example, a constant, random, or linear
interpolation of measured values could be used instead of creating the component model(s) that
would otherwise be required.

2.1 Types of Load

Examples of upstream load within DVE systems include avatar movements, inter-user commu-
nications, and various interactions. Any characteristic of these upstream elements is usable as
load for components. In the avatar movement case, the frequency of movement data coming in,
divergence from prior directions or speeds, or number of other objects in the new position may
be the relevant load characterizers for specific software components.

Downstream load includes the resulting load or resource requirements caused by software
components, due to load upstream from them. Avatar movements may cause load upon the sim-
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ulation or networking systems, which consequently provide load upon the processor, memory,
and networking resources of the host computer system.

2.2 Validation of Load Response

The downstream load created by software components is measurable as a performance metric.
During the various lifecycle stages of a DVE system, the measured performance of a software
component may be used to make design, deployment, or operational decisions for that subsystem
or the DVE as a whole.

Latency requirements serve as an example of load response. The time between an incoming
update on an object state and the new resulting simulated state is measurable. Additionally, the
times of the update and the state change are measurable at the component interconnect level,
enabling analysis of latency contributions from individual software components.

2.3 Load States

Once it is understood which load values need characterization, there may be a requirement to
characterize the entire system load state. Specifically, sets of load characteristic values are often
related together as common values during a specific state of the system.

The simplest example is a steady-state run of a DVE with a specific number of users logged
in. These are referred to as SteadyState(N), with N being the number of logged-in users. If the
number of users is expected to stay nearly constant, then this description may be sufficient for
use.

Some systems may have peaks and valleys in load, requiring consideration for the outlier
points. Similarly, the transitory states may also require consideration.

For example, some 24-hour continuous operations may have large shifts of load during the
day as the user base logs in during the morning and out during the night. Additionally, certain
spikes in activity may be expected during special events. In any of these cases, both the steady
state and the transitions are relevant for study. Figure 2 is one such transition graph. Displaying
a base steady load of N1 users, it rises to N2 during some part of the day. At some part in that
day, a peak load of N3 arises. It assumes that if Ni < N j, then load to the system at Ni, Load(Ni)
is less than the load to the system at N j, Load(N j). Specifically, that Load(N) is a nondecreasing
monotonic function over N.

Examples of spikes in load include the release of new content for the DVE, a planned special
event, or the entry of a second group of users who stay for only part of the day.

Load state model requirements may be determined from expected variations in the load char-
acteristics. System sensitivity to load variations is also a factor in determining if a load state
model is necessary.

3 Spatial Load Metrics

DVE systems have many different elements, typically including some spatial sensitivities in
performance. Area of Interest (AoI) mechanisms will load the network and computational load
of the system, depending on aspects including inter-avatar visibility and distance.
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Figure 2: State Diagram of System Load

Physical simulation can depend on how many other objects are nearby. Collision detection is
similarly sensitive to the number of objects in the vicinity.

For the spatial data described in this paper, a cellular structure is used. Additionally, a finite
occupiable space is assumed. For infinitely occupiable spaces, the format will need reconsider-
ation, based on the ways the DVE handles the space. For example, a hash function that remaps
blocks of the occupiable space back into a finite set may also serve as the basis for storing spatial
data.

In finite spaces, the space may be broken into a set of cells, which are each assigned data. The
size of each cell should be determined from both the data collection mechanism and the minimal
relevant granularity needed for analysis. For example, a cell size set to the bounding box size of
an avatar can serve as a useful basis for both visibility and collision analysis, as in both cases, no
more than one avatar can occupy the same cell at the same time.

In either of the data formats specified below, the analyst has the option of making multiple ver-
sions. The first analyzes inter-cell visibility within the level. The latter focuses on the frequency
of object locations.

3.1 Visibility Analysis

A visibility map provides a representation of which other cells have a direct line-of-sight with
the current cell. Depending on the type of objects in the system, the maximal length of that
line-of-sight may be restricted to the largest AoI used in the system.

If different types of avatars have different visibility properties, then separate maps may be
needed, particularly in the combinatoric case. However, they may be generated from per-type
raw data.

Each cell is considered independent in a visibility map. Consequently, the number of dimen-
sions used in the map is not considered for format of the map itself. Analogous to the way that
multidimensional arrays are mapped to sequential cells in memory, each cell is assigned a single
number, and they are treated as a one-dimensional sequence.

Several formats are available for different analytic needs. First is the raw avatar line-of-sight
visibility map. Several of them may be required for different types of avatars. Finally, there are
synthetic visibility maps for limited Area of Interest systems.
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For a single avatar type, a half-matrix of boolean values can represent the full raw visibility
map. Multiple types of avatars will require T ·(T −1) maps for T avatar types in order to capture
all combinations of visibility. The boolean values can then be summed against a column or row
to find the total number of other cells a given cell may see. AoI rules relating to object types and
cell distances may be applied to alter these totals.

Alone, visibility maps provide a measure of how many simultaneous visibility relationships
may need maintenance through the DVE synchronization mechanism. Peak and mean cell values
provide feedback on the terrain design for the DVE, potentially providing indications of neces-
sary changes. Combined with density maps, visibility data can provide specific expectations of
how many relationships need to be maintained.

3.2 Density Analysis

The second spatial format discussed is the spatial distribution of objects. Called a density map,
this data indicates which parts of a terrain have the least and greatest number of objects at a given
time. Combined with the visibility map, it provides useful data for analysis.

When the system is in a stable load state, such as SteadyState(N), the positions of all objects
may be polled for an interval. Each position is mapped into a cell, and a counter in that cell is
incremented. When complete, each cell value is divided by the sum of all cells. The result is a
normalized density map.

For different load states, multiple density maps may be needed. It is likely that users will
behave differently depending on different user counts within an area. For that reason, density
maps for different values of N are recommended.

Differing types of objects should be collected into separate density maps. For example, differ-
ent types of avatars can cause different movement behavior for multiple reasons: user identity,
different avatar abilities, and social groups. Non-avatar objects, such as vehicles or projectiles,
should be collected and maintained separately as well.

Alternatively, a set of line segments may better represent the paths of projectiles. Normalizing
all the coordinates of segments into (start,end) cell pairs reduces the storage cost into one similar
for a visibility map, with a floating-point value replacing the boolean.

Raw data from multiple object density maps may be combined and the aggregate normalized
for analysis. In situations where several types of objects need consideration as a single type (e.g.
as a parent type in an ontology), such combination will be necessary.

For many-valued load states, the data collection requirements can become excessive. Instead,
interpolation and extrapolation may be necessary. For example, density data may be collected at
N = 10 and N = 20 and interpolated for N = 11 . . .19.

In either case, the analyst must look at the collected data to determine the viability of these
transformations: the spatial behavior of users differs between different DVE systems and specific
terrains. Specifically, users may choose to avoid areas when they become excessively populated,
or avoid regions when nobody else is nearby.

In the interpolation case, the raw density maps for the closest two values of N are each
weighted to their distance from the target value. Each cell value is a linear interpolation of
the cell values from each map, weighted by their respective values of N.

In the simple extrapolation case, the largest normalized collected density map is assumed to
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be valid for the larger value of N. Larger extrapolations will require more sophisticated methods.

4 Data Collection

Visibility and density maps will typically need collection as a separate process from software
development. While the former may be done mechanically, the latter will require user studies.

Visibility data may be collected mechanically once the terrain data is complete. A ray is
cast from the center of a cell to the center of another, for each pair of cells in the level. During
level design, feedback from visibility analysis may drive design choices to minimize system load
components driven by inter-user awareness.

Density map collection is more complex, requiring user studies and manipulation to properly
determine expectations for specific user counts. Once the desired user count is known, a process
for determining density data may be determined.

In a user study, the recording process will wait until the desired user count is available. Then,
the process records the positions and types of every object at a specific interval, such as one
second. When a representative sample is collected, a cellular grid (e.g. density map) representing
the level is constructed, and each cell value is incremented for each object observed. Each cell
may be represented with a single value, or as a sum of per-object type counters. The latter format
enables per-type analysis.

5 Case Study: Network Synchronization

Presented is a simplified version of a First-Person Shooter networking system, based on the
Torque engine. The requirements analysis and collection process are accurate, but the software
component models have been simplified for brevity. The level used is a mountainous terrain with
a small virtual village in the center. Only one type of avatar is available, using only a single type
of projectile weapon. Avatars may walk, run, and jump: enabling a two-dimensional treatment
of the level.

DVE systems such as MASSIVE-2 [Gre96, Gre99], MASSIVE-3 [GPS00], Quake [Fer, Dar],
and the Torque [Gar, FG] system described here use some form client-server architecture, and
transmit updates at 10 Hz. The server receives updates from all clients, executes the simulation,
and sends updates back to all clients. Each update sends an orientation, position, and motion
vector to the recipient for every object within its Area of Interest. The definition of Area of
Interest for each node varies.

Back-of-the-envelope calculations quickly reveal a large growth rate for bandwidth require-
ments as the number of logged-in users grows, specifically 10Hz ·N2. depicting the notification
of every client of every other client’s state at every update. Combinations of dead reckoning
[dis96] and AoI mechanisms reduce the frequency and cardinality of updates required, respec-
tively.
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5.1 Data Collection

First, density and visibility maps need construction. With only a single type of avatar, each is
unidimensional. User studies collect 1 Hz samples of avatar density, keyed to the user count.
Torque enables very large levels using tiled height maps specifying the terrain. However, a
bounding box may be constructed using the maximal positions found within the sample data.
The level is thusly converted to a 95x179 cell two-dimensional grid with eight-meter square
cells, and the density data mapped to it and normalized.

Figure 3: Density Data from a 10-user Study

Figure 3 shows the density map graphically. White represents no data points.
The visibility map was collected from an in-engine script running ray-cast tests between

center-points in cells. The avatar’s eye height was added to the terrain height and tested against a
point similarly calculated for the destination cell. The final data was represented as a 17,005x17,005
half-matrix of single-bit values. They were stored in a serialized Java Array, requiring less than
20 megabytes.
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5.2 Requirements Analysis

Due to the variable density of objects over a DVE terrain, the network synchronization mecha-
nism can have significant differences in performance for different terrains. First presented is a
prediction mechanism for the number of visibility relationships to be maintained. Next, discus-
sion on predicting the bandwidth requirements from the relationship count.

This case study will start with a system requirement that it must be able to support 10 simul-
taneous users, e.g. N = 10.

Using a singly-typed normalized density map, of a single type, or an aggregation of different
object types, some functions are defined:

1. G — The set of cells in the normalized density map.

2. P(i,N) — The value of a single cell i in the density map for N users. The value corresponds
to the likelihood of a single object being within the cell. Note that ∑i∈G P(i,N) = 1.

3. V (i, j) — A visibility query function, taken from the visibility map. Its value is one if
objects at cells i and j can see each other, and zero otherwise.

4. A(i, j) — Indicates if cell j is within the AoI of cell i. One if so, zero otherwise.

With the parts defined, a predictor for the number of visibility relationships is presented as
Rel(N):

Rel(N) = N2
∑
i∈G

∑
j∈G, j 6=i

[P(i,N) ·P( j,N) ·V (i, j) ·A(i, j)]

Given the number of logged-in users N, Rel(N) provides the number of visibility relationships
that must be maintained. The two invocations of P determine the joint probability of objects
being in both cells. V and A provide logical tests to determine if the combination of cells is valid.
Finally, the N2 term converts the probability to an expected value.

Note that i 6= j. If server-side canonicalization requires that the client is sent a copy of its own
state, an additional N term should be added to Rel(N) before the N2.

In combination with an estimate of the frequency of dead-reckoning changes, one may esti-
mate how many updates require transmission per second.

Using a collected density map and generated visibility map from a user study of ten members
in a Torque-based system, Rel(10) = 15.4884. The Torque engine prioritizes updates by distance,
but does not define a discrete AoI set of criteria for the type of terrain used in the study. At the
required update rate of 10 Hz, sending each side of each pairwise relationship an update, the
expected number of of updates that the DVE would have to send is 309.768 per second. Using
a custom Java-based analysis tool to run the equation, the computations took less than three
seconds to run on a desktop computer.

5.3 Model Analysis

The full Torque implementation of the components described below are more heavily optimized,
and thusly more complex, than those described here. Simplifications will be noted inline.
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The first component is already a simplification: the contents of a single update. The model
used here will be a thirty-two byte element, consisting of eight values: an identifier for the
object that the update refers to, a “health” attribute for the avatar, the three-dimensional position
(x,y,z), and the orientation (h, p,r). The first two elements are integers, the remainder are single-
precision floating point values.

Serialization First considered is the computation time required for the data transmission. Two
components exist: the serialization time and packet transmission time. Assuming each up-
date requires 24 clock ticks (read, write, and update-write-pointer), the current expectation of
309.768 updates per second, rounded to 310, requires 7,440 clock ticks per second. Addition-
ally, a bandwidth-relative packet-management cost is involved for destination buffer creation,
user-space to kernel copying, and the transfer to the network. For this exercise an arbitrary value
is chosen at 100 clock ticks per byte, requiring 31,000 ticks per second. The total is 38,440 ticks.
While several billion are available in modern processors, note that Rel(N) grows at O(N2). Sys-
tems with much higher user counts may encounter competition for processor time between the
networking and simulation systems.

Transmission Second is the network costs of transmission. Torque is similar to other systems
in using the UDP [Pos80] protocol. As each set of updates transmitted to each client has a
different destination address, they must be considered differently. From the understanding that
2 ·Rel(N) updates must be transmitted at 10 Hz, and that they will be distributed over N = 10
users, one may estimate the number of packets to transmit at 2

N Rel(N).
A new function, Pack(b), can determine the resulting network costs of transmitting b bytes of

data:

Pack(b) =

{
1500+Pack(b−1460) b≥ 1460
b+40 otherwise

The number 1500 comes from the Maximum Transmission Unit (MTU) of Ethernet, assuming
Ethernet is used here. 40 bytes are used for the combined IP [Pos81] and UDP protocol headers.

For this case study, the resulting transmission cost is:

N ·Pack(32 · 2
N

Rel(N))

At N = 10, 100 bytes are sent to each client, with 40 bytes of overhead, at 10 Hz costing a
total of 14 KB/sec.

5.4 Discussion

Through a user study, density data was collected on the only avatar type. Combined with a
visibility analysis of the same level, an estimator Rel(N) was created to determine the number of
visibility relationships the DVE will have to maintain for a user count N. The user count is used
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to determine the computational and network costs required to transmit updates at 10 Hz to all N
users. An example of N = 10 is used.

The models estimate a total transmission rate of 14 KB/sec over the network, and 38,440
processor cycles per second. It is noted that both values depend on Rel(N), which is O(N2).

6 Conclusions and Future Work

Presented is a methodology for determining load characteristics of a DVE system, focusing on
spatial metrics for visibility and object density. Through analysis of required input load, models
of system components can derive requirements for performance and capacity.

Using models of the software components within a DVE, it is possible to convert customer-
level load requirements into measurable performance specifications for those components. Through
analysis of the models, the performance specifications can be transformed into performance re-
quirements down through the interconnection graph. The interconnections between the compo-
nents provide additional measurement points within the system.

Through complete analysis of the components and requirements, system resource require-
ments may be derived.

Future work focuses on the relationships between the three elements of Figure 1: performance
requirements, software components, and system resources. Specifically, model refinement for
the software components within a DVE will enable further analysis. Combined with new re-
quirements elicitation and analysis techniques for DVE system performance, we expect further
capabilities to relate load requirements to the resource requirements of an analyzed DVE.

Additionally, DVEs could adapt to variations in load through changes in the service given.
For example, a DVE could reduce the rate it sends updates for less important objects when the
network is heavily loaded. The model could act as a basis for such an environment monitoring
and adaptation system. Future research in this area may prove useful.

Finally, the cell size used in the spatial metrics is currently set to only the size of a single
avatar. For small terrains, the spatial data are straightforward to compute and analyze. However,
larger terrains, especially in three dimensions (such as underwater, aerial, or space-based DVEs),
could prove expensive to analyze with that cell size. The relationship between model accuracy
and cell size, and whether the cell size should stay constant in different parts of the level, are
areas for future research.
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