
Electronic Communications of the EASST
Volume 20 (2009)

Proceedings of the
Third International Workshop on
Foundations and Techniques for

Open Source Software Certification
(OpenCert 2009)

Understanding how OSS Development Models can influence assessment
methods

Richard Taylor

17 pages

Guest Editors: Luis Barbosa, Antonio Cerone, Siraj Shaikh
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Understanding how OSS Development Models can influence
assessment methods

Richard Taylor 1

1 rjtaylor@qinetiq.com, http://www.qinetiq.com/
QinetiQ Ltd.

Abstract: One of the most important aspects of OSS that distinguishes it from
COTS is both the variety and specific characteristics of the development models
used. Understanding these development models will be critical to the effective de-
sign of assessment approaches. This paper documents the more common develop-
ment models used by OSS projects and explores the complex landscape of stake-
holders that these models expose.

Keywords: ECEASST, Open Source Software, Assessment Methods

1 Introduction

One of the most important aspects of OSS that distinguishes it from COTS is both the variety
and specific characteristics of the development models used. Understanding these development
models will be critical to the effective design of assessment approaches. This paper the more
common development models used by OSS projects and exploresthe complex landscape of
stakeholders that these models expose.

For an OSS project to be successful, it must attract developers and other contributors. This
paper also explores what are the common factors in successful OSS projects that attract and
retain contributors.

The open OSS development environments provide many optionsfor innovative assessment
metrics. A description of this ’anatomy of OSS projects’ is presented as a vehicle to explore the
tools and techniques that successful OSS projects employ.

2 Comparison to COTS

COTS development models are opaque to most of the stakeholders in the COTS market place.
Most software vendors closely guard the details of how they organise their software develop-
ment activities. In contrast, OSS development is conductedin the open. This disparity provides
an advantage for understanding OSS development. There are likely to be very many different
internal organisational patterns for COTS developments. These development patterns can af-
fect the through-life properties of the applications that they produce. When assessing the COTS
applications that are proposed for a system it would be useful to be able to assess the characteris-
tics of the development model that was used in their development. However, in many cases it is
not possible to include the development model of a COTS application in its assessment because
of the secrecy that the closed development model entails. For OSS, the ability to explore the

1 / 17 Volume 20 (2009)

mailto:rjtaylor@qinetiq.com
http://www.qinetiq.com/


different approaches to development and the routes by whichOSS projects find their way into
widespread use may help to achieve an accurate assessment.

COTS development models rarely involve collaborative software development between mul-
tiple vendors (there are exceptions to this but they are unusual). In contrast, OSS development
almost always involves collaborative software development. Distributed, collaborative, devel-
opment requires specific architectural approaches that have an impact on the organisation and
processes that OSS projects use. Assessment approaches maybe able to exploit these aspects of
OSS projects to gain more insight into the projects characteristics than would be possible with
closed development models.

3 Different Models

OSS projects emerge and develop in many different ways. Understanding these different pat-
terns of project evolution can help to explain some of the differing properties that these projects
exhibit. The following list characterises a number of lifecycle models that can be observed. The
list is not exhaustive but it does provide a reasonable coverage:

• Over the fence. These projects start their life as conventional COTS developments within
software companies. At some point (often after a period of normal software sales), the
company decides that it is no longer in their interest to continue with development of the
application or that the ongoing development would be betterserved by a different business
model. At this point the application license is changed to anOSS license; the source code
is released and the company walks away (sometimes the company will continue with some
low level support for the code base). If there is sufficient interest in the application, a new
OSS development community can form to continue its development. Examples of OSS
projects that have started in this way include Firebird (this was originally the InterBase
application developed by Borland) and Firefox (which can trace its development back to
the Netscape web suite that was released as OSS by the Netscape Corporation).

• Corporate R&D. These projects are initially developed by the R&D departments of large
corporations. At some point, the company has to decide whether to stop work on the
research work or to move to full production. In recent years,some companies have chosen
OSS as a third path for some of their research prototypes. This has been typified by IBM.
Examples of this are the Eclipse rich desktop development platform that started life as an
IBM R&D project and Derby, an embedded Java database that wasan IBM product called
Cloudscape.

• Escape from academia. Many OSS projects begin life in academia or some other gov-
ernment sponsored research organisation. The motivationsfor releasing these projects as
OSS are varied. Often it is because there is no obvious commercial path to exploiting the
application. Other reasons include: a researchers wish to continue the development of a
project after a research grant has completed; a desire to collaborate with other researchers;
or a desire to make results available to a wide community. There are a huge number of
projects that started in this way, notable examples are: PostgreSQL, a enterprise class re-
lational database system that is based on work started at theUniversity of California and

Proc. OpenCert 2009 2 / 17



ECEASST

the BSD family of UNIX Operating Systems. These include FreeBSD, OpenBSD and
NetBSD. The BSD family all derive from the Berkeley SoftwareDistribution (BSD), an
early version of UNIX that was released as OSS by the University of California.

• From little acorns. These projects often start as small hobbies for a single developer. He
(and it almost always is he) releases his work under an OSS license in the hope that it
might be useful to someone else. Over time a group of likeminded people gather around
the project and it starts to gain more users. Sometimes theseprojects can grow into very
large initiatives. The most widely know example of this typeof OSS project is the Linux
Kernel. The Linux Kernel was started as a hobby by Linus Torvalds in April 1991. In
August of the same year he posted a message to an Internet newsgroup explaining what
he was working on. Within a very few years the Linux Kernel hadbecome one of the three
most popular Operating Systems.

• Community Power. Occasionally projects are formed by an existing communityto develop
a particular application. Sometimes this is because someone has an idea that needs a
large team to realise it, so they set out to create the team of volunteers from the start.
Sometimes it is because the wider OSS community feels that a particular problem needs
to be solved and there is sufficient will to form a large project to tackle it. A good example
of this later motivation is the Mono project. The Mono project was formed to provide an
implementation of the Microsoft .NET platform on the Linux Operating System. .NET
was seen as a threat to the continued growth of Linux because applications that use .NET
could not be used on Linux. The Mono project was specifically formed to address this
problem.

• Start small stay small. The majority of OSS projects start as small initiatives by asmall
group of developers that share a common interest. The applications are small enough that
they can be successfully developed and maintained by this small team. These teams might
comprise as many as 100 contributors or as few as just a lone developer. Typically, they
will be around 10 core developers. These projects will oftencontinue to be developed at
this level of team size for many years.

• Community release. Some software companies are releasing their source code under an
OSS license as a means to encourage a community of developers. There are many rea-
sons why this approach might be adopted. A common approach isfor the company to
retain copyright ownership of the source code (or at least maintain rights to re-license any
contributed code). This enables the company to release close source versions that can
be charged for along side the OSS ”community” releases. Examples of this model are
widespread including Sun Microsystems OpenOffice.org.

The organisation of complex software developments is a challenging problem. OSS projects
are faced with unique issues: internationally distributeddevelopers; complex IPR frameworks;
extremely tight fiscal constraints; competing developer motivations and user expectations; etc. It
is remarkable that any OSS projects are able to thrive at all.As OSS projects rely so heavily on
volunteer effort (even though many contributors are paid byan employer to work on a project,

3 / 17 Volume 20 (2009)



the project as no mechanism with which to compel them), thoseinvolved must be content with
the structure of the decision making process, otherwise they would not continue to contribute.
There are almost as many different decision making structures as there are OSS projects but a
number of common organisational patterns can be observed:

• Dictatorship. Some projects are controlled by a single individual. This is common among
the smallest of OSS projects but it is also a pattern that works in some of the very largest of
projects as well. The Linux Kernel is a good example: there are discussion forum for each
of the sub-systems of the kernel and any changes must be agreed through consensus on
these lists first, then there are a small number of senior developers that must be convinced
of the merit of the change. However, in the end the final decision lies with Linus Torvalds.
Dictatorship projects only thrive when the leader is recognised by all the developers as the
main technical lead of the project.

• Cabal. Probably the most common structure is characterised by a small group (usually less
than 10) of developers acting as a collective decision making body. Entry into the group is
controlled; acceptance of a new member usually requires theentrant to demonstrate their
commitment and technical competence through regular contributions to the source code.
The decision making process within the controlling group differs between projects, some
projects have formal voting procedures; others find agreement through informal discus-
sions.

• Corporate governance. Many of the largest OSS projects have developed formal gover-
nance structures. These typically include marketing organisations, IPR ownership bodies,
steering groups etc. Many projects have discovered that these structures are required as
the number of people involved starts to grow and especially when corporate interests start
to get involved. A good example of this is the development of the K Desktop Environ-
ment (KDE). KDE began as an informal OSS project organised along the lines of the
cabal model. As the project grew, many of the developers started to voice concerns that
their voices were not being heard. The motivation of one of the companies behind part
of the project (Trolltech, now owned by Nokia) was also questioned. To address these
concerns and to put the project on a firm footing the project leaders established the KDE
Free Qt Foundation and the KDE e.V (a registered associationunder German law). Simi-
lar patterns can be seen in other projects, and the common themes of these organisational
structures are discussed further below.

• Company control. Projects that are driven by a single company are often controlled exclu-
sively by that company. These projects often require contributors to assign their copyright
over to the company if they wish to submit changes. Why would acontributor be prepared
to provide a company with such free work? The key to getting contributors to give their
effort to such projects lies in the ability of any disgruntled contributor to fork the project.
The importance of the ability to fork is covered in more detail below. There are many
examples of these company controlled projects; MySQL is a well known example.

An assessment the whole-life-cost implications of using anOSS application as part of a larger
system should use knowledge of the development model as a tool in that assessment. Modifia-

Proc. OpenCert 2009 4 / 17



ECEASST

bility is an important element of whole-life-cost. The organisational structure of the project will
affect the cost of getting changes made.

Regardless of which organisational model is adopted there are common issues that must be
dealt with by all OSS projects:

• Clear IPR ownership. Many OSS projects choose to leave the copyright ownership with
the contributor, others require contributors to assign their copyright to either a not-for-
profit body or the company backing the development. Whichever approach is used, it is
important that it is clear to all contributors exactly wherecopyright ownership will reside.

• Rigidly controlled project lifecycle rules: release cycles, testing etc.. All projects live and
die by the project lifecycle management. Each of the organisational models described
above have different decision making structures. All but the very smallest have formal
lifecycle management processes. These processes may not always be well documented
but they are formal nonetheless.

• Strong reliance on configuration control tools. At the very heart of just about every OSS
project is the Source Control System (SCS). The SCS providesa technical mechanism for
the control of the application lifecycle. It is the touchstone for all the developers on the
project. The decision about which SCS tool should be used canbe extremely contentious.
For example, the long running arguments over the use of BitKeeper for the Linux Kernel
became quite divisive and in the end led to the development ofa new SCS called GIT.

One of the key features of the OSS licenses is that they allow the possibility for disaffected
developers to ’fork’ the project. A fork is the establishingof a rival project to continue the
development of the same source code. A group of developers takes a copy of the projects source
code and sets up a new source code repository under a new name.A ’fork’ is often brought about
because some developers are unhappy with the organisational model or some technical decisions
that a project has adopted. This ability to ’fork’ provides apowerful counter balance to the power
of the organisational and technical leaders of a project. Many contributors are reassured that their
contributions are in safe hands because they can see that if all else fails they can simply carry
on development in a new fork of the project. This freedom helps to engender a culture of trust
amongst the development team.

There is a fine balancing act that needs to be played by any OSS development. If the rules of
the project, governed by the license regime, enables project ’forking’ then the project organisa-
tion must achieve broad consensus on any decisions otherwise the disaffected might simply go
off on their own. If the rules of the project do not allow ’forking’ it will not be seen by most
developers as an OSS project at all and the benefits of collaborative development will be signifi-
cantly reduced. An assessment of OSS projects might use the existent, or otherwise, of forks as
a proxy measure for effective organisational management.

4 Legal Bodies

The larger, higher profile, OSS projects tend to adopt the Corporate Governance or Company
Control models. These projects usually create a legal body that holds the ownership of the

5 / 17 Volume 20 (2009)



source code and provides organizational, legal and financial support. This is usually a not-for-
profit organisation but may be a normal commercial company. The legal framework differs
depending on which country the body is created in. Examples include the Eclipse Foundation,
the GNOME Foundation and the Apache Foundation

These legal bodies provide a clear separation that makes themotivations of the people involved
explicit. The IPR owning body can be a ’not-for-profit’ body or a company. The choice of who
owns the IPR makes a clear statement about the intentions of the project. A ’not-for-profit’ body
will generally be trusted not to use the IPR ownership for commercial purposes that go against
the wishes of the developers. However, if it is a company thatretains the IPR ownership, it is
clear to everyone that their contributions might be used by that company for commercial gain.
Both models can be successful. For example, contributions to MySQL are owned by MySQL
AB whereas contributions to GCC are owned by the FSF (a ’not-for-profit’ body).

Not all large OSS projects have an IPR owning body but it is a growing trend in the largest
projects. Projects that do not have such a body leave the ownership of the code in the hands of
whoever wrote each line. For many projects this means that the only way that the license on
the code can be changed is to trace the author of each line of code and ask them to agree to the
license change. For many projects this is not a practical proposition. The implication of this is
that any sizable project that does not have an IPR owning bodycannot change its license.

OSS assessment methods may be able to use the status of IPR ownership as a measure. How-
ever, it is not clear how this measure should be interpreted.

5 Stakeholders

The OSS development model has a significantly more complex arrangement of stakeholders
when compared to a conventional COTS development. The tables and diagrams below show
these stakeholders and their relationships to one another.These are the stakeholders as seen
from the perspective of those outside of the development itself. If you were inside a COTS
development, as a developer for instance, you would see manyof the stakeholder roles that are
present in the OSS model. However, these roles are purely internal to the COTS development
model. The exposure of these roles in OSS models may provide opportunities for assessment
measures.

Figure1 shows a general model of the stakeholder landscape in a typical COTS marketplace.
Table1 describes each of the COTS stakeholder roles.
In a conventional COTS development model, the stakeholdersthat would typically seek to

apply assessment methods (e.g. CMM) are the Integrator and occasionally the End User. The
relatively simple stakeholder landscape limits the numberof exposed interactions and provides
few opportunities for the gathering of direct assessment measures. However, it does have the
merit that the interactions between the stakeholders are well understood and clear to all parties.

Figure2 shows the complex interactions of the stakeholders in the OSS marketplace. This is a
general model intended to expose all of the different roles.Not all OSS projects will have people
fulfilling each of these roles.

Table 3 describes each of the OSS stakeholder roles.

Proc. OpenCert 2009 6 / 17



ECEASST

Figure 1: COTS Stakeholders

Figure 2: OSS Stakeholders

7 / 17 Volume 20 (2009)



Table 1: COTS Stakeholders

Stake Holder Role / Motivation
Investor Provides financial backing to vendor. Primarily interested

in medium/long term return. Will influence vendor to ex-
ploit maximum value from COTS applications.

Vendor Primary owner of software copyright. Motivation is to
build a profitable business from the development the COTS
application. Will concentrate on largest / most profitable
users needs.

Developer Employed by vendor to develop an application. Profes-
sionally motivated relationship with project.

Author Authors books about application. Often a professional au-
thor writing for a large user community.

Reseller Pre-sales support and distribution channel for vendors.
Profits from margin on application sales price.

End User User of application. May provide some feedback to vendor,
sometimes via Reseller, Integrator or User group. Rarely
has a direct contact with Developers.

Integrator Integrates application into larger systems on behalf of
clients. Often has a large role in providing feedback to
vendor. Isolates end user from support and integration is-
sues.

User group Collective voice of end users. Sometimes organised and
run by the Vendor sometimes run as a not-for-profit body
by highly motivated end users. Lobbies Vendors. User
group often voices the concerns of End Users when the
Vendor is not looking after existing customers whilst it tries
to drive sales to new clients.

Standards Body Sets standards that Vendors then implement. Usually
not-for-profit bodies, either independently constituted (e.g.
ISO, IETF etc.) or run by a consortium of End Users.
The level of implementation of standards by a Vendor is
strongly influenced by the strength of the user community.
If there is good competition in a market segment and the
user community demonstrates its desire for standards com-
pliance, the Vendor will often have to comply. Where there
is a de-facto monopoly or a few large Vendors, standards
compliance is usually much less.

Proc. OpenCert 2009 8 / 17



ECEASST

Table 2: OSS Stakeholders

Stake Holder Role / Motivation
Architect Controls the direction of development, lays down over-

arching structure and guiding principles. Often acts as fi-
nal decision maker. All OSS projects have at least one ar-
chitect. They may also be amongst the most prolific de-
velopers but this is not always the case. Small projects
will typically have just one person who performs this role,
larger projects will have architects who control various
sub-systems and may well have formalised decision mak-
ing structures.

Paid / Volunteer Developer The developer fulfils the most important role in an OSS
project. Without the developer, there is no code. The ma-
jority of developers are motivated by a personal interest in
the application or the particular problem that it is trying
to solve. The complex motivation of volunteer develop-
ers has been addressed by a number of academic studies.
Many developers are paid for their work by Sponsors that
wish to influence the direction of development. A good
example are developers that work on the Linux kernel that
are employed by IBM. IBM have a direct interest in the de-
velopment of the Linux kernel because they use it on their
own products so they deploy their own employees on the
project. It must be presumed that having developers work-
ing on the software and respected in the project gives IBM
the best chance of influencing the development.

9 / 17 Volume 20 (2009)



Release manager OSS projects are often highly distributed. They will fre-
quently have developers working on different continents,
on different timescales and these developers have often
never met one another. Their development work can be
sporadic, as volunteer developers find the time to work on
tasks. OSS projects also often have complex interdepen-
dencies with other OSS projects. An end user application
will depend on many OSS libraries, and those libraries will
themselves depend on other lower-level libraries and so on.
Also, as with conventional software development, there is
usually the need to maintain multiple lines of development
and support beta-testing. Large projects usually have peo-
ple that are dedicated to coordinating this release process.
The process happens completely in the open so that anyone
can follow what it going on and everyone can see precisely
what software makes it into a release. Release manage-
ment has developed in the OSS community to be able to
deal with these large, complex distributed organisational
structures. The competence of the Release Managers can
be a significant feature in the ability of OSS projects to
scale.

Documenter Project documentation, including web site management is
often performed by people that want to contribute to the
project but do not have technical programming skills. Doc-
umentation is seen by many OSS projects as vital to ex-
panding their user base. Other projects are much less inter-
ested in end user documentation. Attracting and retaining
skilled technical documentation people on OSS projects is
something that many projects find a challenge.

Proc. OpenCert 2009 10 / 17



ECEASST

Standards body These play a slightly different role in many OSS projects
than they do in a conventional COTS environment. OSS
developers view standards in a different light to conven-
tional Vendors. This is primarily because OSS projects
gain little benefit from locking their users in with non-
standard interfaces. OSS developers view standards in one
of two ways: either as a means to achieve interoperability
with existing applications; or as free design work. The later
reason perhaps requires a little explanation. When faced
with implementing a new function, an OSS developer is
generally interested in minimising the amount of work re-
quired. If there is a standard already written that explains
how to achieve the required functionality it is simpler to
implement this standard rather than invest effort in design-
ing an alternative approach. This is coupled with a certain
pride in following standards.

Activist / organiser Larger OSS projects need people that provide organisation
and coordination. These may not necessarily be develop-
ers.

Benefactor There are many organisations that provide support to OSS
projects. Many companies allow their workers to use com-
pany infrastructure to work on OSS projects and many uni-
versities allow their academics and students to do the same.
There are also the occasional donors that contribute finan-
cial support to an OSS project. Once example is the Google
Summer of Code, this Google led initiative funds students
during their summer break to work on OSS projects. In
2007 this program funded over 900 students to work on
more than 130 different OSS applications.

11 / 17 Volume 20 (2009)



Tester There are a number of types of testers that typically play
a role in OSS projects. The current development version
of the project is always available to anyone that wishes
to try it out. This encourages those that have an inter-
est in the project to experiment with unstable versions and
they provide feedback to the developers. Many developers
start their involvement with a project by test driving devel-
opment versions and attempting to fix problems that they
find. Many projects release test versions for formal test
cycles and encourage early adopters to report problems be-
fore stable releases are made. The people that use these
test versions and report problems are vital to the quality of
the projects. Finally, OSS projects rely on their users to re-
port problems and to help with debugging activities. Users
are often encouraged to be actively involved in the testing
process.

Contributor Anybody that provides their time, infrastructure or money
to an OSS project is a contributor.

Evangelist OSS as a movement has been established by people that
feel strongly about the benefits that it brings. Some are po-
litically motivated, others are much more pragmatic. Some
of the growth in OSS can be attributed to the evangelism of
these people. Activists such as Richard Stallman and Eric
Raymond have travelled widely to educate users, compa-
nies and developers. As OSS has until recently lacked any
significant marketing money, and still cannot compete with
the COTS vendors in marketing spend, it has relied heavily
on individuals to spread the word.

Translator An increasing number of OSS projects are translated into
many different languages. For example, Abiword has been
translated into more than 50 languages. The major OSS ap-
plication frameworks have developed mature infrastructure
to support translation of user interfaces. The translations
rely on native speakers volunteering to translate all the text
used in the user interface. The translators are often users
rather than developers.

Owner The copyright owner of the source code. This may be a
company, a not-for-profit body or it may be distributed
amongst all the authors of the individual lines of source
code. Organisations like the FSF will accept copyright
ownership of some projects, which can be useful, if project
teams do not wish to set up their own not-for-profit body.

Proc. OpenCert 2009 12 / 17



ECEASST

Legal Resource Some organisations offer legal support to OSS projects.
Bodies such as the Apache Foundation provide legal sup-
port for those projects that are part of a specific collective.
Other bodies like the Electronic Frontier Foundation offer
support more broadly.

Publisher The take-up of OSS applications has been helped by the
availability of conventional printed technical books. The
publishers of these books, such as OReily, have played an
important role by supporting authors. These authors are
often amongst the lead developers of the projects.

Author There are many conventional print books that document
OSS applications. The authors of these books are often de-
velopers on the project, but many are professional technical
writers.

Infrastructure provider Most OSS projects rely heavily on the availability of free
infrastructure for source code control, issue tracking, mail-
ing lists etc. A number of organisations provide this in-
frastructure. For example SourceForge, Inc, and BeriOS.
The funding model for these services is somewhat difficult
to work out. Some certainly make some money from car-
rying advertising and some use the OSS infrastructure ser-
vice as a means of advertising other commercial services.
Some are simply altruistic and there may be some financ-
ing coming from the major commercial players.

Vendor The vendors (often called distributors), such as Redhat Inc
and Novell, provide a conventional shop front for OSS
technology. They provide integrated collections of pack-
ages, documentation and support contracts. Vendors re-
lationships with individual OSS projects can, at times, be
fractious. Vendors need to find workable business mod-
els to ensure that they stay in business whilst at the same
time maintaining the support of the volunteer OSS devel-
opers. Vendors are amongst the most important Sponsors
and Employers of OSS developers.

Integrator Integrators work on behalf of customers to integrate OSS,
as well as COTS, into larger systems. Integrators generally
have sufficient technical resources to be able to tailor OSS
applications for their customers needs and, if required, to
offer tailored support.

13 / 17 Volume 20 (2009)



End User End users of OSS applications are no different from end
users of COTS applications. However, an OSS end user
can also choose to play one of the other stakeholder roles.
OSS projects are often sustained by a steady flow of end
users that become interested in the way that the application
is developed and contribute as Documenters, Testers, etc.

Packager OSS projects release source code but End Users like the
convenience of nicely packaged applications that are pre-
compiled for their chosen Operating System. There are a
number of different packaging formats in the Linux world
as well as a different form of packaging for MS Windows
and for the Apple Mac. Most OSS projects do not have the
resources to be able to produce all these packages. Instead
they rely on Packagers. Sponsor Organisations that require
particular features to be added to a project may sponsor a
developer to make the required changes. The distinction
between a Sponsor and a benefactor is that a Sponsor is
providing support for specific business reasons, whereas a
benefactor is usually acting in a more philanthropic way.

Employer Many OSS developers are supported either explicitly or
implicitly by their employers. A recent analysis of changes
made in the last year to the Linux Kernel suggested that as
much as 70% came from developers working with at least
the tacit support of their employer.

The richness of the stakeholders, their motivations and roles they play in the OSS development
model provides an opportunity for new assessment approaches. By a careful understanding of
how each of the stakeholders interacts within a given project, it may be possible to design direct
measurements that shed light on its properties. There is a stark contrast with a closed COTS
development where the limited exposed stakeholder interactions constrains the scope of direct
measures.

6 Maximising Participation

OSS projects often live and die on their ability to attract participants. Maintaining enthusiasm
and fostering a collaborative attitude is critical to the success of a collaborative project. Studying
successful OSS projects shows that the following are commonamongst those that attract the
most developer effort:

• good code structure to help people understand the software;

Proc. OpenCert 2009 14 / 17



ECEASST

• low cost of entry to participants i.e. no expensive tools, noclosed networks, no com-
plicated signup procedures, extensive use of open source support tools, restricted use of
meetings, deskilled build process;

• open communication channels, Mailing lists, News, IRC, website, wiki;

• perception of activity, people more likely to join if project is perceived as dynamic - release
early, release often, use open communication channels for development discussion;

• friendly to newcomers;

• many levels of participation - user, bug submitter, documenter, translator, occasional bug
fixer, coder, architect, etc.;

• open requirements.

These project characteristics are rare amongst traditional software development projects be-
cause there is little need to attract participants. However, they are vital for OSS projects and can
form the bed rock of an successful assessment approach.

7 Anatomy of a Project

As OSS has evolved, it has developed a set of common support technologies that provide an in-
frastructure to support the distributed collaboration upon which projects depend. These technolo-
gies need to provide a mechanism for geographically disparate teams to work closely together
both to develop the software and to organise the projects.

• Web site. Most OSS projects have a web site. This provides: advertising for the project;
documentation; tutorials; download and installation instructions; descriptions of what the
project is trying achieve; contact points; and links to other resources. The web site is
usually the first point of contact with new users and prospective contributors.

• Wiki. Many projects now also have a project wiki. A wiki is a web site that can be altered
by anyone. OSS projects use a wiki as an informal repository of discussions, user oriented
documentation and a social networking centre for project contributors.

• Bug/Issue tracker. Bug/issue trackers are used to capture and record bugs and requested
features. Bug trackers used to be a feature of only large OSS projects but the ready avail-
ability of bug tracking software made available by sites such as Sourceforge has led to
many smaller projects now relying heavily on the bug trackerto help organise develop-
ment. End users can report bugs directly in to the bug trackerand projects then often
have a formal process by which bugs undergo triage before being assigned to a developer.
In some projects, it is the developers responsibility to select the bugs that they feel they
can address, in others bugs are assigned to developers. Bug trackers provide automatic
notification mechanisms so that everyone involved can trackthe lifecycle of a bug with
minimum effort. One aspect of OSS project bug trackers is that anyone can look at the

15 / 17 Volume 20 (2009)



current list of bugs / issues. This openness can be hard for some corporate developers to
come to terms with.

• Mailing lists. OSS projects frequently have a number of email mailing lists. Common lists
are ’announce’ (which only carries announcements of releases etc.), ’user’ (which carries
discussions between users about how to use the software) and’developer’ (which carries
discussion about development issues including future architectural developments). The
mailing lists are often the heart of the OSS development. Theuse of mailing lists for this
purpose has grown out of the necessity to deal with discussion between groups of people
that cannot meet and are often in different time zones. They have proved to be a very
successful means of collaboration, but they do require all participants to be open and be
prepared to put their views in writing. This can be a challenge for corporate developers
because of the potential legal issues that might arise from inappropriate correspondence.

• Instant messaging. Instant messaging (or chat) has been a feature of OSS development
long before it became widely used by teenagers and corporateIntranets. OSS projects
often have chat rooms (usually using a chat technology called IRC (Internet Relay Chat)).
These are used to provide support to users and as a social resource for developers. Chat
forums between developers help to cement personal relationships because they are much
less formal that mailing lists. It helps to engender a sense of community.

• Source repository. The source code repository is the most important part of an OSS
project’s infrastructure. It provides the mechanism for multiple developers to work simul-
taneously on a large software code base. The unique requirements of OSS projects have
driven the development of a number of source code control technologies in recent years.
The source code repository supports the separation of stable and development branches
and, can in some cases enable a completely distributed development model that does not
even require a central source code repository. As a general principle, anyone can access
an OSS project’s source code repository; anyone can browse the current state of the devel-
opment braches or download any previous version of the code base. However, only those
authorised by the development team can make changes to the code and all changes are
accounted for by the source code repository software.

With all these supporting infrastructure components, the objective is to use open, multiplat-
form, standards. Most OSS projects have no resources to purchase proprietary products and most
contributors will be put off if they have to put their hands intheir pockets before they can get
involved in the project. The principle is to make the barrierto using or contributing to the project
as low as possible. This provides a real opportunity for automated assessment tools. The number
of infrastructure applications (e.g. Mailing List servers, source code control systems etc) that
these would need to work with are small and their interfaces are open.

8 Summary

OSS projects differ from COTS projects in their need to effectively manage collaborative devel-
opment and attract participation in the project. While eachproject is unique, most OSS projects

Proc. OpenCert 2009 16 / 17



ECEASST

tend to fit one of a number of development models with common characteristics.
The OSS development model has a significantly more complex arrangement of stakeholders

when compared to a conventional COTS development.
Many OSS projects employ a governing body independent of thecode developers. This body,

often known as a Foundation, is largely responsible for promoting participation in the project
and ensuring successful evolution. The Foundation provides non-software development activi-
ties such as IPR management, marketing, promoting the use ofstandards, and support for imple-
mentation of a consistent, structured development process.

To support collaborative development among geographically disparate teams, OSS projects
typically deploy a standard set of supporting technologies. These include a web site, mailing lists,
bug tracking facilities, a wiki and a source code repository. These services are often managed by
the projects foundation body.

17 / 17 Volume 20 (2009)


	Introduction
	Comparison to COTS
	Different Models
	Legal Bodies
	Stakeholders
	Maximising Participation
	Anatomy of a Project
	Summary

