
Electronic Communications of the EASST
Volume 16 (2009)

Proceedings of the
Doctoral Symposium at the

International Conference on Graph Transformation
(ICGT 2008)

Using a Triple Graph Grammar for State Machine Implementations

Michael Striewe and Michael Goedicke

15 pages

Guest Editors: Andrea Corradini, Emilio Tuosto
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Using a Triple Graph Grammar for State Machine Implementations

Michael Striewe1 and Michael Goedicke1

1Universität Duisburg-Essen
{michael.striewe, michael.goedicke}@s3.uni-due.de

Abstract: Typical techniques of model-driven development use graph transforma-
tions to manipulate models and use generators to produce source code. In this contri-
bution we suggest to use graph transformations instead of generators in order to get a
closer connection between model and code. We define a Triple Graph Grammar for
the mapping from a modeling tool data format to source code and derive a sample
set of transformation rules from this. Thereby both truly simultaneous manipula-
tion of model and code is enabled as well as virtually simultaneous manipulation by
direct propagation of changes from code to model and back again.

Keywords: Triple Graph Grammar, Model translation, Finite State Machine

1 Introduction

A convenient way of modeling state- and process-oriented system behavior is the use of finite
state machines. They can be comprehensively specified, simulated and validated at design time
to get a formally founded skeleton for a software application. They integrate well with other
approaches, because each transition may invoke either generated code from other models or
arbitrary source code, possibly from legacy systems.

A need to preserve the semantics of the state machine model in the code emerges from the
two possible types of errors that can occur: either the model itself is erroneous, e.g. leading
to a deadlock, or the run time behaviour of the system does not meet the expected specified
behaviour. In the first case, it is sufficient to check the model against the original specification. In
the second case, there may be an erroneous model, an erroneous manual implementation or errors
in generated source code. Hence, it is necessary to check the implementation as the final result
after several steps against the original specification. This can be done be extracting a model from
the implementation and using the same model checking techniques as in the first case, provided
the extraction does not change any semantics. Viewed from an abstract level, implementation
and model are two views on the same system, that have to be transformed simultaneously to keep
the connection between them. To maintain the resulting software systems, it is vitally important
to preserve as much of the semantic information of the models as possible in the source code to
be able to track back changes and errors [BLW05, HT06].

A direct implementation of a state machine in object-oriented source code can realize states
as classes, transitions as methods inside these classes and variables as auxiliary methods that
invoke arbitrary application methods to retrieve the current variable values. Guards and updates
for transitions can be realized as methods of boolean type, evaluating expressions and indicating
whether a condition is fulfilled or an expected update has taken place, respectively [BSG08,
BSG09]. Thus the complete semantics of a state machine can be embedded into source code.

1 / 15 Volume 16 (2009)



Using a Triple Graph Grammar for State Machine Implementations

In contrast to these considerations and possibilities, current techniques of model-driven de-
velopment use several unidirectional steps of transforming and refining models, starting from an
abstract model and resulting in platform specific source code. Semantics are not kept this way
and hence there is no way back to re-generate the model from existing source code. Additionally,
large systems may be composed of several interacting subsystems derived from different models.
Changes in one of these models should only be allowed to change existing source code but not
to override it, which could destroy the implementation of other models.

Following the ideas of [Sch94, Kö05], this problem leads to the idea of a Triple Graph Gram-
mar (TGG). We can represent the view used for verification using the syntax graph GV of some
modeling tool data format. Similarly, we can represent the implementation using the syntax
graph GC of the chosen programming language. An unidirectional transformation from GV to
GC is the classical model-driven development approach. A bidirectional mapping between both
graphs via a correspondence graph GM constitutes a TGG. Thus, GM covers the idea and seman-
tics of a concrete state machine, but no explicit representation in terms of a certain data format
or programming language. It allows (1) to create GC from a given GV in order to realize code
generation from models, (2) to create GV from GC in order to extract models from source code
and (3) to manipulate GV and GC simultaneously in order to allow model-based editing of source
code.

The expected benefit is to tackle all problems named above. Simultaneous editing allows to
change the initial models in later design phases without destroying unrelated existing source code
by newly generated code. Extracting models from source code allows to check the implemen-
tation against the original specification, provided the TGG itself preserves the semantics of the
model. Finally, code generation is still possible with TGGs, so the new benefits do not come on
the cost of loosing older ones.

This contribution is structured as follows: Section 2 summarizes related work in the context
of TGGs and model-driven code generation. Section 3 explains the formal base of our approach
in terms of type graphs and mappings and gives an example. Section 4 describes the actual TGG
rules. Section 5 depicts a tool implementation based on our approach. Section 6 evaluates the
approach and section 7 concludes our work.

2 Related Work

The approach presented in this paper is related to different research subjects. At the formal base
it uses Triple Graph Grammars that are also studied in other application domains. In [JKS06]
Triple Graph Grammars are used to specify views on models to avoid the duplication of data.
Another approach using Triple Graph Grammars in view management to propagate changes
to derived views is shown in [GL06]. This is partially similar to our approach, since we can
propagate changes from model representations to implementations and the other way round. In
[JZ99] Triple Graph Grammars are used for transformations between a conceptual data model
and legacy data models for databases. This is related to our approach on a higher level, since
model representations are more abstract than the implementations that are embedded into legacy
systems. The synchronization of models is also addressed in [GW06] with special respect to
incremental changes and their performance aspects.

Proc. Doctoral Symposium ICGT 2008 2 / 15



ECEASST

Model transformation and code generation with explicit usage of syntax graphs or mapped
models can also be done without the use of TGGs. Model refactoring for the Eclipse Modeling
Framework (EMF), that can be used for code generation, is done by graph transformations in
[BEK+06], including syntax graphs of source code as special model in [Tae08]. Different to our
approach, this work does not use model semantics embedded in the source code. The system
presented in [WS05] maps arbitrary UML models to Java source code, but traverses an UML
tree instead of using a graph transformation. In general, unidirectional model transformation
and code generation is well studied, but embedding semantical information explicitly into source
code and extracting it later on is not a widely discussed approach.

However, simultaneous manipulation and model extraction is a crucial point for verification
and re-engineering and hence also addressed by other techniques than TGGs. Model round-trip
engineering [AC06, SK04] and queries for model-specific code patterns [ABC07] do partially
the same as our approach, but cannot cover both propagation of changes and truly simultaneous
manipulations as graph grammars can do.

3 Defining the approach

In this section, we describe the formal parts our approach is based on in terms of type graphs and
mappings. To illustrate things, we give an example that will be used throughout the rest of this
paper.

3.1 Graphs and Type Graphs

The Triple Graph Grammar used in this paper is based on syntax graphs both for modeling tool
data format and programming language. The approach can be used with any language that can
be parsed to a syntax graph. Thus our approach can also be used to translate between different
data formats or programming languages. As an example, we use the simple XML-based data
format from the real-time model checker UPPAAL [LPY97] for GV throughout the rest of this
paper. As a programming language, we use Java and its syntax graph for GC.

3.1.1 UPPAAL Syntax

The graph GV used to represent the model is typed over the syntax elements for the modeling
language. In case of a simple XML-based language, the necessary type graph can be derived
from the related data type definition (DTD) of the XML format. The type graph for UPPAAL
derived manually this way is shown in figure 1(b). To illustrate its usage, figure 1(a) shows a
finite state machine modeled in UPPAAL and figure 1(c) the graph of its representation in XML.

The type graph appears to be very simple, since it covers parts of the state machine in a rather
abstract way. For each state, there is a node named “location” with a child for its name. For each
transition there is a node named “transition” with children for its source, target, guard and update.
Guards and updates are represented as nodes of type “label”, where the inherited attribute “text”
holds an expression as string and another attribute “kind” indicates the usage as guard or update.
This will require string parsing mechanisms during graph transformation to split up these strings

3 / 15 Volume 16 (2009)



Using a Triple Graph Grammar for State Machine Implementations

(a) A state machine with five states and
five transitions modeled in UPPAAL.

(b) Type graph for the XML structure of the UPPAAL data format.

(c) Graph representing the XML structure for the state machine shown in (a) based in the type graph shown in
(b). For each state, there is a node named “location” with a child for its name. For each transition there is a node
named “transition” with children for its source, target and guard. Each location has an ID by which it is referred
in sources and targets.

Figure 1: Example taken from an existing implementation of our approach, showing visual model
representation in the UPPAAL editor (a) and the underlying XML syntax of the data format (c)
based on type graph (b).

Proc. Doctoral Symposium ICGT 2008 4 / 15



ECEASST

into more detailed syntax graphs for expressions. Since the result of these parsing operations
could be expressed by an extended set of types in the DTD, this is no general limitation.

The node “nail” is only used for layout information as well as the attributes “x” and “y” in
some of the nodes. They are without relevance for the semantics of the model. Constructing the
transformation rules, it has to be kept in mind that attributes or graph nodes of types like these
are not mapped to other graphs and hence are not translated into the other language. However,
a concrete syntax tree of the given language might not be complete without these nodes and
hence transformations must be able to include reasonable default nodes without state machine
semantics if necessary. In contrast, if the grammar is used to manipulate an existing syntax
graph, these default nodes may not override existing ones.

3.1.2 Java Syntax

The graph GC representing the source code is typed over the abstract syntax elements for the
programming language. This type graph can be derived from the according language specifica-
tion. Because of the large size of the resulting type graph in the case of Java, we do not show a
sample figure here. As usual for programming languages, syntax graphs for Java do not contain
any superfluous layout information and even no source code comments. Thus, any semantical
information that should be extracted from the source code has to be represented by real program
statements and expressions. Figure 3 gives an example of the used syntax graph, representing
the source code shown in figure 2. Details about the chosen Java constructs are out of the scope
of this paper and can be found in earlier publications [BSG08, BSG09].

Although these graphs are already complex, it can be beneficial to extend them by additional
elements for practical reasons. Consider a syntax graph having a node of type “SimpleType” to
denote literals referring to a type declaration. The according declaration might be represented
by a node of type “TypeDeclaration” somewhere in the syntax graph. Although both elements
are semantically related there will be no edge between these two nodes, because they are syntac-
tically independent. Adding a new edge type (e.g. named “access”) to the type graph allows to
connect the nodes. Some edges of this type are visible in figure 3. Semantic information is avail-
able for graph pattern matching by this means and hence mapping of structures and application
of rules becomes easier.

3.1.3 Correspondence Graph

As depicted in the introduction, we would like to constitute a TGG by mapping GV to GC via a
correspondence graph GM. This graph has to contain node types for each semantically relevant
element of a state machine, independent of any concrete representation in a data format oder
programming language. Although we stated above that GM has to be understood as an abstract
view on the semantics of the state machine without a concrete representation, the type graph for
GM defines a language for representing this idea. This language forms the correspondence graph
used in the TGG and provides the formal backbone of the TGG this way. The type graph is shown
in figure 4. Obviously it has to contain nodes for states and transitions. Guards are understood
as expressions, connected with a transition via an edge named “PRECONDITION”. The same
applies for updates, which can be either deterministic or non-deterministic. For deterministic

5 / 15 Volume 16 (2009)



Using a Triple Graph Grammar for State Machine Implementations

public class SingleMeasurementState implements IState
{

@Transition(target = SingleMeasurementState.class,
contract = RestartMeasurementContract.class)

public void restart(MeasurementModule actor)
throws MeasurementAbortedException

{
actor.increaseNumberOfRestarts();
actor.initClients();
actor.doMeasure("Restarted measurement");

}

@Transition(target = TerminationState.class,
contract = TerminateMeasurementContract.class)

public void terminateMeasurement(MeasurementModule actor)
{

actor.terminateMeasurement();
}

}

Figure 2: Class SingleMeasurementState with some outgoing transitions. This class
implements the third state from the state machine shown in figure 1(a). I.e. it is marked to be a
state by the implements IState fragment. It realizes two transitions, recognizable by the
Java annotation @Transition, naming the target of each transition as well as separate classes
where guards and updates are defined.

Figure 3: Syntax graph representing the source code shown in figure 2.

Proc. Doctoral Symposium ICGT 2008 6 / 15



ECEASST

updates we know a fixed value that is assigned to a variable when a transition is fired. For non-
deterministic updates, we only know the range a value is chosen from. Both ways of updates
can be represented in GM by the nodes “VALUEUPDATE” or “RANGEUPDATE” respectively.
In general, the type graph of GM captures expressions in a more detailed way than the one for
UPPAAL (see figure 1(b)), offering different types for operators and literals as well as edge
types with attributes for sorting operands. However, it does not allow as much combinations of
expressions and operators as a Java type graph would allow.

We mentioned above the existence of nodes in syntax graphs GV or GC, that are not relevant
for the state machine semantics and that are hence not mapped to GM. Similar applies to ele-
ments of the state machine definition, that might not be supported in a certain modeling tool or
programming language. These elements are present in the type graph for GM, but it is possible
that there will be no mapping for them into GV or GC. Nevertheless they cannot be neglected in
GM since they may be relevant when translating the state machine into a different language. E.g.
a modeling tool may not support non-deterministic updates and thus there will be no mapping
from the node “RANGEUPDATE” into GM.

3.2 Mappings

In order to realize the desired transformations, two graph mappings have to be defined: one
between GM and GV and one between GM and GC. The union of both mappings defines the
bidirectional mapping between GC and GV . Figure 5 shows this mapping covering the corre-
spondence for states and transitions by example. Elements denoting expressions for guards and
updates are not presented in this figure.

In general, there will always be a set of nodes in a syntax graph, mapped to a single node in
the correspondence graph, that is in turn mapped to a set of nodes in the other syntax graph. The
single node in the correspondence graph has to collect all necessary attributes that have to be
translated. In the sample figure this is shown by the attribute “name” in “STATE” nodes of the
correspondence graph, that maps the values of the attribute “name” in node “TypeDeclaration”
and “text” in node “name” as child of “location” in order to ensure properly named states.

Guards and updates would be represented by additional nodes according to the type graph
shown in 4, connected to a “TRANSITION” node by edges of type “PRECONDITION” or
“UPDATE”. These edges point to nodes covering the syntactical structure of the expression. This
avoids the need for string parsing mechanisms when translating expressions from one language
to another. In the case of Java, these structures can directly be mapped to Java syntax. In case
of UPPAAL, they are mapped to a node of type “label”, which contains the expression in string
form as an attribute.

Figure 5 also points out the relevance of additional edges in the Java syntax graph introduced
in section 3.1.2. Using the edge of type “access”, the reference from a transition to its target can
be found in the Java syntax graph by graph pattern matching without attribute comparison. See
the blue edge of type “access” on the left side of the figure, leading from a Java type name to its
declaration and the according red edge in the correspondence graph, leading from a transition to
its target.

Although graph pattern matching is sufficient to identify elements to be mapped, attribute
comparison might be needed to distinguish between these constructs and similar structures that

7 / 15 Volume 16 (2009)



Using a Triple Graph Grammar for State Machine Implementations

Figure 4: Type graph for the correspondence graph.

Figure 5: Mapping for the third state from the example state machine and its transitions from
programming language (left) to XML format (right) via the correspondence graph (center). Di-
rectly mapped elements are connected by dashed yellow lines. All other elements are necessary
to complete the respective syntax. The target of transition “terminateMeasurement” in the corre-
spondence graph and all other irrelevant elements from all graphs are not shown.

Proc. Doctoral Symposium ICGT 2008 8 / 15



ECEASST

are using other namespaces that are not part of the desired semantics. E.g. there may be several
nodes of type “TypeDeclaration”, connected to a “SimpleType” via an edge of type “superInter-
faceTypes”, but they are relevant for us only if the name of the “simple type” is “IState”.

4 Transformation rules

Rules are needed to insert and remove states, insert and remove transitions and insert or remove
guards and updates to the state machine. From each of these TGG rules we can derive several
operational rules. They are used to propagate changes of GC to GV and vice versa as well as
to cover simultaneous transformations of all three graphs of the triple, making up a sum of six
rules that can be derived from one TGG rule. For this paper, we derived the rules manually. The
special use case of generating a complete verification model for given source code or generating
source code for a given model can be understood as stepwise insertion of elements from scratch
and is hence covered by the general rules for adding elements. Also the original use of Triple
Graph Grammars as productions starting from an empty host graph is covered by this.

For example, the six rules for adding and removing a transition can be grouped to pairs accord-
ing to the subsets of graph triple elements they use. Rules 1 and 2 are used to add and remove
a transition simultaneously in both syntax graphs. Rule 3 is used for propagating a transition
that has been added in GC though GM towards GV . Inversely, rule 4 is used for propagation of
deleting a transition the same way. Rules 5 and 6 do the same the other way round, from GV

via GM towards GC. One of these rules will be displayed and discussed in more detail in the
following. Please note, that the use of auxiliary nodes or variables is skipped from these rules
for clearness as well as the use of default attribute on the RHS, if a new node is created.

Another set of six rules is needed for adding and removing states. It is simpler than the one
used for adding and removing transitions. In contrast to this, the rules for simultaneous manipu-
lation and propagating changes in guards and updates are much more complex. Syntax trees for
condition expressions may consist of virtually any number of syntactical elements. A series of
rules has to applied after adding a condition to handle the expression stepwise. Removing con-
ditions is simpler, because they can be disconnected from the transitions by deleting one edge
and then be removed by a generic set of rules for removing the dangling subtree. Further rules
are needed as well, for example to mark the initial state of the state machine or to compose a list
of model variables. As stated before, rules must not destroy existing code structures but must be
able to add default syntactical elements when implementing a state machine from scratch. Hence
the rule set is complemented by rules to provide those code skeletons.

4.1 Sample Rule: Adding a transition simultaneously

We use the notation of the AGG tool environment for algebraic graph transformations [Tae00] in
this section. Nodes and edges on the Right Hand Side (RHS) of a rule identified with nodes and
edges from the Left Hand Side (LHS) of a rule are prefixed with numbers. Nodes that must not
appear in a graph to get a matching are drawn as Negative Application Condition (NAC). Again
nodes identified with nodes from the LHS are prefixed. String attributes are written in quotes,
while variables used during the transformation are written without quotes.

9 / 15 Volume 16 (2009)



Using a Triple Graph Grammar for State Machine Implementations

Figure 6: Sample rule for adding a transition simultaneously. Note that we are using variables
“sid” and “tid” on the LHS to read attribute values from “location" nodes that are reused on the
RHS in the “source” and “target” nodes. A value for variable “name” in the “TRANSITION”
node on the RHS has to be provided externally.

Proc. Doctoral Symposium ICGT 2008 10 / 15



ECEASST

The rule for simultaneous insertion of a transition in all graphs is shown in figure 6. As in
figure 5, elements on the left half of the figure origin from GC and elements on the right half
origin from GV . Nodes denoted by circles or rectangles with rounded corners origin from GM.
The LHS denotes a graph consisting of two states with complete mapping from GM to GC and
GV . No elements of transitions are relevant on the LHS. Moreover, the NAC explicitly enforces
their absence. Note that elements from both syntax graphs are included in the NAC, to clearly
distinguish this rule from other cases in which a transition may be already be added to one
of the syntax graphs by manual manipulation. Furthermore, the transition node from GM is also
included in the NAC, because a situation with missing transitions in the syntax graphs but present
transition in GM would not be valid and hence out of the scope of this rule.

The RHS of the rule shows the completed RHS, including (1) the new “TRANSITION” node
in the correspondence graph, connected to the existing state nodes by new edges, (2) a “transi-
tion” node and two adherent nodes “source” and “target” in GV , connected to the existing node
“template”, and (3) several nodes in GC for the programming language, i.e. a new method with
some annotations in this example. It is assumed that the attributes “name” for the transition both
in GM and GC can be set by a variable name. The value has to be provided by the user when
triggering the rule application.

5 Implementation

Our approach has been implemented using version 1.6.2.2 of AGG. As mentioned in section
4, rules for AGG were derived manually. XML files were retrieved from their graph structure
and written back by applying a XSLT provided at the AGG website [AGG]. For retrieving and
writing syntax graphs for Java, a plugin for the Eclipse IDE was used, which is based on the
Java Development Tools (JDT) [JDT08] as underlying API. This plugin is able to read and write
syntax graphs for Java and make them accessible for the graph transformation API of AGG.

For reading source files, it uses the internal parser of Eclipse and accesses the resulting data
structure. Each object in this structure represents one node in a syntax tree. Hence this structure
is traversed and node objects in an AGG grammar are created for each object in the structure.
Attributes of the graph nodes and edges are set according to the attributes of the objects in the
data structure. During traversal of the object structure, additional information is collected in
order to insert additional edges, extending the syntax tree to a syntax graph. Edges of type
“access” used in section 3.1.2 are such additional edges. However, the plugin is designed for
more general purposes and able to insert other types of edges.

For writing source files, an observer keeps track of changes triggered by applying rules and
can map them back to the abstract syntax tree. As far as Eclipse does not allow to change the
object structure directly, writing back the changes needs to replace the existing Java files by new
ones generated from the graph. Obviously this is a major drawback and limits the practical use of
the tool chain. In fact, truly simultaneous manipulations cannot be realized this way. However,
extracting models from code and generating code from models is not affected by this limitation.

A variation of our concept is to divide each rule into two steps. The first step propagates a
change from one syntax graph to the abstract model of the finite state machine and the second
step propagates it to the other syntax graph. Thereby we reduce the number of nodes both on

11 / 15 Volume 16 (2009)



Using a Triple Graph Grammar for State Machine Implementations

LHS and RHS of the rules and make them less complex. Furthermore, it allows to use different
rules in the second step and hence extend the graph triple to a n-tuple, supporting more than one
specification or programming language. Of course the result is not a TGG any longer.

Based on this variation, we are able to use the approach to extract the embedded model seman-
tics from given source code, even if they were not initially generated by graph transformations
via the TGG. The rule set used to achieve this consists of 49 operational rules. Up to minor cor-
rections, the complete tool chain from parsing source files, translating them to graphs, adding the
correspondence graph, adding the XML graph and applying XSLT is successfully implemented
in the plugin mentioned above.

6 Evaluation of the approach

Implementations of our approach are intended to be used during the design and implementa-
tion phase inside the software development process. While implementing the rules and doing
practical experiments, we made several observations that will be discussed in the following.

6.1 Benefits

One major benefit of our approach is the bijectivity of the mapping. Thus it is irrelevant, which
graph is changed by a programmer or modeller, because changes are triggered from both ends.
Furthermore, rules preserve existing structures and can thus be used in cases, where parts of ex-
isting code or models have to be protected. The use of graph transformations is hence superior to
code generating techniques, e.g. using code templates, because it is reversible and less obstruc-
tive regarding existing structures. Additionally, the bijectivity of the mapping allows it to track
back errors directly from code to the model, allowing to use model checking techniques easily
to analyse the implementation.

Another important point is the fact, that changes to the syntax graphs can be triggered by
other means than graph transformation. This makes it possible to integrate the approach into
tools working on graphs but without means of graph transformations. In fact, editing will not be
simultaneous as with synchronous rule application in this case, but rule matching can be done
continuously and will automatically catch every relevant change.

Proofs for completeness and correctness are not considered here, but since the rules can be
derived systematically from the mapping, correctness could in principle be proven by showing
the correctness of both the mapping and the derivation process. This makes the approach extend-
able without need for new explicit proof obligations. Additionally, the rules derived from the
Triple Graph Grammar can be used to prove the implementation of a model to be correct. Tools
designed for the use of TGGs can help to automate this process.

6.2 Drawbacks

Memory structures of editing systems are not necessarily equal to their data format representa-
tion in an abstract syntax tree. Additionally, object structures representing this abstract syntax
tree inside editing systems may be graph-like, but not prepared for the application of graph trans-
formations. Both facts make it necessary to export these structures into a graph format suitable

Proc. Doctoral Symposium ICGT 2008 12 / 15



ECEASST

for graph transformation and write them back afterwards. The result is a significant slowdown
and makes it difficult to realize simultaneous editing. As mentioned in section 5, tool integration
of simultaneous editing is not possible at the moment. The general problem of read and write
operations is not limited to our approach or the special case of tool integration, but also discussed
in [JKS06]. Moreover, imports and exports may be error-prone, so formal proofs are depend on
the correctness of the import/export routines as well.

While the abstract model expressed in GM is able to cover all semantics of a finite state ma-
chine, this is not necessarily true for the syntax of the chosen specification or programming
language. Hence the mapping from GM can only be complete for the least common subset of
supported operations in the chosen languages.

6.3 Future Work

One of the next goals is stronger and more direct tool support, using internal data structures of
editors to get rid of the need for explicit reading and writing files. This implies the need of direct
access to an API for tools handling specification languages. This would make the use of XSLT
superfluous and could integrate everything into one tool. Additionally, when using an API there
would be not longer the need to write the graph structure explicitly to disk. A better performance
can be expected if this step can be skipped. In an optimal solution an IDE would integrate source
code editor, model editor and graph transformation engine, all sharing the same graph base data
structure. The vision is to allow both truly simultaneous and virtually simultaneous editing this
way. In truly simultaneous editing, the user marks matching points either in the code or the
verification model and applies rules directly. In virtually simultaneous editing, a background
process checks for changes permanently and every change triggers the rule application and is
propagated thereby through the models.

Our general approach is not limited to the use case of state machine implementations. In
theory it can be used in any case in which a model can be mapped directly to an implemen-
tation. Considering Java as a platform independent language and thus omitting the need of a
platform specific model in the traditional model-driven development process, this enables direct
bidirectional connections between various kinds of platform independent models and the whole
application source code. However, the approach presented in this paper is no general approach
to map any arbitrary code structure to a related model. The key requirement for generating TGG
rules and deriving transformation rules is to know how a model is mapped to a programming
language and which syntactical elements are used for this mapping.

7 Conclusions

In this paper, we presented a Triple Graph Grammar to connect finite state machine models with
their implementation in source code. We explained the explicit mapping for states and transitions
and showed how to derive rules for simultaneous manipulation and bijective change propagation
from this by example. The derivation followed a schema with equal or inverse parts in the rules
and can hence be used as a general process. We discussed the benefits of this approach and the
drawbacks existing in the current implementation.

13 / 15 Volume 16 (2009)



Using a Triple Graph Grammar for State Machine Implementations

It can be summarized, that the approach allows the true simultaneous manipulation of two
graphs as well as the propagation of changes from one syntax graph to another. While this is
no new result for TGGs in general, it is new for the relation between models and source code.
Hence classical model transformation and code generation from model-driven development can
be replaced or at least supplemented by manipulations and transformations based on a bijective
mapping. This way, we gain better possibilities for verifying implementations and tracking back
errors to the models.

Bibliography

[ABC07] M. Antkiewicz, T. T. Bartolomei, K. Czarnecki. Automatic extraction of framework-
specific models from framework-based application code. In ASE ’07: Proceedings
of the twenty-second IEEE/ACM international conference on Automated software
engineering. Pp. 214–223. ACM, New York, NY, USA, 2007.
doi:http://doi.acm.org/10.1145/1321631.1321664

[AC06] M. Antkiewicz, K. Czarnecki. Framework-Specific Modeling Languages with
Round-Trip Engineering. In Nierstrasz et al. (eds.), Model Driven Engineering Lan-
guages and Systems, 9th International Conference, MoDELS 2006, Genova, Italy,
October 1-6, 2006, Proceedings. Lecture Notes in Computer Science 4199, pp. 692–
706. Springer, 2006.

[AGG] AGG website. http://tfs.cs.tu-berlin.de/agg/.

[BEK+06] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns, G. Taentzer, E. Weiss. EMF Model
Refactoring based on Graph Transformation Concepts. In Proceedings of Third In-
ternational Workshop on Software Evolution through Transformations (SETra’06).
Volume 3. Natal, Brazil, sept 2006. Electronic Communications of the EASST.

[BLW05] P. Baker, S. Loh, F. Weil. Model-Driven Engineering in a Large Industrial Context –
Motorola Case Study. Pp. 476–491 in [BW05].

[BSG08] M. Balz, M. Striewe, M. Goedicke. Embedding State Machine Models in Object-
Oriented Source Code. In Proceedings of the 3rd Workshop on Models@run.time at
MODELS 2008. Pp. 6–15. 2008.

[BSG09] M. Balz, M. Striewe, M. Goedicke. Embedding Behavioral Models into Object-
Oriented Source Code. In Software Engineering 2009. Fachtagung des GI-
Fachbereichs Softwaretechnik, 2.-6.3.2009 in Kaiserslautern. 2009.

[BW05] L. C. Briand, C. Williams (eds.). Model Driven Engineering Languages and Sys-
tems, 8th International Conference, MoDELS 2005, Montego Bay, Jamaica, October
2-7, 2005, Proceedings. Lecture Notes in Computer Science 3713. Springer, 2005.

[CEM+06] A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, G. Rozenberg (eds.). Graph
Transformations, Third International Conference, ICGT 2006, Natal, Rio Grande

Proc. Doctoral Symposium ICGT 2008 14 / 15

http://dx.doi.org/http://doi.acm.org/10.1145/1321631.1321664
http://tfs.cs.tu-berlin.de/agg/


ECEASST

do Norte, Brazil, September 17-23, 2006, Proceedings. Lecture Notes in Computer
Science 4178. Springer, 2006.

[GL06] E. Guerra, J. de Lara. Model View Management with Triple Graph Transformation
Systems. Pp. 351–366 in [CEM+06].

[GW06] H. Giese, R. Wagner. Incremental Model Synchronization with Triple Graph Gram-
mars. In Model Driven Engineering Languages and Systems, 9th International Con-
ference, MoDELS 2006, Genova, Italy, October 1-6. Pp. 543–557. 2006.

[HT06] B. Hailpern, P. Tarr. Model-driven development: The good, the bad, and the ugly.
IBM Systems Journal 45(3):451–461, 2006.

[JDT08] Eclipse Java Development Tools. 2008. http://www.eclipse.org/jdt/.

[JKS06] J. Jakob, A. Königs, A. Schürr. Non-materialized Model View Specification with
Triple Graph Grammars. Pp. 321–335 in [CEM+06].

[JZ99] J. H. Jahnke, A. Zündorf. Handbook of Graph Grammars and Computing by Graph
Transformation. Volume 2, chapter Applying Graph transformations to database re-
engineering. World Scientific, 1999.

[Kö05] A. Königs. Model Transformation with Triple Graph Grammars. In Model Transfor-
mations in Practice Satellite Workshop of MODELS 2005. Montego Bay, Jamaica,
2005.

[LPY97] K. G. Larsen, P. Pettersson, W. Yi. UPPAAL in a Nutshell. Int. Journal on Software
Tools for Technology Transfer 1(1–2):134–152, Oct 1997.

[Sch94] A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In Mayr
et al. (eds.), Graph-Theoretic Concepts in Computer Science. LNCS 903. 1994.

[SK04] S. Sendall, J. Küster. Taming Model Round-Trip Engineering. In Proceedings of
Workshop on Best Practices for Model-Driven Software Development. 2004.

[Tae00] G. Taentzer. AGG: A tool environment for algebraic graph transformation. In Nagel
et al. (eds.), Application of Graph Transformation with Industrial Relevance: In-
ternational Workshop, AGTIVE’99. Lecture Notes on Computer Science 1779,
pp. 481–488. Springer, Kerkrade, The Netherlands, 2000.

[Tae08] G. Taentzer. Construction of Consistent Models in Model-Driven Software Develop-
ment. In Kutsche and Milanovic (eds.), Model-Based Software and Data Integration,
Frist International Workshop, MBSDI 2008, Berlin, Germany, April 2008. Commu-
nications in Computer and Information Science 8, pp. 113–124. Springer, 2008.

[WS05] H. Wada, J. Suzuki. Modeling Turnpike Frontend System: A Model-Driven Devel-
opment Framework Leveraging UML Metamodeling and Attribute-Oriented Pro-
gramming. Pp. 584–600 in [BW05].

15 / 15 Volume 16 (2009)

http://www.eclipse.org/jdt/

	Introduction
	Related Work
	Defining the approach
	Graphs and Type Graphs
	UPPAAL Syntax
	Java Syntax
	Correspondence Graph

	Mappings

	Transformation rules
	Sample Rule: Adding a transition simultaneously

	Implementation
	Evaluation of the approach
	Benefits
	Drawbacks
	Future Work

	Conclusions

