
Electronic Communications of the EASST
Volume 18 (2009)

Proceedings of the
Eighth International Workshop on

Graph Transformation and Visual Modeling Techniques
(GT-VMT 2009)

Generating Correctness-Preserving Editing Operations
for Diagram Editors

Steffen Mazanek, Mark Minas

12 pages

Guest Editors: Artur Boronat, Reiko Heckel
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Generating Correctness-Preserving Editing Operations
for Diagram Editors

Steffen Mazanek1, Mark Minas2

1 steffen.mazanek@unibw.de
2 mark.minas@unibw.de

Institut für Softwaretechnologie
Universität der Bundeswehr München, Germany

Abstract: In previous work it has already been shown that syntax-directed and
free-hand editing can be gainfully integrated into a single diagram editor. That way,
the user can arrange diagram components on the screen without any restrictions in
free-hand editing mode, whereas syntax-directed editing operations provide pow-
erful assistance. So far, editing operations had to be specified or programmed by
the editor developer. In contrast, this paper proposes an approach where diagram-
specific editing operations are generated on the fly during the editing process and
without any additional specification effort. These operations provably preserve the
correctness of the diagram. The proposed approach requires a specification of the
visual language by a hypergraph grammar.

Keywords: syntax-directed editing operations, diagram editors, correctness preser-
vation, hypergraph grammars

1 Introduction

Generally, two kinds of diagram editors are distinguished: A structure editor offers the user
operations that transform correct diagrams into (other) correct diagrams. Users like this kind
of guidance, because that makes editing much easier. But they also like to draw their diagrams
freely just following the flow of their uninhibited associations. A free-hand editor allows them to
arrange diagram components on the screen without any restrictions. Using syntax analysis, the
free-hand editor decides whether the drawing conforms to the visual language and what structure
the user intended to define.

A method for the combination of free-hand and syntax-directed editing has already been pro-
posed and realized previously [Min02]. Thereby, free-hand editing is supported by a hyper-
graph parser [Min97], whereas syntax-directed editing is realized using hypergraph transforma-
tion [KM00]. That way, a wide range of operations can be implemented. For instance, operations
for diagram execution (like firing of a transition in a petri net or processing the input of a finite
state machine) can be defined. But one can also define more local operations, i.e. syntax-directed
editing operations in the narrower sense, which require the user to select certain diagram compo-
nents in advance (like adding a token to the selected place or connecting two selected states with
an arrow). These are the operations considered in the following. Concerning such operations,
the approach of [Min02] still has some weak points:

1 / 12 Volume 18 (2009)

mailto:steffen.mazanek@unibw.de
mailto:mark.minas@unibw.de


Correctness-Preserving Editing Operations

• Specifying syntax-directed editing operations is a tedious task: For each operation an
additional hypergraph transformation rule has to be defined.

• Specifying correct syntax-directed editing operations is difficult: The editor developer has
to ensure that his operations do not destroy correct diagrams of the user, i.e. all operations
have to comply with the grammar.

• Specifying all possible syntax-directed editing operations is infeasible: In fact, there might
even be infinitely many possible editing operations – at least if the number of diagram
components that can be inserted at one go is not restricted. The editor developer might not
know which of these operations the users actually need.

The approach presented in this paper offers solutions for these three weak points. Users still
can draw their diagrams with maximal freedom. At the same time, they have access to powerful
syntactical assistance whenever required. The provided assistance provably cannot do harm, i.e.
the correctness of the user’s diagram is preserved. These benefits come for free, i.e., the editor
developer does not need to define these syntax-directed editing operations anymore.

Regarding interaction, the editor user has to select the diagram components in whose context
additional components are to be inserted. On request, meaningful editing operations are com-
puted as follows: First, the selection-induced part of the diagram’s hypergraph representation
is separated. The resulting hypergraph is analyzed by an error-correcting parser, which tries to
complete it again by adding hyperedges and gluing nodes. Only those completions are presented
to the user as editing operations that meet some language-independent relevance criteria.

Outline: The following sections 2 and 3 briefly introduce the running example and previous
work. Sect. 4 then presents the main result of this paper, i.e., how syntax-directed editing opera-
tions can be generated on demand during the editing process. The proposed solution is discussed
in Sect. 5. Related work is reviewed in Sect. 6, and Sect. 7 concludes the paper.

2 Running Example

Throughout this paper, the simple visual language of Nassi-Shneiderman Diagrams (NSDs) is
used as a running example. However, the approach also has been applied successfully to several
other visual languages. Its overall applicability is discussed in Sect. 5.

Fig. 1 shows an example NSD and a corresponding Abstract Syntax (Hyper-)Graph (ASG).
Hyperedges are represented as boxes with the particular label inside. Nodes are represented
as black dots. Lines indicate that a hyperedge visits a node. The correspondence between the
diagram and the hypergraph is obvious: Components are mapped to hyperedges. Each corner
of an NSD component is represented by an attachment node of the corresponding hyperedge.
Hyperedges visit the same node if the respective corners of their components touch each other.

The hypergraph language of NSDs can be recursively defined using a hyperedge replacement
grammar (HRG) [DHK97] as shown in Fig. 2. A BNF-like notation is used here. Nonterminal
symbols are highlighted. The first two rules (i.e., the upper row) basically state that an NSD is a
non-empty chain of successive statements. A statement in turn either is a primitive statement, a
condition, a while or an until loop. The body of a loop and the branches after a condition have
to be NSDs again.

Proc. GT-VMT 2009 2 / 12



ECEASST

n:=0

x even

n:=n+1
x:=x/2 x:=3x+1

y n

stmt

cond

stmt stmt

stmt

while x>1

while

Figure 1: Example NSD and corresponding abstract syntax hypergraph

n2

NSD

n1 n2

::=

n3 n4

Stmt

n1 n2

n3 n4

Stmt

n1 n2

NSD

n3 n4

Stmt

n1 n2

::=

n3 n4

stmt

n1 n2

n3 n4

NSD

cond

NSD NSD

n1 n2

n3 n4

n1 n2

n4n3

NSD

n1

n3 n4

while

until

Figure 2: Hyperedge replacement grammar of NSDs

Syntax-directed editing operations are very handy in order to manipulate NSDs. For instance,
the user might want to insert a statement write x right before the statement n:=n+1 in the
NSD shown in Fig. 1. This task cannot be performed conveniently in free-hand mode, because a
lot of editing is required to make room for the new statement. In this situation, a syntax-directed
editing operation would be preferable. That way, the user could just select the statement n:=n+1
and call the operation “insert statement before”.

3 Basic Formalism and Previous Work

Formally, a hypergraph H = (VH ,EH ,attH , labH) over a set C of labels consists of a set VH of
nodes, a set EH of hyperedges, a mapping attH : EH →V ∗H that assigns a sequence of attachment
nodes to the hyperedges of H, and a labeling function labH : EH →C for the hyperedges of H.
The HRG formalism as used in the following is extensively described in [DHK97].

3 / 12 Volume 18 (2009)



Correctness-Preserving Editing Operations

stmt

stmt

a b

c d

e f

g h

H

a~g b~h

c d

e f

stmt

stmt

stmt

stmt

a b

c~e d~f

g h

stmt

stmt

stmt

cond

stmt

stmt

stmt

a b

c d

e f

g h

a

c

e

g

b

d

f

h

adding edges

gluing nodes

Figure 3: Application of hypergraph patches

Furthermore, this work relies on [MMM08a], where an algorithm for hypergraph completion
with respect to HRGs has been proposed. Given a hypergraph H and an HRG G, this algorithm
embeds additional hyperedges into H in a way, such that the resulting hypergraph H ′ is a member
of the language defined by G. Besides hyperedges it might also introduce some fresh nodes
(incident to these hyperedges). This is shown in Fig. 3 (top). The fresh nodes are highlighted by
an extra circle. Since there might be an infinite number of possible completions, their size (i.e.,
the number of additional hyperedges) has to be restricted.

This algorithm has been extended recently, so that it (optionally) can also glue existing nodes
where required. This is also shown in Fig. 3 (bottom). As expectable, the two isolated state-
ments of the given hypergraph H can be combined in two different ways (orders). The ex-
tended parsing algorithm returns so-called hypergraph patches as a result. Formally, a patch
PH = (∼,V,E,att, lab) for a hypergraph H consists of an equivalence relation ∼⊆ VH ×VH on
the nodes of H, a set V of additional nodes, and a set E of additional hyperedges with corres-
ponding attachment and labeling functions. Applying a patch then basically means to embed the
additional hyperedges (yields H ′) and to construct the quotient hypergraph H ′/∼, i.e. a hyper-
graph whose nodes actually are equivalence classes of the nodes of H ′. Note that all patches
computed by the parser can be used to transform the given hypergraph into a correct one.

Since hypergraphs have appeared to be well-suited as a model for diagrams [Min02], hyper-
graph patches can be naturally used in diagram editors. In this manner the DIAGEN toolkit has
been extended to support diagram correction and completion [MMM08b].

The conventional DIAGEN editing process (as marked in Fig. 4) consists of several steps
[Min02]: The modeler first creates a so-called Spatial Relationship (Hyper-)Graph (SRG) cor-
responding to the diagram. Thereafter, the reducer simplifies the SRG (similar to lexical analysis

Proc. GT-VMT 2009 4 / 12



ECEASST

3DiaGen/DiaMeta-Einführung, 5.2.2007, Mark Minas

DiagramDiagram SRGSRGModeler ASGASGReducer Parser

Derivation
structure

Derivation
structure

Drawing
tool

Editor user

selects operation

Layout
information

Layout
informationLayouter Attribute

evaluation

asks for assistance
chooses

Hypergraph
patches

Hypergraph
patches

Update 
translator

conventional DiaGen editing process

assistance

Figure 4: Extended DIAGEN editing process

in the string setting). This results in an abstract representation of the diagram, the ASG. The
parser analyzes the ASG and constructs the derivation structure (if any). Finally, the layouter
computes a layout for the diagram (using derivation information if required).

In [MMM08b] this process has been extended as follows (see also Fig. 4): If a user explicitly
asks for assistance, the parser is triggered with the desired size of completions as a parameter.
It computes all possible hypergraph patches up to this size [MMM08a]. From those, the user
has to choose. Next, the selected patch is applied and embedded into the SRG using a language-
specific update translator component. The editor then calls the reducer and parser again, so
that the layouter can arrange the new components within the actual diagram and adapt existing
components if necessary.

4 Generating Syntax-Directed Editing Operations

Since an editing operation might be applicable to several parts of a diagram, the user normally has
to select the context in which additional components are to be inserted. For instance, the already
mentioned operation “insert statement before” requires the selection of the statement where a
new statement should be inserted before. If operations are predefined by the editor developer it
is easy to specify as a precondition what has to be selected by the user. This approach cannot
be used if operations are to be generated at runtime. However, for a generic approach the user’s
selection can be interpreted as follows: A selection should induce editing operations that separate
the user-selected diagram part, add to it new diagram components, and finally paste the extended
diagram part back into the remaining diagram such that it is correct again.

Fig. 5 shows some example operations following this idea. On the left-hand side four example
NSDs are given. The components selected by the user are surrounded by a thick border. To
the right of the arrows, the figure shows extended diagrams resulting from the application of
such editing operations to the input diagram. All new diagram components are highlighted. The

5 / 12 Volume 18 (2009)



Correctness-Preserving Editing Operations

...

s2
s1

while c1
s1

until ...
s2

while c1

s1
while ...

s2

while c1
...
s1
s2

while c1

...
s1

s2

while c1
1

s2
s1

while c1

s1
while ...

s2

while c1
...
s1
s2

while c1
1

...

s2
s1

while c1
s1

while c1

s2

while ...

...
s2
s1

while c1
...

s1
s2

while c1
2

y n ...
...
s2

while c1
y n

s1

...
s3
s2

1
y nc1

s1

y nc1

s1
while ...

s3
s2

y nc1

s1
until ...
s3
s2

a)

b)

c)

d)

Figure 5: Example editing operations

numbers above the arrows indicate the size of the operations, i.e. the number of introduced
components. Note that all shown operations preserve the correctness of the respective input
NSD. All of them can be generated following the approach presented next.

In Fig. 5a the statement s1 is selected and one new component should be inserted. In this case
four different operations of size 1 are evident: s1 could either be enclosed by a while or until
loop or, alternatively, a primitive statement could be inserted below or above. In Fig. 5b, a while
component is selected. Four operations of size 1 are evident: Another while component could be
inserted outside or within the selected one. Alternatively a primitive statement could be inserted
within or above the selected while.

The selection in Fig. 5c is equal to Fig. 5a. However, this time operations of size 2 are re-
quested. Two useful operations are shown. Actually, both cannot be simulated by just repetitive
application of operations of size 1, because intermediate results are required to be correct. This
means, each operation has to yield a correct diagram. Note that many more reasonable operations
of size 2 exist. However, in contrast to the insertion of a cond, these could also be constructed
successively. The last row, Fig. 5d, demonstrates that sometimes it is even necessary to allow
the selection of several diagram components at once. Otherwise, it would be quite unintuitive to
insert a while or an until component around a correct sub-NSD (here just two successive state-
ments). Again there are some more solutions, but those can already be realized by selecting just
one of the existing components and, hence, have been omitted.

In order to generate such syntax-directed editing operations the visual language’s hypergraph
grammar can be exploited. The basic idea is to reuse the patch-computing parsing algorithm

Proc. GT-VMT 2009 6 / 12



ECEASST

stmt

while

stmt

H H‘

s3

s1

while c1

s2
stmt

stmt

while

stmt

stmt

h

...

while

stmt

stmt

H‘

Figure 6: Separation of selected components

described in Sect. 3. The intuition of a user selection on the diagram level has already been de-
scribed. On the level of a diagram’s ASG, the separation of the selection means breaking up the
ASG into two disjoint hypergraphs H1 and H2 where H2 corresponds to the user-selected diagram
part. Breaking up the ASG generally means splitting up some of its nodes (cf. Fig. 6). Adding
new diagram components and re-merging the diagram parts just means to find and apply a hy-
pergraph patch using the disjoint union of H1 and H2 as input. However, not every hypergraph
patch constitutes a meaningful editing operation. Language-independent relevance criteria can
be used to discard hypergraph patches that are inappropriate as editing operations.

Next, the generation of editing operations is described more formally and the relevance criteria
are defined. Let H be the ASG of the diagram and Es⊆ EH the set of “selected” hyperedges of H.
Let Hs and Hs̄ be the sub-hypergraphs of H induced by the sets Es resp. EH \Es of hyperedges.
Finally, let H ′ be the disjoint union of Hs and Hs̄. H ′ differs from H, because nodes in H being
visited by selected as well as non-selected hyperedges are “split” in H ′. The epimorphism h
maps H ′ to H as shown in Fig. 6. Let Vsplit be the split nodes of H ′, i.e., those nodes that are
merged by h (in Fig. 6 there are 8 split nodes).

H ′ is incorrect in general, so that the application of the patch-computing parser normally
yields a wide range of solutions. Not all of them form meaningful editing operations though.
This issue is illustrated in Fig. 7 using the diagram of Fig. 5a as an example. The trivial patch
of size 0, which just glues the separated statement back to its original position, is omitted in
Fig. 7. Rather this figure shows all patches of size 1 and their resulting hypergraphs. However,
only 4 of these 10 patches constitute meaningful editing operations; the other 6 are crossed
out. They are not meaningful since either the selected statement has been glued back to its
original position and a new component has been added at a remote position, or the selected
statement has been moved to a remote position and its original position has been “filled” by a new
component. Such a behavior is not meaningful for NSDs or any other diagram language. This
observation motivates the definition of relevant hypergraph patches that describe meaningful
editing operations independent of the specific diagram language:

A patch PH ′ = (∼,VP,EP,attP, labP) is relevant if and only if

1. ∀e ∈ EP : sequenceToSet(attP(e))⊆Vsplit∪VP, i.e., additional hyperedges do not visit any
nodes that are not related to the selection, and

2. ∀n1,n2 ∈VH ′ : n1 ∼ n2⇒ h(n1) = h(n2), i.e., only the split nodes can be glued, but only to
the respective nodes they have been separated from.

7 / 12 Volume 18 (2009)



Correctness-Preserving Editing Operations

while

H H‘
while

h

stmt

while

s1
while c1

s2
t t

stmt

while

t t

.

stmt

s3 stmt

stmt

stmt

...

while

H‘

stmt

stmt

ggf. reihenfolge wie in diagram figure

1

while

stmt

while

stmt

while

stmt

while

while while

stmt

stmt

stmt

stmt

stmtstmt

until

stmt

stmt stmt

stmt

whilewhile

1
while

1
while

1

stmt

2 2

stmt

while

t t

stmt

while

t t t t

while

while

stmt

while

t t t t

while

stmt

stmt

stmt

stmt

until

stmt

stmt

stmt

stmt

stmt

stmt

Figure 7: Relevance criteria, input diagram Fig. 5a
intelliremove

a) b)

c) d)

s1
s2
s3

s1

s3

s1

s2
while c1

s1

s2

s1
c1

s4
s2 s3

s1

s4
s2 s3

s1
c1

s4
s2 s3

s1

s4

s2

Figure 8: Intelligent component removal

Note that Fig. 7 also shows which criterion excludes a particular patch. This is indicated by
numbers in the upper right corners of the resulting hypergraphs.

Intelligent Remove and Replace

Syntax-directed editing operations generated by the previous process do not delete any diagram
components. However, generating intelligent remove operations (and replacement similarly) is
also straightforward. Conventional removal of one or more components does not modify the
remaining diagram, which may become invalid after the removal. In contrast, intelligent remove
adjusts the remaining diagram so that it becomes valid again. It is performed in two steps:
First, a conventional remove of the selected components is performed. Subsequently, corrections
are computed. Again, not each correction of the remaining diagram is meaningful. A relevant
hypergraph patch here is neither allowed to add new hyperedges, nor is it allowed to glue remote
nodes, i.e., nodes that have not been visited by the hyperedges deleted previously.

Fig. 8 shows four examples of intelligent removal. In Fig. 8a the middle stmt in a chain of
three successive stmts is selected. Intelligent removal deletes this stmt and glues the other stmts

Proc. GT-VMT 2009 8 / 12



ECEASST

together preserving their order. In Fig. 8b, a stmt s1 is followed by a while component that
encloses another stmt, s2. Intelligently removing the while component glues the stmts s1 and
s2 together (again preserving their order). Fig. 8c shows an example where intelligent removal
cannot help. In this situation, intelligent remove corresponds to conventional remove. Indeed, an
NSD cannot be kept correct if just a cond component is to be removed. However, if one of the
branches is selected, too, intelligent removal works as desirable, cf. Fig. 8d.

All in all, intelligent removal is a useful function for such visual languages where the removal
of components is likely to yield incorrect diagrams. Otherwise, it just converges to the conven-
tional remove function, i.e. it simply removes the selected components.

5 Discussion

Following the presented approach, the user can quickly access local editing operations. In most
cases, selecting just a single component is sufficient already. In fact, the selection of several
components usually makes sense only if they “share nodes”. This behavior most likely conforms
to the user’s intuition. Nevertheless, there are still some challenges that are addressed next.

Performance: It is important to stress that the presented approach does not generate generic
operations at “compile time”. The generated operations are rather specific to the current diagram
and completely generated on the fly. As a consequence, each time the user asks for operations
the whole diagram needs to be analyzed again. This additional effort is not necessary if the op-
erations are predefined. However, a basic requirement for free-hand editors is an efficient parser,
since the diagram has to be reanalyzed after every single modification. The current implemen-
tation of the patch-generating parser is a prototype with reasonable speed. For instance, the
computation of operations of size 1 for an NSD of size 20 takes less than a second on standard
hardware. Further performance improvements are subject of current work.

Information Overload: When increasing the possible size of operations their number might
explode. The problem is that the user can hardly distinguish between the really new solutions
and the solutions that he could also get by successively applying smaller operations. It might be
useful to apply a special filter to avoid this issue. But this has not been realized yet.

Understandability: In certain (rare) situations knowledge of the abstract syntax seems to be
necessary to understand why a particular operation currently is not possible. For instance, if a
cond is selected, a stmt can only be inserted above, but not in the branches below. However, we
have not found a meaningful operation yet that cannot be generated at all. The user just needs to
select the “right” components (in the example, the first statement in the respective branch).

Applicability: Since the patch-computing hypergraph parser relies on context-free HRGs, the
applicability of this approach naturally is restricted. However, the approach can also be applied
to hypergraph grammars that contain so-called embedding rules [Min02]. Indeed, all practically
relevant visual languages can be described that way. Operations then are only computed for the
context-free part of the particular diagram. So, if a language exhibits a significant context-free
core, the presented approach can still be used. For instance, it has been applied to sequence
diagrams where only the messages need to be embedded. The generated syntax-directed editing
operations have appeared to be helpful even for this non-context-free diagram language. In
addition, the approach has been applied to other examples like flowcharts, logic gates, and trees.

9 / 12 Volume 18 (2009)



Correctness-Preserving Editing Operations

Figure 9: Screenshot of the user interface

The proposed approach has been integrated into the DIAGEN toolkit. Fig. 9 shows a screenshot
of a DIAGEN editor for NSDs. The user has selected a primitive statement and opened the
assistance dialog. Here, he can set up the size of operations he is interested in using the buttons
at the bottom. There are 21 operations of size 2 already as can be seen in the lower right corner.
Selecting one of them updates the preview pane on the left-hand side. Both the application of the
operation and refocusing of the diagram are animated, so that the user can easily see what is going
on. Committing finally applies the selected operation to the actual diagram. For comparison, the
shown editor also provides some operations that have been explicitly specified by transformation
rules, among others the example operation “insert stmt before”.

6 Related Work

In TIGER [EEHT05] editing operations are specified by means of graph transformation rules.
These operations directly define the language, so that the editor developer does not have to ensure
that they comply with a grammar. Unfortunately, TIGER does not support free-hand editing. The
predecessor of TIGER, GENGED [BST01], had supported some kind of free-hand editing. It
even had generated some initial editing operations from the type graph at compile time. Those,
however, only allowed the insertion of nodes and edges in graph-like languages. Recently, the
TIGER developers have extended the popular Eclipse GMF framework with support for complex
editing commands [TCSE08] – at the price of additional specification effort though.

Proc. GT-VMT 2009 10 / 12



ECEASST

CIDER [JMM04] supports both free-hand and syntax-directed editing. Its transformation
mechanism is fully integrated with an incremental parser. Thus, transformations can be defined
in terms of high-level diagram components. Here, the basic idea behind a transformation is to
change the parse forest of a diagram from one valid state to a different valid state. This is similar
to the conventional DIAGEN approach to syntax-directed editing, where information from the
derivation can also be accessed. In CIDER all transformations have to be specified manually.

The grammar-based system VLDESK [CDPR05] provides support for so-called symbol prom-
pting. Here, the parsing table is exploited to extract information about possible contexts of a
particular symbol. That way, local suggestions can be computed without additional specification
effort (similar to our approach). This kind of assistance is efficient and permissive, but does not
ensure the correctness of the resulting diagram from an overall perspective.

For widely used and highly relevant languages specific tool support is still implemented by
hand. For instance, Gschwind et al. have proposed a set of powerful operations on business pro-
cess models [GKW08]. Their approach has been realized as a plugin for the well-known Web-
Sphere Business Modeler. As long as generic assistance mechanisms are not powerful enough
this is a reasonable approach to improve the usability of modeling tools. Our approach, where ap-
plicable, can help to reduce the burden of implementing language-specific syntactical assistance.
Business process models are context-free to a large extent, so that our approach is applicable.

7 Conclusion

The approach proposed in this paper can be used to generate powerful, correctness-preserving
editing operations for free-hand editors and, at the same time, is easy to apply and understand by
users: They just have to select one (or more) components and ask for assistance.

The editor user can trust the generated operations, because they provably cannot do harm. He
can use an animated preview to inspect all possible operations of a particular size. Thereby,
he is likely to get new insights into the visual language at hand. Although the improvement of
user support has been our primary goal, the burden for the editor developer is also significantly
reduced. He does not need to specify certain editing operations in compliance with the grammar
anymore. So, he can focus on special-purpose operations and diagram execution. Since our
approach is just complementary, the previous flexibility of DIAGEN operations is fully preserved.

In the future we will try to relax the precondition “correctness of the input diagram” that has
been assumed throughout this paper. Indeed operations would be also very useful for correct
sub-diagrams. Furthermore, we want to improve the support for the non-context-free parts of
languages.

Screencasts of the NSD example editor and further examples can be found at the website
http://www.unibw.de/inf2/DiaGen/assistance/. The editor can be downloaded from there, too.

Bibliography

[BST01] R. Bardohl, T. Schultzke, G. Taentzer. Visual language parsing in GenGEd. Elec-
tronic Notes in Theoretical Computer Science 50(3):289 – 294, 2001.

11 / 12 Volume 18 (2009)

http://www.unibw.de/inf2/DiaGen/assistance/


Correctness-Preserving Editing Operations

[CDPR05] G. Costagliola, V. Deufemia, G. Polese, M. Risi. Building syntax-aware editors
for visual languages. Journal of Visual Languages and Computing 16(6):508–540,
2005.

[DHK97] F. Drewes, A. Habel, H.-J. Kreowski. Hyperedge Replacement Graph Grammars. In
Rozenberg (ed.), Handbook of Graph Grammars and Computing by Graph Trans-
formation. Vol. I: Foundations. Chapter 2, pp. 95–162. World Scientific, 1997.

[EEHT05] K. Ehrig, C. Ermel, S. Hänsgen, G. Taentzer. Generation of visual editors as Eclipse
plug-ins. In ASE ’05: Proc. of the 20th IEEE/ACM International Conference on
Automated Software Engineering. Pp. 134–143. ACM, New York, NY, USA, 2005.

[GKW08] T. Gschwind, J. Koehler, J. Wong. Applying patterns during business process mod-
eling. In BPM ’08: Proceedings of the 6th International Conference on Business
Process Management. LNCS 5240, pp. 4–19. Springer, 2008.

[JMM04] A. R. Jansen, K. Marriott, B. Meyer. Cider: A component-based toolkit for creating
smart diagram environments. In Diagrams. LNCS 2980, pp. 415–419. Springer,
2004.

[KM00] O. Köth, M. Minas. Generating diagram editors providing free-hand editing as well
as syntax-directed editing. In Ehrig and Taentzer (eds.), Proceedings of the Joint
APPLIGRAPH/GETGRATS Workshop on Graph Transformation Systems. Techni-
cal Report 2000-2, pp. 32–39. Technical University, Berlin, 2000.

[Min97] M. Minas. Diagram editing with hypergraph parser support. In Proceedings of the
1997 IEEE Symposium on Visual Languages (VL ’97). Pp. 230–237. IEEE Com-
puter Society, Washington, DC, USA, 1997.

[Min02] M. Minas. Concepts and realization of a diagram editor generator based on hyper-
graph transformation. Science of Computer Programming 44(2):157–180, 2002.

[MMM08a] S. Mazanek, S. Maier, M. Minas. An algorithm for hypergraph completion accord-
ing to hyperedge replacement grammars. In Ehrig et al. (eds.), Proceedings of the
4th International Conference on Graph Transformations. LNCS 5214, pp. 39–53.
Springer, 2008.

[MMM08b] S. Mazanek, S. Maier, M. Minas. Auto-completion for diagram editors based on
graph grammars. In Bottoni et al. (eds.), 2008 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing. Pp. 242–245. IEEE, 2008.

[TCSE08] G. Taentzer, A. Crema, R. Schmutzler, C. Ermel. Generating domain-specific
model editors with complex editing commands. In Schürr et al. (eds.), Proc. Third
International Symposium on Applications of Graph Transformation with Industrial
Relevance (AGTIVE 2007). LNCS 5088, pp. 98–103. Springer, 2008.

Proc. GT-VMT 2009 12 / 12


	Introduction
	Running Example
	Basic Formalism and Previous Work
	Generating Syntax-Directed Editing Operations
	Discussion
	Related Work
	Conclusion

