
Electronic Communications of the EASST
Volume 18 (2009)

Proceedings of the
Eighth International Workshop on

Graph Transformation and Visual Modeling Techniques
(GT-VMT 2009)

Resource-based enactment and adaptation of workflows from activity
diagrams

Paolo Bottoni, Andrea Saporito

12 pages

Guest Editors: Artur Boronat, Reiko Heckel
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Resource-based enactment and adaptation of workflows from
activity diagrams

Paolo Bottoni1, Andrea Saporito1

1 bottoni@di.uniroma1.it, anersap@tin.it,
http://w3.uniroma1.it/dipinfo/scheda docente.asp?cognome=Bottoni&nome=Paolo

Department of Computer Science - ”Sapienza” - University of Rome, Italy

Abstract: Workflow management deals with different types of dependencies among
tasks, in particular data- and policy-driven. The ability to reason on dependencies of
different types allows workflow designers to consider different alternatives, or to de-
fine customized flows, reducing non-determinism. We propose a resource-centered
view, in which both data-dependency between tasks and plan-dependent ordering
of tasks are expressed as production and consumption of resources. This view is
translated into a rule-based formalism, expressed in terms of multi-set rewriting for
workflow enactment. In turn, rules are themselves seen as resources, so that they are
prone to the same rewriting process, in order to redefine process schemas. We show
how workflows expressed as activity diagrams can be translated to the proposed for-
malism, exploiting enforced generative patterns applied to triple graph grammars,
and how redefinition of workflow processes can occur through typical patterns of
adaptation. We also discuss possible concrete syntaxes for the obtained rules.

Keywords: Workflow, Activity Diagrams, Resources, Multiset rewriting

1 Introduction

Workflow specifications increasingly have visual representations, either in some domain specific
language [Swe94], or exploiting general purpose languages for process specification, typically
Petri nets [EKR95, AM00a, AM00b, AH01, AB02]. In general, these diagrammatic notations
have to provide a precise syntax and semantics in order to allow the specification of correct
workflows and their translation to some enactment mechanisms.

The increasing popularity of UML, and the introduction of the action semantics, have made
activity diagrams a suitable notation for the precise specification of workflows [Dt01]. With
respect to Petri nets, activity diagrams offer the advantage of making the existence of distinct
control and data flows explicit, and of making parallelism more apparent, through the use of fork
and join nodes, thus gaining in expressivity. Activity diagrams also offer a more widely known
and general language for specification, without the need to acquire additional competence in
some language, and favoring interoperability and integration of independent specifications. On
the other hand, some aspects of the semantics of activity diagrams are not completely defined
and some syntactic variants are still allowed. For example, one can enforce pairing and correct
nesting of fork-join or choice-merge nodes, or allow several forked sequences to have indepen-
dent terminations or to be joined on single nodes. In this paper, we adopt a version of activity

1 / 12 Volume 18 (2009)

mailto: bottoni@di.uniroma1.it, anersap@tin.it
http://w3.uniroma1.it/dipinfo/scheda_docente.asp?cognome=Bottoni&nome=Paolo

Resource-based enactment and adaptation

diagrams suitable for workflows, by assuming the existence of a single initial activity and a single
final activity, as in WF-nets. We propose a translation mechanism associating multiset rewriting
rules with activity nodes, according to an execution model where activities are defined by the
(multi)sets of resources they produce or consume. Separate translation processes can be defined
for control and data flows. This offers greater opportunities for independent reasoning on data
dependencies and synchronisation policies. For example, it could be possible to explore the par-
allelism allowed by causal data dependencies and to assess the compatibility of a control policy
with the induced partial order. Moreover, data and control rules can be formally composed, or
be kept separated. The translation is proposed towards an abstract syntax for multiset rewriting,
to which different concrete syntaxes, visual or textual, can be associated.

Under the additional assumption that all parallel activities are defined by paired and correctly
nested fork and join nodes, and that each fork (join) node has only two outgoing (incoming)
edges, a mechanism for dynamic reconfigurations of workflows can be defined, where workflow
changes are immediately reflected by changes in the set of rules. The class of activity diagrams
which can be manipulated in this way corresponds to well-structure workflows [KtB00].

The translation mechanism exploits triple graph grammars to establish the correspondence
between activity nodes and rules, while the reconfiguration process is based on the adoption of a
view of rules as resources on their own, subject to specific transformation processes.

The rest of the paper proceeds as follows. We explore related work on the use of activity
diagrams as workflow specifications and on adaptation processes in Section 2, and provide some
formal background on the types of rewriting involved in the paper in Section 3. Section 4 dis-
cusses the triple metamodel relating activity diagrams and multiset rewriting rules, and illustrates
the translation process, while Section 5 presents the basic mechanisms for coherent modification
of diagrams and rules. Finally, Section 6 illustrates two possible concrete syntaxes for the mul-
tiset rewriting model, and Section 7 draws conclusions and points to related work.

2 Related work

The use of activity diagrams as a way to specify workflows has been illustrated in [Dt01], show-
ing how some interesting workflow patterns can be captured by them, but also pointing to the
limitations of the then current definition of activities as a submodel of state machines.

A formal operational semantics for activity diagrams, still in the UML 1.4 version, is given in
terms of Abstract State Machines in [KLN+05], extending diagrams with timing information. In
this paper we do not consider the timing information and focus on a unifying concept of resource
to express pre- and post-conditions of activities.

In a series of papers, van der Aalst et al. propose several patterns for control [AHKB03]
and data [RHEA05] flows and for usage of resources [RvtE05] in workflows, specifying such
patterns thorugh Coloured Petri Nets. They do not deal with composition of patterns related to
different aspects, while we propose to treat it exploiting pushouts as described in [BMWY08].

A distinct advantage in the use of activity diagrams with respect to Petri nets for the expression
of workflows is pointed at in [EW03], with respect to the possibility of opening the workflow to
external signals. Our approach can indeed be augmented with the definition of specific commu-
nication resources, related to the presence of signals.

Proc. GT-VMT 2009 2 / 12

ECEASST

The approach presented here only considers an abstract view of transitions, so that it can be
mapped to specific rule-based languages, with suitable translators. A quite straightforward trans-
lation can be devised to the WIPPOG language [BDD+04]. WIPPOG provides an operational
semantics and an executable language, based on production and consumption of resources. It has
been used to map different diagrammatic languages, based on some notion of transformation, to a
common language, thus allowing the interoperability of diagrammatic transformations expressed
with different notations. WIPPOG rules express rewriting of multisets of resources, distinguish-
ing between resources which are internally produced or consumed, and resources which can
be exchanged among different agents. Under this respect, WIPPOG adopts the same rewriting
model as the LO language [AP91], based on a fragment of linear logic, from which we also
derive the notion of rules as resources [Gir87]. Moreover, it is also possible to denote that some
(contextual) resources are required for a transformation to take place, but are not consumed, or
that some resources must not be present, thus expressing negative application conditions.

Multisets have been proposed as a way to express semantics of Petri Nets, viewing the marking
of a net as a multiset of elements corresponding to the places in it [MM90]. Hence, the abstract
definition of transformations proposed here could be mapped to a Petri Net specification.

3 Formal background

The approach followed here exploits three different rewriting models. On the one hand, we
consider attributed typed graph rewriting as a way to provide an abstract syntax and semantics
for activity diagrams. Second, we use multiset rewriting as the basis for the definition of an
enactment mechanism, modeling the production and consumption of data and synchronisation
resources. Finally, we exploit triple graph transformations [Sch94] as a formal device to relate
the two metamodels for activity diagrams and multiset rewriting, exploiting the recently pro-
posed notion of enforced generative pattern [BGL08] to automate the generation of operational
triple rules. In particular, we adopt a version of triple graphs where only nodes can be put in
correspondence, i.e. a triple graph TrG = (Gs,Gc,Gt ,cs,ct) has three graphs Gi, i ∈ {s,c, t}, and
two functions c j : VGc →VG j , j = s, t.

A multiset M over an alphabet Γ is defined by a characteristic function mM : Γ→N such that
only a finite number of elements from Γ is assigned a non-zero function value. Membership in M
is defined as a ∈M⇔ mM(a) > 0. In the following, we omit the distinction between a multiset
and its characteristic function, when no ambiguity arises. An alternative way to represent a
multiset is as

⋃
a∈Γ{a}×{[m(a)]}, where [n] is the initial segment of the naturals of length n

and [0] = /0. Γ can thus be regarded as a (flat) type system, while the natural numbers identify
type instances. We are thus actually reduced to a particular type of set. We define a category
MSet with multisets as objects, while its morphisms are the monomorphisms between multisets
preserving the element types. In particular, let m and m′ be two multisets on Γ and µ : m→ m′

a morphism between them. Then we have µ((a,k)) = (a, j) for all a ∈ Γ, for some k ∈ [m(a)]
and j ∈ [m′(a)]. The case when m and m′ are defined on different alphabets can be managed by
taking their union. The pushout is then constructed in an analogous way to the construction of
the coproduct in Set. Although MSet is not weak adhesive (as Set is not), we can write rules in
DPO form, and adopt the MPOC approach to rewriting [BB08], where the pushout complement

3 / 12 Volume 18 (2009)

Resource-based enactment and adaptation

K m′→ D l′→ G of K l→ L m→ G is taken as the minimal object (and associated pair of morphisms)

such that the resulting diagram is a pushout, while the pushout of D m′← K r→ R is constructed as
before. By minimal, we intend that for any other D′ which defines a pushout complement for
K l→ L m→G, there is a unique monomorphism D→D′ making the resulting diagram to commute.

Actually, we use multisets of terms formed by attributed symbols on some finite alphabet Γ

with attributes taking values on simple domains. Given a collection of activities available to
the workflow, the set of admissible values for synchronisation is indeed finite, while for data
resources we consider that the values characterizing their descriptions are either finite or they are
string names, on which only equality or inequality can be checked.

4 Relating activity diagrams and multiset rewriting

The translation process from activity diagrams to rule-based rewriting exploits Triple Graph
Grammars and is based on the metamodel triple of Figure 1. The source metamodel is derived
from the metamodel of UML Activity Diagrams [OMG07], where we have introduced a new
type, called SynchNode, to provide a missing common abstraction for ControlNode and
ExecutableNode, keeping them distinct from ObjectNode1. Note that by inheriting from
NamedElement, an ActivityNode has a name to identify it.

Figure 1: The metamodel triple relating activity diagrams and multiset rewriting.

The target metamodel provides a definition of multiset rewriting rules based on the notion of
Resource as some distinguishable entity which can be produced or consumed in a transfor-
mation. Each resource is defined by a desc attribute, coding a suitable description of it. In
particular, in this context we are interested in SynchRes, used to model the flow of control, and
DataRes, used to model object flow. A Rule is composed of three collections of resources:

1 This can also be achieved without modifying the metamodel, by inserting type checks in the triple rules.

Proc. GT-VMT 2009 4 / 12

ECEASST

those which are consumed or produced by the rule execution and those which are simply read,
i.e. they must be present, but they are not consumed. Typically, data rules do not consume their
input ObjectNodes, unless they explicitly transform data. Each rule is modelled as a resource
in turn, via the RuleRes type, so that rules are subject to transformation processes.

Finally, the correspondence metamodel identifies the relations between activity nodes and re-
sources, between control flow edges and synchronisation resources, and between synchronisation
nodes and rules. In particular, an ExecutableNode, besides being related to a SynchRule
through the correspondence with NodeRule inherited from SynchNode, will also be related to
a DataRule. Such correspondence element is mapped, in the metamodel for resource rewriting,
to a rule which is only concerned with the transformation of objects, but not with modification of
control flow. The advancement of the control flow as the effect of the completion of the activity
will be modelled, if need be, by a distinct Rule related to the SynchRule for that node. Not
indicated in Figure 1 is the restriction of ObjectNode to correspond to DataRes only.

In order to define the transformation rules, we exploit triple patterns [BGL08], as a mechanism
to generate triple graph operational rules, coupling syntactic and semantic roles, starting from
the definition of syntactic rules. Figure 2 presents the basic patterns relating nodes to rules
managing synchronisation or object transformation, while Figure 3 relates activity edges and
synchronization resources. This latter pattern states that for each control flow edge in the activity
diagram there is a synchronisation resource which is produced by the rule associated with the
activity node which is the source of the edge, and which is consumed by the target activity node.
In the following, we will use the name of the target rule as an attribute of the synchronisation
resource and derive the name of the rule from the name of the corresponding activity node.
Analogous patterns can be defined for object flow edges, so that an object at the end of the edge
will be produced and consumed, or simply read, by the rules corresponding to the nodes related
to the object.

Figure 2: The triple patterns relating activity nodes and rules.

Figure 4 illustrates the result of the application of the triple pattern of Figure 3 to an editing rule
adding a control flow between two existing SynchNodes (this is actually an abstract rule to be
instantiated for the different specializations of SynchNode), in order to produce an operational
triple graph rule which maintains the consistency between the activity diagram and the rule set.
A match from the editing rule to the triple pattern causes the construction of the L′ (and the
omitted identical K′) component of the rule, by creating the corresponding nodes, and then the
completion of the R′ component, according to the process described in [BGL08]. In order to

5 / 12 Volume 18 (2009)

Resource-based enactment and adaptation

Figure 3: The triple patterns relating activity edges and synchronization resources.

keep the figures illustrating the rules compact, we adopt the following convention. The L \K
component of the rule, i.e. those nodes and edges which have to be present for the match to
succeed, but which are deleted by rule application, is identified by drawing light grey regions
around them and tagging them with the {del} label. In an analogous way, the R\K component
of the rule, denoting the elements which are created by rule application, are surrounded by dark
grey regions tagged with {new}. As it is easy to see, the L = K part for the correspondence graph
contains only the RuleRes nodes, while the R part adds the SyncRes node and its associated
edges. The correspondence mappings are also generated according to the pattern.

In a similar way, the triple patterns of Figure 2 are used to create operational rules generating
the resource rewriting rules whenever a SynchNode is added to the diagram.

We can therefore assume that when the rule of Figure 4 is applied to a triple graph containing
two instances of SynchNode in its source graph, the correspondence and target graphs already
contain the corresponding RuleRes and Rule nodes, so that these rules are enriched with the
correct definition of production and consumption for SynchRes nodes. An analogous effect
updates the data rule associated with an ExecutionNode to reflect production or consumption
of data resources according to the direction of object flow edges,

Figure 4: Construction of a triple rule from an editing rule adding a control flow.

If the rule of Figure 4 is applied to generate a control flow edge from a fork node, the rule as-
sociated with the fork will accordingly be updated to produce a new ControlRes to enable the
rule corresponding to the target of the edge. Symmetrically, the addition of a control flow leading

Proc. GT-VMT 2009 6 / 12

ECEASST

to a join node will add a new resource to the L component of the rule for the join node, which
will therefore require that a sufficient number of such resources are produced by its predecessors.

Figure 5 shows the rule for inserting a fork-join pair between two existing nodes and the cor-
responding updates on the rules according to the triple pattern construction. The pair is identified
by an attribute pair, which is an addition to the activity diagram metamodel and is computed
to produce a unique new value with each pair creation. To show the effect on the set of rules,
we have used a specific representation of a RuleRes, listing the multisets of enabling resources
produced and consumed by each rule. The actual names in the rule description depend on the
values of the description attribute. The rule descriptions in the rule resources and the actual rules
are maintained consistent by the patterns.

Figure 5: Insertion of a fork-join pair and consequent modification of rules.

A similar construction holds for choice and merge nodes, where the rule for the merge node
will usually be connected also to a data resource which is simply queried (i.e. read without being
consumed). The abstract representation of resource rewriting rules can actually be translated to
several concrete rule-based languages, as discussed in Section 6.

The relation between synchronization and data transformation rules can be established fol-
lowing the construction presented in [BMWY08], to relate control and data flows on spatial
structures, and based on the composition of pushouts as shown in Figure 6. Note that, while
in [BMWY08] the construction was performed on typed attributed graph rules, we use here
triple graph rules, so that each L, K, or R component in Figure 6 is actually a triple graph.

L

��

44K
loo r //

��

**
R

��

44L1

��

K1
l1oo r1 //

��

R1

��
L2 44K2

l2oo r2 // **R2 44L′ K′
loo r // R′

Figure 6: The construction for rule composition.

7 / 12 Volume 18 (2009)

Resource-based enactment and adaptation

In particular, the intersection will result from the identification of the ExecutableNodes
involved both in the control and the data flow specification. As all other nodes and edges types
are different for control and data flows, the pushout will simply result by the union of all other
components of the rules and of their associations with the identified nodes.

5 Patterns of transformation

The transformation of control policies in workflows can redefine sequentialization or paralleliza-
tion of activities for which there is no specific order required by causal (data) dependency. Hence,
these modifications should not affect the definition of the data transformation part of the activi-
ties, but only the enabling mechanism.

From this point of view, it could be useful to redefine the synchronization enactment rules
in an incremental way, as the transformation of the activity diagram takes place. In particular,
one could thus maintain a continuous connection between the specification of the workflow and
its enactment mechanism. We do not address here the problem of dynamic change – occurring
when modifications are performed on workflow regions which are processing workflow instances
– which can be dealt with with standard methods [EKR95].

In particular, we consider the two basic adaptation patterns for control flows, i.e. sequential-
ization of parallel activities and parallelization of sequential activities, under the assumption that
forks and joins are paired and correctly nested. To this end, we supplement the metamodel for
activity diagrams with a pair of marker node types, called MoveMark and StayMark. The first
is used to follow a chain of activity nodes descending from the fork node for which we want to
sequentialize activities. The second marks the beginning of the second chain. Figure 7 shows
the rules in the transformation unit for sequentializing activities included in a fork-join pair.

In particular, rule I starts the transformation by marking the nodes immediately below the fork
node: one node is assumed to start the chain of activities, while the other will start a sequence of
activities to be performed after the first one. This rule removes the fork node and the control flows
associated with it and creates a ControlFlow to the node marked with a MovingMark from
the node which preceded the fork node. The marking nodes have an attribute which identifies the
fork node from which we have started. Rule II simply moves the marking down the chain. This
rule is equipped with a negative application condition (not shown here for simplicity), which
prevents the propagation of the marking if node 1 is the join node paired with the originating
fork node. Rule II is therefore performed as long as possible until this join node is reached, at
which moment Rule III is executed. This rule eliminates the join node and its associated control
flows, relates the terminal node for the chain which will have to end the sequence with the node
which descended from the join node, attaches the terminal node of the first sequence with the
initial node (marked with StayMark) of the second sequence, and removes the markings.

Only the modifications depending from rules I and III need be performed at the level of the en-
actment rules, while rule II does not have effect on the control structure. All in all, this results in
the removal of 6 control flows and the insertion of 3 new ones. By applying the synchronization
pattern of Figure 3 to these rules, one can specify the operational triple rules required to keep
the enactment rules consistent with the modified diagram. Note that the resulting transformation
unit can be equipped with parameters, to indicate the fork-join region to be sequentialized, or

Proc. GT-VMT 2009 8 / 12

ECEASST

Figure 7: The three rules for sequentialization of activities.

modified so as to start new sequentialization processes if nested fork-join regions are present. In
this case the quest resumes for a fork from the node which is now starting the sequence.

The opposite process of parallelization can be specified through the rule of Figure 8. In this
case a pattern of 4 nodes in sequence has to be found (this is guaranteed by the presence of
the initial and final node and the requirement that at least two activities must be performed for
them to be parallelized). The rule removes all the existing control flows and inserts a fork-join
pair within which the two intermediate activities can now be performed concurrently. Again, the
process can be iterated, and a negative application condition can be used to check that no causal
dependency exists between the two activities. Similar to the case before, the operational triple
rules can be derived from the patterns to ensure the incremental update of the enactment rules.

6 From abstract to concrete syntax

The translation process introduced in Section 4 leaves us with a graph defining an abstract syntax,
which could be presented to the user or translated towards an executable syntax in several forms.

Figure 9(b) shows a possible visual representation of the rule derived from the fragment of
activity diagram in Figure 9(a) and associated with the Action node named makePayment by
combining the data and control parts. The representation of the rule is based on the containment
relation, so that a rule is a container with three compartments showing the context, equivalent to
the K component of a DPO rule, the left and right sides of the rule, with the usual interpretation,

9 / 12 Volume 18 (2009)

Resource-based enactment and adaptation

Figure 8: The rule for parallelization of activities.

a condition compartment and an assignment compartment, where values of the attributes in the
right-hand side can be evaluated. One can note that this representation is equivalent to a graph
rewriting rule for typed attributed discrete graphs, in which no edges exist between entity nodes.

Figure 9: A fragment of an activity diagram (a) and a visual rule derived from it (b).

This visual representation is equivalent to the WIPPOG rule given by:

CONTEXT: invoice(id=”inv1”)
PRODUCES: synchronize(desc=”acceptPayment”)

Note that this rule is specialized to fire only when the specific invoice with name inv1 has
been generated, hence the execution of a workflow coded through WIPPOG rules of this type
can exploit indexing of rules according to the required resources.

7 Conclusions

Activity diagrams are increasingly used to express workflows, exploiting users’ familiarity with
the use of UML for process specification. While some formal semantics have been provided for
activity diagrams, the generation of concrete enactment mechanisms ensuring the coherence of
the execution with the specification is still an area of research.

Proc. GT-VMT 2009 10 / 12

ECEASST

In this paper, we have presented an approach to this problem, based on a simplified model of
activity diagrams, suitable for the expression of non-iterative workflows, where activity nodes
correspond to rules in a resource production-consumption setting.

The approach allows the separate specification of control and data flows, which results in
different types of rules, which can then be integrated exploiting pushouts. The correspondence
between nodes and rules, or between flows and enabling resources, is modelled through triple
graph grammars, thus allowing an incremental construction and maintenance of the rules, as the
diagram is edited or transformed. Although we have used patterns to generate operational rules
with source in the activity graph and target in the resource rewriting metamodel, the approach
could be used in a bidirectional way, so that modifications in the abstract representation of rules
could be reflected to the activity diagrams. Also, the possibility of seeing rules as resources
allows the execution of transformations via reflection.

While we have focused only on control and data flow, several dimensions of activity diagrams
could also be explored under the resource perspective. For example, distribution could be mod-
elled through the use of distribution resources associated with partition nodes, so that rules are
constrained to occur only at some locations or be executed by some organizational roles. Loops
could be modelled associating data resources, either already defined or suitably created, with
loop variables. Alternatively, transformation units, here exploited only to perform adaptation
tasks, could be extended to model some complex activities.

Acknowledgements: Partially funded by Ministry of Research, Project ”CHAT”.

Bibliography

[AB02] W. van der Aalst, T. Basten. Inheritance of Workflows: an approach to tackling
problems related to change. TCS 270, 2002.

[AH01] W. van der Aalst, K. van Hee. Workflow Management: Models, Methods, and Sys-
tems. MIT Press, 2001.

[AHKB03] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, A. P. Barros.
Workflow Patterns. Distributed and Parallel Databases 14(1):5–51, 2003.

[AM00a] A. Agostini, G. D. Michelis. Improving flexibility of workflow management sys-
tems. In Proc. BPM 2000. LNCS 1806. Springer, 2000.

[AM00b] A. Agostini, G. D. Michelis. A light workflow management system using simple
process models. Int. J. Collab. Comp. 9(3-4), 2000.

[AP91] J.-M. Andreoli, R. Pareschi. Linear Ojects: Logical Processes with Built-in Inheri-
tance. New Generation Computing. 9(3/4):445–474, 1991.

[BB08] B. Braatz, C. Brandt. Graph Transformations for the Resource Description Frame-
work. In Proc. GT-VMT 2008. ECEASST 10. 2008.

11 / 12 Volume 18 (2009)

Resource-based enactment and adaptation

[BDD+04] P. Bottoni, M. De Marsico, P. Di Tommaso, S. Levialdi, D. Ventriglia. Definition
of visual processes in a language for expressing transitions. JVLC 15(3):211–242,
2004.

[BGL08] P. Bottoni, E. Guerra, J. de Lara. Enforced generative patterns for the specification
of the syntax and semantics of visual languages. JVLC 19(4):429–455, 2008.

[BMWY08] P. Bottoni, N. N. Mirenkov, Y. Watanobe, R. Yoshioka. Composing control flow
and formula rules for computing on grids. In Proc. GT-VMT 2008. ECEASST 10.
2008.

[Dt01] M. Dumas, A. ter Hofstede. UML Activity Diagrams as a Workflow Specification
Language. In Proc. UML’01. LNCS 2185, pp. 76–90. 2001.

[EKR95] C. Ellis, K. Keddara, G. Rozenberg. Dynamic Change Within Workflow Systems. In
Proc. COOCS’95. ACM Press, 1995.

[EW03] R. Eshuis, R. Wieringa. Comparing Petri Net and Activity Diagram Variants for
Workflow Modelling - A Quest for Reactive Petri Nets. In Petri Net Technology for
Communication-Based Systems. LNCS 2472, pp. 321–351. 2003.

[Gir87] J.-Y. Girard. Linear Logic. TCS 50:1–102, 1987.

[KLN+05] E.-J. Ko, S.-Y. Lee, H.-M. Noh, C.-J. Yoo, O.-B. Chang. Workflow Modeling
Based on Extended Activity Diagram Using ASM Semantics. In Proc. ICCSA 2005.
LNCS 3482, pp. 945–953. 2005.

[KtB00] P. Kiepusziewski, A. ter Hofstede, C. Bussler. On Structured Workflow Modeling.
In Proc. CAiSE 2000. LNCS 1789, pp. 431–445. Springer, 2000.

[MM90] J. Meseguer, U. Montanari. Petri nets are monoids. Information and Computation
88(2):105–155, 1990.

[OMG07] OMG. Unified Modeling Language: Superstructure. OMG, 2.1.1 edition, Feb 2007.

[RHEA05] N. Russell, A. H. M. ter Hofstede, D. Edmond, W. M. P. van der Aalst. Workflow
Data Patterns: Identification, Representation and Tool Support. In Proc. ER 2005.
LNCS 3716, pp. 353–368. 2005.

[RvtE05] N. Russell, W. van der Aalst, A. ter Hofstede, D. Edmond. Workflow Resource
Patterns: Identification, Representation and Tool Support. In Proc. CAiSE 2005.
LNCS 3520, pp. 216–232. 2005.

[Sch94] A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In WG.
LNCS 903, pp. 151–163. Springer, 1994.

[Swe94] K. Swenson. Collaborative planning: Empowering the user in a process environ-
ment. Collaborative Computing 1(1), 1994.

Proc. GT-VMT 2009 12 / 12

	Introduction
	Related work
	Formal background
	Relating activity diagrams and multiset rewriting
	Patterns of transformation
	From abstract to concrete syntax
	Conclusions

