
Electronic Communications of the EASST
Volume 16 (2009)

Proceedings of the
Doctoral Symposium at the

International Conference on Graph Transformation
(ICGT 2008)

Model-based Simulation of VoIP Network Reconfigurations using
Graph Transformation Systems

Ajab Khan, Paolo Torrini, Reiko Heckel

20 pages

Guest Editors: Andrea Corradini, Emilio Tuosto
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Model-based Simulation of VoIP Network Reconfigurations
using Graph Transformation Systems

Ajab Khan, Paolo Torrini, Reiko Heckel

University of Leicester, {ak271,pt95,reiko}@mcs.le.ac.uk

Abstract: We address the modelling and validation of P2P networks with
special attention for problems related to VoIP services, focusing particu-
larly on Skype. We use generalised stochastic graph transformation systems
and associated stochastic simulation techniques based on generalised semi-
Markov processes.

Keywords: Graph Transformation, Stochastic Simulation, Voice over IP

1 Introduction

Today’s Internet is already used as a public switch telephone network (PSTN), based on
the concept of Peer to Peer (P2P) to share voice, video and data. Among several VoIP
applications Skype is the most popular [AKK07]. Voice services are the prime source
of revenue for carrier service providers — though margins are low and dropping. Car-
rier service providers can reduce operational costs and increase revenues by shifting
from Time Division Multiplexing (TDM) to IP based interconnection. However, con-
cerns about Quality of Service (QoS) have caused many carriers to postpone technology
platform shifts [Tel06].

In P2P networks there is no centralised control. The transfer of data, voice and video
takes the form of a flow through intermediate nodes, but the nodes are free to join and
leave the network, and they are allowed to behave selfishly by blocking the routing of
traffic for third parties. This may result in a need for frequent architectural reconfigura-
tions [GS04]. In the case of VoIP traffic, the network has to recover particularly fast, so
that the quality of service is not affected [AKK07].

P2P VoIP traffic potentially suffers from performance issues like packet loss, commu-
nication delay, jitter and echo [Glo06], which can greatly affect QoS. Packet loss and
communication delay can occur principally due to network reconfigurations associated
with peer dynamics. Jitter can result from packets arriving at variable time intervals,
due either to network congestion, reconfiguration or peer dynamics.

Various solutions have been proposed to this sort of problems, e.g., [GS04] proposes
that an incentive should be given to intermediate nodes and resource owners, [Hec05]
proposes to maintain redundant links between peers, [LMP04] proposes an approach
based on changes in routing strategies. The peer dynamics and complexity of the
P2P network can make it hard and quite expensive to validate these solutions through
classical means [Hec05, MSZ03].

We propose to use model-based simulation to study reconfiguration in P2P networks.
The aim is to model protocols for evaluating and improving the QoS properties of VoIP

1 / 20 Volume 16 (2009)



Model-based Simulation of VoIP Network Reconfigurations

applications. We consider the P2P network architecture as a graph, in which network
nodes are represented by graph vertices and graph edges represent network connections.
Reconfiguration in such a network can be modelled by means of graph transformation
[Hec05]. Stochastic analysis techniques can be used for validation.

2 Generalised Stochastic Graph Transformation

In this section, we provide the basic notions of typed and stochastic graph transforma-
tion together with their semantic model of generalised semi-Markov processes and the
probability distributions needed for our case study. Following a different approach from
that presented in [KL07], these notions generalise those introduced in [HLM06, Hec05]
by allowing for general probability distributions.

2.1 Graph Transformation Systems

Given a type graph TG, a typed graph (over TG) is a pair 〈G, g〉 of a graph G and a graph
morphism g : G→ TG that assigns types to nodes and edges [EEPT06]. We are assuming
that nodes can carry attributes. A graph transformation rule consists of an injective
partial graph morphism r : L→ R. A match for r : L→ R into some graph G is a total
injective graph morphism m : L→G. Given a rule r and a match m for r in a graph G, we
say that 〈r,m〉 is a rule match in G. The SPO transformation from G with r at m, denoted
by G⇒r,m H or simply G⇒r H, is defined by the pushout of r and m in the category of
graphs and partial graph morphisms.

L

m
��

r // R

m∗
��

G r∗ // H

For example, the rule deliver packet in fig. 7(d) has a left-hand side with three typed
nodes (p,sn and sc2) and three edges (of type receiver from p to sc2, link from sn to sc2, and
at from p to sn). Its application removes the at edge and introduces a new one between
p and sc2, as shown in the right-hand side. The first two graphs in fig. 8 exemplify how
this rule can be applied — the left-hand side of the rule is mapped to the graph on the
left by matching nodes p and p1, sn and sn, sc2 and sc2, and so the graph on the right is
obtained.

A graph transformation system (GTS) G = 〈TG,P,π,G0〉 consists [KL07] of a type
graph TG, a set P of rule names, a function mapping each rule name p to a TG-typed
rule π(p) = r : L→ R, and an initial TG-typed graph G0. We make use of negative
application conditions (NACs) [EEPT06], shown as crossed-out nodes and edges in the
rules’ left-hand sides.

A numbered graph is a graph whose sets of nodes and edges form subsets of the natural
numbers. To capture the idea of a concrete and deterministic implementation of SPO
graph transformation, we assume a choice Σ of direct transformations such that

Proc. Doctoral Symposium ICGT 2008 2 / 20



ECEASST

• for every rule r : L→ R and match m for r in a graph G there is a unique result of
applying r at m, denoted by Σ(G,r,m) = (H,r∗,m∗);

• names are chosen consistently in consecutive transformations, preserving the iden-
tities of nodes and edges where possible, and never reusing names from the past,
i.e., for every sequence of transformations G0⇒r1 G1⇒r2 · · ·⇒rn Gn and 0< i< j≤ n
it holds that

1. x ∈ dom(r∗j ◦ · · · ◦ r∗i ) implies r∗j ◦ · · · ◦ r∗i (x) = x

2. x ∈ Gi∩G j implies x ∈ dom(r∗j ◦ · · · ◦ r∗i );

Limiting ourselves to graphs over natural numbers, the collection of all finite num-
bered graphs is actually a set — whereas in general the collection of all finite graphs
is a proper class. The requirement about the consistency of names along sequences of
transformations is easily satisfied if we choose fresh names for all new elements and
never reuse names of elements that are deleted.

For a GTS G = 〈TG,P,π,G0〉, we denote by RG the set of the graphs that are reachable,
and we denote by MG the set of all matches m : L→ G for rules r : L→ R in G into
TG-typed numbered graphs G ∈ RG. We define a relation ≡ over matches, as follows: for
all matches m : L→ G,n : L→H ∈MG for the same rule r : L→ R, m ≡ n iff for all nodes
and edges x of L, m(x) = n(x). It is straightforward to see that this is an equivalence
relation. We define the event set of G to be the set of pairs

EG = {〈p, [m]〉|p∈P∧π(p) : L→R∧[m : L→G]∈MG/≡} satisfying ps application conditions

Broadly speaking, events can be associated to equivalence classes of rule matches, and
thus outlive the target graph of the match if the difference does not affect the elements
in the codomain.

2.2 Generalised stochastic graph transformation systems

In order to reason stochastically about GTSs, we want to associate with each event a
distribution function governing the execution of the application of the corresponding
step.

We say that SG = 〈G,F〉 is a generalised stochastic graph transformation system whenever
G is a GTS and F : EG→ (R→ [0,1]) is a function which associates with every event in G
a continuous distribution function. We assume F(e)(0) = 0 (null delay condition) [KL07].

This definition in a sense generalises a previous proposals presented in [KL07] by
making the probability distribution dependent on the event (rule name and match) rather
than just on the rule name — although here we have a restriction to numbered graphs
that they have not. Stochastic graph transformation systems (SGTS) as introduced in
[HLM06] on the other hand allow only for exponential distributions associated with
rule names.

Our interest in stochastic graph transformation systems is closely associated with
simulation, where the stochastic aspect is useful in order to resolve the non-deterministic

3 / 20 Volume 16 (2009)



Model-based Simulation of VoIP Network Reconfigurations

character of ordinary GTSs. This also motivates our interest in numbered graphs,
reflecting the handling of names which is typically associated to an implementation of
the approach in an object-oriented language.

We rely on standard notions of stochastic process and discrete event system [CL08]
for an intuitive presentation of our approach. The behaviour of a stochastic GTS can be
described as a stochastic process over continuous time, where reachable graphs form a
discrete state space, the application of transformation rules defines state transitions as
instantaneous events, and interevent times, determined by the application of transfor-
mation rules, are dominated by continuous probability distributions. More precisely,
we associate each rule, as it becomes enabled by a match, with an independent random
variable (timer) which represents the time expected to elapse (scheduled delay) before the
rule is applied to the match. This timer is set randomly, based on a continuous probabil-
ity distribution function. The null delay condition means that the probability of a null
delay at enabling time is always zero.

In general, assuming time is continuous and events are instantaneous makes it pos-
sible to rule out simultaneous events in the model. More precisely, the fact that the
distributions are continuous, the assumption that events are instantaneous and that
timers are independent variables, together with the limit condition F(e)(0) = 0, suffice
to guarantee that the probability that two rules are applied simultaneously is always
zero. This fact also guarantees that the implicit “race condition” in the application of
transformation rules makes it possible to resolve non-determinism without the need to
allow for explicit parallelism.

2.3 Generalised semi-Markov processes

Generalised semi-Markov processes (GSMP) can be particularly useful in modelling
the behaviour of GSGTSs [KL07]. GSMPs are stochastic processes generated by struc-
tures (generalised semi-Markov schemes) that can be regarded as a generalisation of
continuous-time Markov chains, just as Markov processes are generated by Markov
chains. GSMPs can also be regarded as extensions of Markov chains with timers associ-
ated to transitions between states [Nel95].

Markov processes enjoy the memoryless property. This means that at each time,
which transition is going to fire depends only on the current state — in other words, it is
independent from the past states as well as from the time spent in the current one. No
matter how long the system has been in a state, the probability of experiencing a further
delay remains the same. This property translates into the fact that, when a Markov
process is generated by a set of timed transitions, timers associated with transitions, and
consequently also interevent times, must be exponentially distributed.

In semi-Markov processes, timers as well as the resulting interevent times can be
generally distributed. This corresponds to a model where transitions are generally
independent of the past states, but depend on their timers which may have been set
in previous states [DK05]. More formally, GSMPs can be defined as the processes
generated by specific stochastic structures called generalised semi-Markov schemes
(GSMS) [DK05]. A GSMS is a structure

Proc. Doctoral Symposium ICGT 2008 4 / 20



ECEASST

P = 〈 Z
E
active : Z→ ℘E
new : Z×E→ Z
∆ : E→ (R→ [1,0])
s0 : Z 〉

where Z is a set of system states; E is a set of implicitly timed events; active is the
activation function, so that active(s) is the finite set of active events associated with s;
new is the transition function depending on states and events; ∆ is the distribution
assignment, so that ∆(e) is the probability distribution function associated with the
scheduled delay of event e; and s0 is the initial state.

2.4 Time and probability distributions

An important aspect in the modelling of a real-time system is the representation of their
time, as distinct from the time of the simulation. The representation of real time used
in our model is an asynchronous one, following the approach presented for GTSs in
[GVH03], and it is obtained by means of chronos attributes — essentially, one for each
component associated with a clock in the system (the nodes of type Node) — see section
3), and of a chronos rule — meant to be the sole modifier for each chronos attribute,
matched by each clocked node, and therefore always enabled by each of them. In a
GSGTS each chronos attribute of a Node graph component can represent the physical clock
associated with the corresponding system component. Each application of the chronos
rule represents a tick of the matching clock. Clocks are stochastically synchronised with
the time of the simulation by means of the normally distributed timers associated with
each chronos rule match. This approach has the advantage of being quite flexible and
very close to the actual measurement of time in the real system.

Chronos rule matches are indeed a good example of why exponential distributions
could not suffice in our case. Concede that a timer is exponentially distributed —
then it can be reset every time the state changes, i.e., every time any rule is applied.
This can fit with modelling instant reactions, but hardly goes well with a description of
physical clocks. In contrast, when a chronos rule match is enabled and the corresponding
timer is set, we do not want it to be reset at each state change before the rule can
be applied. Moreover, the memoryless property does not help to limit the presence
of isolated cases with big deviations from the mean — something at odds with the
behaviour of a functioning clock. Exponential distributions tie together mean and
variance, respectively 1/λ and 1/λ2 where λ is the exponential rate — so it is possible to
decrease standard deviation only by decreasing the expected mean. What we need for
chronos rule matches, on the other hand, are distributions that take into consideration

5 / 20 Volume 16 (2009)



Model-based Simulation of VoIP Network Reconfigurations

the time interval a rule has been enabled for. In normal distributions mean and variance
are distinct parameters, allowing for a finer modelling. Moreover, normal distributions
have a quite stable character, intuitively visualised by the bell curve functions associated
with them — meaning that essentially, experimental values tend to hurdle within short
range from the mean in terms of standard deviation; correspondingly, excess kurtosis
is 0 (few big deviations, many small ones), and so is skewness (little asymmetry in
deviations) [Nel95, BA07].

As an example of graph transformation rule in a GSGTS we then consider the chronos
rule clock tick in fig. 2. This rule can be applied to a node n : Node representing a compo-
nent of the system that has a clock with time set as value of the chronos attribute. Each
application of the rule increases that value by one. The simulation time corresponding
to a clock tick can be randomly determined depending on the probability distribution
function associated with the rule match.

2.5 Translation of GSGTSs and CGSGTSs into GSMPs

The translation of a GSGTS into a GSMP described in [KL07] is based on the construction
of the unfolding grammar associated with the underlying GTS. The unfolding of a GTS
provides essentially a global name space — obtained as a pushout construction over all
the finite prefixes of the GTS, where each finite prefix is a model obtained from the initial
graph by applying the rules in every possible way, up to a finite causal depth, without
deleting the left hand-sides, but rather preserving all the information about each rule
application [BCM99].

The more concrete representation in this paper, motivated by our interest in simulation
using existing graph transformation tools, replaces the global name space provided by
the unfolding by an ad-hoc definition of a name space of numbered graphs and the
assumption that fresh names are used whenever elements are created, names are never
reused, and names are preserved whenever possible.

Now, given a GSGTS SG = 〈TG,P,π,G0,F〉, we can define its translation as a GSMP

P = 〈RG,EG,active,new,∆,G0〉

where the set of states RG is the subset of TG-typed numbered graphs reachable in G; EG
is the set of events (rule - match pairs) in G; active(G) is the set of the events 〈p, [m]〉 such
that m is a match for p ∈ P in G; the transition function is defined with new(G,〈p, [m]〉) = H
whenever r = π(p) and Σ(G,r,m) = (H,r∗,m∗); ∆(〈p, [m]〉) is defined as F(〈p, [m]〉); and G0
is the initial typed graph in G.

3 Case Study: Skype Network Architecture

The most popular VoIP application is Skype. It has more than 50 million users — an
increasing figure, and it is based on a P2P architecture. The Skype network offers three
services: VoIP, instant messaging and file transfer [GDJ06, BS06]. The Skype architecture
is described by Figure 1. Skype nodes are distinguished into clients (SC) and super nodes

Proc. Doctoral Symposium ICGT 2008 6 / 20



ECEASST

(SN) [XY07]. SNs maintain an overlay network. SCs have to connect to one of the SNs,
which act as telephone switches and routers for their clients. The Skype network is
subject to architectural reconfiguration whenever a new SC joins the Network, an SN
leaves the network, an intermediate SN fails to route the traffic or has connectivity
problems.

In our model we assume that, after registration, each Skype client keeps a permanent
connection with an SN node: first the SC tests the latency of an arbitrary SN node and if
the latency is in the range of the standard, i.e. 800 ms [Lin07], it establishes a connection.
Alternatively, we can let the SCs choose their connection based on the spare bandwidth
and/or memory of the available SNs.

Besides latency, jitter is another important aspect and it plays a vital role in maintaining
the Quality of Service (QoS) in the VoIP traffic. In our model we consider that when the
link is established for communication between two SC nodes, the receiver SC computes
the latency of the arriving packets by time-stamping the packets. If the difference
between two arriving packets is more then 40ms [Tel06] the network is reconfigured and
jitter is calculated afresh for a new route [Spi07].

The model can be best described with the help of a type graph (See Figure 1), including
registration servers (RS), super-nodes (SN) Skype clients (SC), packets, a type Node that
generalises both SC and SN, and edge types link, registration, overlay, sender and receiver.

The modelling of time follows the approach of a unique time stamp attribute chronos
[GVH03] associated with nodes of the graph, as required[Glo06]. The chronos rule,
named clock tick and pictured in figure 2, is used to advance time for each node of type
Node, by increasing the value of the chronos attribute. Note that each match of this rule
corresponds intuitively to a specific clock associated with a specific distribution.

4 Skype Reconfiguration as Graph Transformation

We will now introduce a set of rules based on the following scenario that we would
like to model. When a client tries to establish a network connection, it has to get
registered with the central registration server. The client may receive the addresses of
several super-nodes, and it can make a choice between them based on their reachability,
available bandwidth, etc.. Before establishing the connection with a nearby super-node,
the client can work out the communication delay (latency) with respect to it. In order to
do that, the client sends out a packet to the super-node and waits for it to be sent back.
The client can then compute the latency by comparing the time stamps.

Rules in Figure 3: create, send and return time-stamped packet. The first rule (a)
creates a packet p at SC and sets the chronos attribute of p to the current time of the client
node. Note that p.chronos is just a static time stamp, as packets are not of type Node and
so clock tick cannot be applied to them. Rule b sends the packet to the super-node. Rule c
returns the packet to the client. The packets are used to find out the time delay between
the client and the super-node. Comparing time stamps allows the peer to connect to a
super-node which offers the lowest latency as per ITU-T. If the delay is in the range of
the standards of ITU-T then the link with the super-node is established.

7 / 20 Volume 16 (2009)



Model-based Simulation of VoIP Network Reconfigurations

Figure 1: Type graph

Figure 2: Clock tick

Proc. Doctoral Symposium ICGT 2008 8 / 20



ECEASST

Rules in Figure 4: connect and reject. These rules are used to compute the latency
and either effect or reject the connection. The link between SC and SN is established if
the SC’s current time (sc.chronos) at the reception of the ping reply has advanced no more
than 800ms with respect to the time stamp on the original ping message (p.chronos). If
the delay is in standard range, SC will be linked with SN, and the bandwidth of the SN
will be reduced by 5Kbps [Sky06]. If greater, the current connection attempt is aborted
and a new one with another super-node is tried. After the client gets connected to a
super-node, it can communicate directly with other peers by finding their address from
the global index which is maintained by the central login server.

Rules in Figure 5: SN selection maximising bandwidth. A client may encounter
a set of viable super-nodes. In that case the client may try to find out the super-node
with the maximum available bandwidth. This is an example of a selection being made,
among the possible matches for a rule, in order to maximise a certain character. Note
that such a condition can be translated into a negative application condition along the
lines of: there is no other SN with higher bandwidth than the chosen one.

Rule in Figure 6: jitter attenuation. We can model also jitter as a temporal property.
There are several ways to calculate jitter [Spi07]; here we are looking into the packet
inter-arrival method. We use three attributes: curPacket — used to keep the arrival time
of the current (last) packet; prevPacket — to keep the arrival time of the previous packet;
and jitter — to store the difference between the two, whenever a new packet arrives.
The requirement is that inter-arrival times do not exceed the standard 40ms [Tel06].
Otherwise the connection to the current super-node is abandoned and a new connection
is sought.

Rules in Figure 7: packet transportation rules. We model a packet as a node. In the
communication between two clients we consider two cases. If both clients have public
IPs and they can be located in the network (see Figure 7(a)), packets can be transferred
directly, according to the P2P architecture, from sender to receiver. Alternatively either
the sender or the receiver are behind firewalls, or else hidden by network address
translation (NAT). In this case the sender client will first forward the packet to the
super-node and then the super-node will route the packet to the receiving client.

5 Simulation

Graph transformation systems can support a variety of validation and verification tech-
niques. Model checking based on CSL and stochastic simulation techniques based on
translation to Markov chains were introduced in [HLM06] for SGTS. Model checking
can be useful to formally verify abstract properties of processes, but this may turn out
to be unfeasible in case of complex examples and particularly in the case of general
distributions. On the other hand, Monte Carlo-style stochastic simulation is based on
the execution of particular processes which are chosen probabilistically by means of a
random number generator (RNG), i.e. a program that can generate pseudo-random
numbers depending on a distribution function. The result of stochastic analysis is typi-
cally obtained in terms of average values after running several times the simulation. In

9 / 20 Volume 16 (2009)



Model-based Simulation of VoIP Network Reconfigurations

(a) Create time stamped ping packet

(b) Send packet

(c) Return reply packet

Figure 3: Determine round-trip delay

Proc. Doctoral Symposium ICGT 2008 10 / 20



ECEASST

(a) Connect SC to SN

(b) Reject connection

Figure 4: Connection to/rejection of SN based on round-trip delay

Figure 5: SN selection maximising bandwidth

11 / 20 Volume 16 (2009)



Model-based Simulation of VoIP Network Reconfigurations

Figure 6: Jitter attenuation

the following we describe an algorithm for the stochastic simulation of a GSMP [KL07].
We then proceed to illustrate the architecture of a tool for GSGTS simulation, and present
an architecture-specific refinement of the algorithm.

5.1 A GSMP algorithm

A simulation algorithm for a GSMP has been presented in [KL07] as a version of the
Event Scheduling Scheme in [CL08]. The algorithm relies on calls to an RNG in order to
provide delay values for the timers associated with newly activated events. Simulation
time is recorded explicitly. Active timed events are managed as a list which is ordered
by the time events are scheduled to take place at, so that the first element of the list turns
out to be the event scheduled to take place first.

For the initialisation phase, given a GSMP P = 〈Z, E, active, new, ∆,s0〉

1. the simulation time is initialised at t0.

2. The set of the activated events A = active(s0) is computed.

3. For each event e ∈A, a scheduling time te is computed by adding t0 to a random de-
lay value de given by the RNG depending on the probability distribution function
∆(e);

4. The active events with their scheduling times are collected in the scheduled event
list ls0 = {(e, te)|e ∈ A}, ordered by the time values.

Then, for each simulation step, given the current state s ∈ S and the associated sched-
uled event list ls = {(e, t)|e ∈ active(s)}

1. the first element k = (e, t) is removed from ls;

2. the simulation time tS is updated by increasing it to t;

Proc. Doctoral Symposium ICGT 2008 12 / 20



ECEASST

(a) P2P packet transportation

(b) Send packet to sender host SN

(c) Send packet to receiver host SN

(d) Deliver packet to receiver

Figure 7: Packet transportation rules

13 / 20 Volume 16 (2009)



Model-based Simulation of VoIP Network Reconfigurations

3. the new state s′ is computed as s′ = new(s,e);

4. the list ms′ of the surviving events is computed, by removing from ls all the elements
become inactive, i.e. all the elements (z,x) of ls such that z < active(s′);

5. a list ns′ of the newly activated events is built, containing a single element (z, t)
for each event z such that z ∈ active(s′)\active(s) and has scheduling time t = tS +dz,
where dz is a random delay value given by the RNG depending on the distribution
function ∆(z);

6. the new scheduled event list ls′ is obtained by reordering the concatenation of ms′

and ns′ with respect to the time values.

5.2 A tool for GSGTS analysis

In the case of a GSMP obtained as translation of a GSGTS, a potential state space
explosion problem may arise from the computation of active, i.e. of the rule matches that
are active in the current graph. Incremental pattern matching [VV04] is an approach
in the implementation of graph transformation systems that can help to cope with this
issue. Instead of computing all the matches for each state, a tree of partial matches is built
from the initial graph in a pre-processing phase, and this structure gets subsequently
updated at each transformation by adding the new matches and deleting those that
become disabled. This approach has been implemented in Viatra [BHRV08], a graph
transformation tool which can support attributes and negative conditions, available as
an Eclipse plug-in.

Essentially, what we need to do is to integrate a graph transformation tool (GTT) with
an implementation of stochastic simulation based on GSMPs. We expect to implement
the stochastic simulation tool (SST) in Java, relying on SSJ [YCSC02] for the stochastic
libraries and random number generation.

5.3 A GSGTS algorithm

The following gives the pseudo-code for a GSGTS simulation algorithm that is essentially
a refinement of the Event Scheduling Scheme considered in section 5.1. The code is
loosely functional in style [Tur92], allowing for imperative features — commands (typed
with IO), references (singled out with #), as well as for a component-based structure to
make clearer the general architecture of the tool. We use dependant types to represent
typed graphs (with implicitly universally quantified variables), assuming TypeGraph
and Graph(i : TypeGraph) without defining them. The central part of the application
is given by the SST component, which can run a simulation up to a given depth,
relying on an interface with a graph transformation tool (GTT) based on incremental
pattern-matching, taking a GTS as input (type graph, initial graph and rules), providing
functions to get from a graph all the matches (all), the new ones (new) and the pre-existing
ones (prex), on a random number generator (RNG), and on a stochastic information
source (SIS) interfaced with the SST through a function that represents ∆. We also give a

Proc. Doctoral Symposium ICGT 2008 14 / 20



ECEASST

comparatively concrete characterisation of the data-structures using lists and standard
functions for list manipulation — map (applying a function to all the elements of a list),
filter (filtering the elements of a list through a property), head (returning the first element
of a list) and append (returning the concatenation of two lists).

typedef Time, Rate, Mean, Deviation = Real

typedef RuleName = String

typedef Match(i:TypeGraph) = (RuleName(i), Graph(i))

typedef Rule(i:TypeGraph) = (Graph(i), Graph(i))

datatype Distribution = exponential Rate

| normal Mean Deviation

interface GTT % graph transformation tool

input tG : TypeGraph

initialGraph : Graph(tG)

rules : Rule(tG) List

attributes #currentGraph : Graph(tG)

all : Graph(i) -> Rule(i) List -> Match(i) List

new : Graph(i) -> Rule(i) List -> Match(i) -> Match(i) List

prex : Graph(i) -> Rule(i) List -> Match(i) -> Match(i) List

apply : Graph(i) -> Rule(i) List -> Match(i) -> Graph(i)

allMatches : Match(tG) List

allMatches = all #currentGraph rules

newMatches : Match(tG) -> Match(tG) List

newMatches m = new #currentGraph rules m

prexMatches : Match(tG) -> Match(tG) List

prexMatches m = prex #currentGraph rules m

initialise : IO

initialise =

#currentGraph = initialGraph

applyMatch : Match(tG) -> IO

#currentGraph m = apply #currentGraph rules m

interface RNG % random number generator

randomGenerate : Distribution -> Time

interface SIS % stochastic information source

delta : Match(i) -> Distribution

15 / 20 Volume 16 (2009)



Model-based Simulation of VoIP Network Reconfigurations

component SST % stochastic simulation tool

input maxDepth : Nat

attributes #simTime : Time

#eventList : (Match(GTT.tG)*Time) List

#count : Nat

evTime : (Match(i)*Time) -> Time

evTime (m, t) = t

evMatch : (Match(i)*Time) -> Match(i)

evMatch (m, t) = m

main =

initialise

repeat (#count = 1

while #count < maxDepth

#count = #count + 1)

step #count

initialise : IO

initialise =

GTT.initialise

#simTime = 0

evLs = map mkTimedEvent GTT.allMatches

#eventList = sortedByTime evLs

step : Nat -> IO

step n =

selEvent = head #eventList

selMatch = evMatch selEvent

GTT.applyMatch selMatch

#simTime = evTime selEvent

prexMts = GTT.prexMatches selMatch

prexEvs = filter

lambda x. member (evMatch x) prexMts

#eventList

newMts = GTT.newMatches selMatch

newEvs = map mkTimedEvent newMts

#eventList = sortedByTime (append prexEvs newEvs)

report ’application time’ #simTime

report ’applied rule match’ selMatch

mkTimedEvent : Match(i) -> (Match(i)*Time)

mkTimedEvent mt =

distFun = SIS.delta mt

Proc. Doctoral Symposium ICGT 2008 16 / 20



ECEASST

randNm = RNG.randomGenerate distFun

time = #simTime + randNm

return (mt, time)

sortedByTime : (Match(i)*Time) List -> (Match(i)*Time) List

sortedByTime ls =

e = head ls

xs = filter (lambda x. evTime x < evTime e) ls

ys = filter (lambda x. evTime x >= evTime e) ls

ws = sortedByTime xs

zs = sortedByTime ys

return (append ws zs)

6 Application to a simple scenario

We may now consider a very simple scenario (as pictured in Figure 8). In the initial
graph, a packet p1 is located in the super-node sn waiting to be delivered to the receiver
client node sc2, whereas a second packet p2 is located in the sender client node sc1.
Eventually packet p1 is delivered to sc2. Then packet p2 can be moved from sc1 to the
super-node. Finally packet p2 in sn is delivered to sc2. Figure 8 shows which rules are
applied.

We assume a GTS with three rules: send (Figure 7(b)), deliver (Figure 7(d)), and clock
tick (Figure 2). We can model the clock behaviour by associating with each chronos rule-
match a normal distribution δi with mean mi and deviation di (i ∈ {sn,sc1,sc2}). Rule send
and deliver can be more naturally associated with exponential distributions — hence
with exponential rate values, that here we can assume independent of the matches. The
application of the algorithm to the initial graph S0 can start with the computation of
active(S0) = {(M0,dispatch), (sn, tick), (sc1, tick), (sc2, tick)}, where M0 is the subgraph of G0
associated with the left hand-side of deliver. At this stage send is not enabled due to the
negative applicative condition which is not satisfied (p1 is still in sn). When deliver wins
the time race and is applied, rule send becomes enabled. Finally, when send has been
applied, deliver becomes enabled once more, its application leading to the last graph.

7 Conclusion

This paper illustrates the use of generalised stochastic graph transformation systems
for modelling VoIP network protocols — with special focus on Skype. A simulation
algorithms based on the Event Scheduling Scheme [CL08] has been presented, and its
possible implementation using existing tools discussed, relying on a semantic interpre-
tation into generalised semi-Markov processes.

17 / 20 Volume 16 (2009)



Model-based Simulation of VoIP Network Reconfigurations

Figure 8: Application scenario

Future work will address the implementation of the simulation algorithm as well
as further and extended case studies. A major problem of all stochastic modelling
approaches is to find realistic parameters for probability distributions. In order to
validate our models we are planning to compare and complement simulations based
on stochastic graph transformation with the results of network simulation tools such as
NS2 [ISI08] as well as measurements on real systems.

References

[AKK07] M. J. Arif, S. Karunasekera, S. Kulkarni. SOVoIP: True Convergence of Data
and Voice Network. 16th ACM WWW conference Banff, Alberta, Canada, 2007.
http://www2007.org/workshops/paper 151.pdf

[BA07] L. G. Birta, G. Arbez. Modelling and simulation. Springer, 2007.

[BCM99] P. Baldan, A. Corradini, U. Montanari. Unfolding and event structure se-
mantics for graph grammars. In Thomas (ed.), Proceedings of FoSSaCS ’99.
LNCS 1578, pp. 73–89. Springer, 1999.

[BHRV08] G. Bergmann, A. Horváth, I. Ráth, D. Varró. A benchmark evaluation of incre-
mental pattern matching in graph transformation. In International Conference
on Graph Transformation. LNCS 5214, pp. 396–410. 2008.

[BS06] S. A. Baset, H. G. Schulzrinne. An Analysis of the Skype Peer-to-Peer Internet
Telephony Protocol. In Proceedings of the 25th IEEE International Conference on
Computer Communications (INFOCOM’06). Pp. 1–11. 2006.
http://dx.doi.org/10.1109/INFOCOM.2006.312

Proc. Doctoral Symposium ICGT 2008 18 / 20

http://www2007.org/workshops/paper_151.pdf
http://dx.doi.org/10.1109/INFOCOM.2006.312


ECEASST

[CL08] C. G. Cassandras, S. Lafortune. Introduction to discrete event systems. Kluwer,
2008.

[DK05] P. R. D’Argenio, J.-P. Katoen. A theory of stochastic systems. Part I: stochastic
automata. Information and computation 203:1–38, 2005.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of algebraic graph
transformation. Springer, 2006.

[GDJ06] S. Guha, N. Daswani, R. Jain. An Experimental Study of the Skype Peer-to-
Peer VoIP System. In IPTPS’06: The 5th International Workshop on Peer-to-Peer
Systems. 2006.
http://saikat.guha.cc/pub/iptps06-skype.pdf

[Glo06] Global IP Sound, Inc. Measuring Voice Quality. 2006. White paper.
http://www.gipscorp.com/files/english/white papers/Measuring%20Voice%
20Quality%.doc

[GS04] R. Gupta, A. K. Somani. Pricing strategy for incentivizing selfish nodes to
share resources in peer-to-peer (P2P) networks . Proceedings of the 12th IEEE
International Conference on Networks (ICON’04) 2:624–629, 2004.

[GVH03] S. Gyapay, D. Varró, R. Heckel. Graph transformation with time. Funamenta
Informaticae 58:1–22, 2003.

[Hec05] R. Heckel. Stochastic Analysis of Graph Transformation Systems: A Case
Study in P2P Networks. In Proc. Intl. Colloquium on Theoretical Aspects of Com-
puting (ICTAC’05). LNCS 3722, pp. 53–69. Springer-Verlag, 2005.

[HLM06] R. Heckel, G. Lajios, S. Menge. Stochastic graph transformation systems. Fun-
damenta Informaticae 72:1–22, 2006.
http://www.cs.le.ac.uk/people/rh122/papers/2006/HLM06FI.pdf

[ISI08] ISI, University of Southern California. The network simulator — ns2. 2008.
Wikipedia page.
http://www.isi.edu/nsnam/ns

[KL07] P. Kosiuczenko, G. Lajios. Simulation of generalised semi-Markov processes
based on graph transformation systems. Electronic Notes in Theoretical Com-
puter Science 175:73–86, 2007.

[Lin07] J. Linden. VoIP — Better than PSTN? Technical report, Global IP Sound, Inc,
2007.
http://www.analogzone.com/nett0307.pdf

[LMP04] O. Lysne, J. M. Montanana, T. M. Pinkston. Simple Deadlock-Free Dynamic
Network Reconfiguration. LNCS, SpringerLink 3296/2005:504–515, 2004.

19 / 20 Volume 16 (2009)

http://saikat.guha.cc/pub/iptps06-skype.pdf
http://www.gipscorp.com/files/english/white_papers/Measuring%20Voice%20Quality%.doc
http://www.gipscorp.com/files/english/white_papers/Measuring%20Voice%20Quality%.doc
http://www.cs.le.ac.uk/people/rh122/papers/2006/HLM06FI.pdf
http://www.isi.edu/nsnam/ns
http://www.analogzone.com/nett0307.pdf


Model-based Simulation of VoIP Network Reconfigurations

[MSZ03] S. Merugu, S. Srinivasan, E. Zegura. P-Sim: A Simulator for Peer-to-Peer Net-
works. Proceedings of the 11th IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer Telecommunications Systems (MASCOTS03),
2003.

[Nel95] R. Nelson. Probability, Stochastic processes, and queueing theory. Springer-Verlag,
1995.

[Sky06] Skype Limited. Skype: Guide for network administrators. 2006.
http://www.google.co.uk/search?hl=en&q=Skype%3A+Guide+for+
network+administrators&btnG=Search&meta=

[Spi07] Spirent Communications, Inc. Measuring Jitter Accurately. 2007. VoIP White
paper.
http://www.spirent.com

[Tel06] TeliaSonera International Carrier. Ensuring voice quality and integrity in an
IP-based network. 2006. VoIP White paper.
http://www.teliasoneraic.com/files

[Tur92] R. Turner. Constructive foundations of functional programming. McGraw-Hill,
1992.

[VV04] G. Varró, D. Varró. Graph Transformation with Incremental Updates. Electr.
Notes Theor. Comput. Sci. 109:71–83, 2004.

[XY07] H. Xie, Y. R. Yang. A measurement-based study of the Skype Peer-to-Peer
VoIP Performance. In Proceedings of IPTPS. 2007.
http://reserch.microsfot.com/workshop/IPTPS2007/papers/Xieyang.pdf

[YCSC02] E. Yücesan, C.-H. Chen, J. L. Snowdon, J. M. Charnes. SSJ: a framework
for stochastic simulation in Java. In Proceedings of the 2002 Winter Simulation
Conference. Pp. 234–242. 2002.

Proc. Doctoral Symposium ICGT 2008 20 / 20

http://www.google.co.uk/search?hl=en&q=Skype%3A+Guide+for+network+administrators&btnG=Search&meta=
http://www.google.co.uk/search?hl=en&q=Skype%3A+Guide+for+network+administrators&btnG=Search&meta=
http://www.spirent.com
http://www.teliasoneraic.com/files
http://reserch.microsfot.com/workshop/IPTPS2007/papers/Xieyang.pdf

	Introduction
	Generalised Stochastic Graph Transformation
	Graph Transformation Systems
	Generalised stochastic graph transformation systems
	Generalised semi-Markov processes
	Time and probability distributions
	Translation of GSGTSs and CGSGTSs into GSMPs

	Case Study: Skype Network Architecture
	Skype Reconfiguration as Graph Transformation
	Simulation
	A GSMP algorithm
	A tool for GSGTS analysis
	A GSGTS algorithm

	Application to a simple scenario
	Conclusion

