
Electronic Communications of the EASST
Volume 18 (2009)

Proceedings of the
Eighth International Workshop on

Graph Transformation and Visual Modeling Techniques
(GT-VMT 2009)

Parallelization of Graph Transformation
Based on Incremental Pattern Matching

Gábor Bergmann, István Ráth, Dániel Varró

15 pages

Guest Editors: Artur Boronat, Reiko Heckel
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Parallelization of Graph Transformation
Based on Incremental Pattern Matching

Gábor Bergmann1, István Ráth2, Dániel Varró3

1 2 3 (bergmann,rath,varro)@mit.bme.hu, http://www.inf.mit.bme.hu/FTSRG/
Méréstechnika és Információs Rendszerek Tanszék (MIT),

Budapesti Műszaki és Gazdaságtudományi Egyetem (BME), Budapest, Hungary

Abstract: Graph transformation based on incremental pattern matching explicitly
stores all occurrences of patterns (left-hand side of rules) and updates this result
cache upon model changes. This allows instantaneous pattern queries at the expense
of costlier model manipulation and higher memory consumption.

Up to now, this incremental approach has considered only sequential execution de-
spite the inherently distributed structure of the underlying match caching mecha-
nism. The paper explores various possibilities of parallelizing graph transformation
to harness the power of modern multi-core, multi-processor computing environ-
ments: (i) incremental pattern matching enables the concurrent execution of model
manipulation and pattern matching; moreover, (ii) pattern matching itself can be
parallelized along caches.

Keywords: graph transformation, incremental pattern matching, parallelization

1 Introduction

Nowadays, a main challenge of software engineering is the adaptation to parallel computing ar-
chitectures. In order to increase execution speed, algorithm designers need to think of new ways
to exploit the computing power of multi core processors instead of purely relying on more effi-
cient processor designs. Experience has shown that this is a complicated task: whether parallel
execution can actually be effectively applied depends largely on the problem itself.

Model transformation is an application domain where speed optimization based on parallel
execution has a lot of potential, especially in case of large, industrial models. In fact, model
transformations seem to be an ideal target for parallel execution as in practical transformations,
many similar, or almost identical model structures need to be traversed and transformed. Fre-
quently, these model manipulation sequences are non-conflicting, which naturally calls for an
execution model where these sequences are executed on the available processors in parallel.

Using a graph transformation (GT) [EEKR99] based approach for model transformations,
there are even more possibilities for the exploitation of parallelism. Besides model manipulation
sequences, graph transformations involve a graph searching phase, which is targeted at finding
the matches of a graph pattern. However, despite the recent optimization activities in the graph
transformation community, which have been reported at tool contests [SNZ08, Gra08], GT tools
rarely exploit parallel execution for further improvement both in terms of execution speed and
scalability with model sizes.

1 / 15 Volume 18 (2009)

mailto:(bergmann,rath,varro)@mit.bme.hu
http://www.inf.mit.bme.hu/FTSRG/


Parallelization with Incremental Pattern Matching

Incremental pattern matching [BÖR+08] offers an entirely different execution model com-
pared to local search-based implementations. The match sets for all patterns involved in the
graph transformation are computed in an initialization phase prior to execution (e.g. when the
model itself is loaded into memory), and as the transformation progresses, this match set cache is
incrementally updated as the model graph changes (update phases). Thus, model search phases
are reduced to fast read-from-cache operations, in exchange for the overhead imposed by cache
update phases which occur synchronously with model manipulation operations. Benchmark-
ing [BHRV08] has shown that in certain scenarios, this approach leads to several orders-of-
magnitude increases in speed.

In the current paper, we introduce novel extensions to the incremental pattern matcher of the
VIATRA2 framework, which is based on RETE networks [For82], to exploit parallelism based
on asynchronous model updates and multi-threaded match set caching.

First, update phases may be executed concurrently to the model transformation’s main execu-
tion thread. In this case, the cache validation thread of the match set may execute concurrently
with model manipulation sequences or textual output emission, e.g. in the case of code genera-
tion transformations. This approach aims to reduce the overhead imposed by update phases, in
the case when parallel computing power is available.

Then, if further scaling up is required, the implementation of the match set cache updating
can be multi-threaded. It is important to point out that both of these approaches are significantly
different from parallelized pattern search. Finally, as incremental pattern matching provides fast
cache-reading operations, it supports parallel transformation execution by allowing simultane-
ous access to caches from multiple threads. By improving this scenario with concurrent update
phases, model manipulation protected by locks will no longer force other transformation threads
to wait for the termination of the time-consuming update. As a consequence, read-intensive
transformations are expected to scale well with parallel computational capacity.

The rest of the paper is structured as follows. Section 2 gives a brief introduction on graph
transformations. Section 3 describes RETE, and its implementation in the VIATRA2 model trans-
formation framework. The main contributions of the paper are presented in Section 4, where we
present ways of parallelizing both pattern matching and model manipulation. Implementation
details are revealed in Section 5. Finally, we discuss related work in Section 6 and conclude the
paper in Section 7.

2 Foundations of model transformation

This section gives an overview on the foundations of the specification and simulation of model-
ing languages. In order to specify the abstract syntax of the modeling language, the concept of
metamodeling is used. For transforming models to other models or generated code, and simulat-
ing the behaviour of models, the paradigm of graph transformation [Roz97] is applied.

2.1 Model transformation example: Petri nets

In this paper, we will use the transformation of Petri nets as a demonstration for parallelization
concepts. These demonstrating Petri net transformations include Petri net firing as a model

Proc. GT-VMT 2009 2 / 15



ECEASST

simulation example.

Figure 1: A sample Petri net.

Petri nets (Figure 1) are widely used to formally capture the
dynamic semantics of concurrent systems due to their easy-
to-understand visual notation and the wide range of available
analysis tools. Petri nets are bipartite graphs, with two disjoint
sets of nodes: Places and Transitions. Places may contain an
arbitrary number of Tokens. A token distribution (marking)
defines the state of the modelled system. The state of the net
can be changed by firing enabled transitions. A transition is
enabled if each of its input places contains at least one token
and no place connected with an inhibitor arc contains a token

(if no arc weights are considered). When firing a transition, we remove a token from all input
places (connected to the transition by Input Arcs) and add a token to all output places (as defined
by Output Arcs).

2.2 Foundations of metamodeling

Figure 2: Petri net metamodel.

A metamodel describes the abstract syntax of a mod-
eling language. Formally, it can be represented by
a type graph. Nodes of the type graph are called
classes. A class may have attributes that define
some kind of properties of the specific class. Inher-
itance may be defined between classes, which means
that the inherited class has all the properties its par-
ent has, but it may further contain some extra at-
tributes. Associations define connections between
classes. Figure 2 shows a simple Petri net meta-
model.

2.3 Graph patterns and graph transformation

Graph patterns are frequently considered as the atomic units of model transformations [VB07].
They represent conditions (or constraints) that have to be fulfilled by a part of the instance model
in order to execute some manipulation steps on the model. A basic graph pattern consists of graph
elements corresponding to the metamodel. A negative application condition (NAC) prescribes
contextual conditions for the original pattern which are forbidden in order to find a successful
match. Figure 10 presents a simple graph pattern consisting of a Place P, a Transition T and an
OutArc A to enumerate the source places connected to a given transition.

Graph transformation (GT) [EEKR99] provides a high-level rule and pattern-based ma-
nipulation language for graph models. Graph transformation rules can be specified by using a
left-hand side – LHS (or precondition) graph (pattern) determining the applicability of the rule,
and a right-hand side – RHS (postcondition) graph (pattern) which declaratively specifies the
result model after rule application. Elements that are present only in (the image of) the LHS are

3 / 15 Volume 18 (2009)



Parallelization with Incremental Pattern Matching

P: Place T : Transition: OutArc

sourcePlace (T,P) pattern sourcePlace(T, P) = {
transition(T);
place(P);
outArc(A, P, T);

}

Figure 3: Matcher for the sourcePlace pattern

deleted, elements that are present only in the RHS are created, and other model elements remain
unchanged (in accordance with the single-pushout approach in VIATRA2). For instance, a GT
rule may specify how to remove (or add) a token from a place, as shown in Figure 4.

// Removes a token from the place ’Place’.
gtrule removeToken(in Transition, in Place) = {
precondition find sourcePlaceWithToken

(Transition, Place, Token);
postcondition find sourcePlaceWithoutToken

(Transition, Place, Token);
}
// Adds a token from the place ’Place’.
gtrule addToken(in Transition, in Place) = {
precondition find targetPlaceWithoutToken

(Transition, Place);
postcondition find targetPlaceWithToken

(Transition, Place, Token);
}

Figure 4: Graph transformation rules for firing a transition

Complex model transformation can be assembled from elementary graph patterns and graph
transformation rules using some kind of control language. In our examples, we use abstract state
machine (ASM) [BS03] for this purpose as available in the VIATRA2 framework. The following
transformation simulates the firing of a transition, i.e. the removal of tokens from input places
and the addition of tokens to output places (see Figure 5).

rule fireTransition(in T) = seq {
if (find isTransitionFireable(T)) // confirm that the transition is fireable
seq {
forall Place with find sourcePlace(T, Place) // remove tokens from all source places
do apply removeToken(T, Place); // GT rule invocation

forall Place with find targetPlace(T, Place) // add tokens to all target places
do apply addToken(T, Place);

}
}

Figure 5: Transformation program for firing a transition

Proc. GT-VMT 2009 4 / 15



ECEASST

3 RETE-based incremental graph pattern matching

The incremental graph pattern matcher of the VIATRA2 framework adapts [BÖR+08] the RETE
algorithm, which is a well-known technique in the field of rule-based systems.

RETE network for graph pattern matching RETE-based pattern matching relies on a net-
work of nodes storing partial matches of a graph pattern. A partial match enumerates those
model elements which satisfy a subset of the constraints described by the graph pattern. In a
relational database analogy, each node stores a view. Matches of a pattern are readily available
at any time, and they will be incrementally updated whenever model changes occur.

Input nodes serve as the underlying knowledge base representing a model. There is a separate
input node for each entity type (class), containing a view representing all the instances that
conform to the type. Similarly, there is an input node for each relation type, containing a view
consisting of tuples with source and target in addition to the identifier of the edge instance.

Figure 6: Simple RETE matcher

At each intermediate node, set operations (e.g. filter-
ing, projection, join, etc.) can be executed on the match
sets stored at input nodes to compute the match set which
is stored at the intermediate node. The match set for the
entire pattern can be retrieved from the output production
node. One kind of intermediate node is the join node,
which performs a natural join on its parent nodes in terms
of relational algebra; whereas a negative node contains
the set of tuples stored at the primary input which do not
match any tuple from the secondary input (which corre-
sponds to anti-joins in relational databases).

As an illustration, Figure 6 shows a RETE network
matcher built for the sourcePlace (see Figure 10) pattern
illustrating the use of join nodes. By joining three in-
put nodes (the top-most nodes on Figure 6), this sample
RETE net enforces two entity type constraints (’Place’

and ’Transition’ entity types on the left and right input nodes) and an edge (connectivity) con-
straint (corresponding to the relation connecting the ’Place’ and ’Transition’ entity types), to find
pairs of Places and Transitions connected by an out-arc.

Updates after model changes. Input nodes receive notifications about each elementary model
change (i.e. when a new model element is created or deleted) and release an update token on each
of their outgoing edges. Such an update token represents changes in the partial matches stored
by the RETE node. Positive update tokens reflect newly added tuples, and negative updates refer
to tuples being removed from the set. Upon receiving an update token, a RETE node determines
how the set of stored tuples will change, and release update tokens of its own to signal these
changes to its child nodes. This way, the effects of an update will propagate through the network,
eventually influencing the result sets stored in production nodes.

The match set can be retrieved from the network instantly without re-computation, which
makes pattern matching very efficient. As a trade-off, there is increased memory consumption,
and update operations become more complex.

5 / 15 Volume 18 (2009)



Parallelization with Incremental Pattern Matching

4 Parallel transformation with incremental pattern matching

This section presents our conceptual contributions to the parallel execution of model transforma-
tions. First, Subsection 4.1 will discuss in detail how the asynchronous RETE approach allows
the update phases to be executed in the background, while the transformation continues uninter-
rupted. In Subsection 4.2, we generalise this approach to multiple RETE threads for systems with
more than two CPU cores, based on the multi-threaded RETE maching set cache. The proposed
pattern matcher is applied to a multi-threaded model manipulation context in Subsection 4.3 to
let the model manipulation phase take advantage of the number of CPU cores.

4.1 Concurrent pattern matching and model manipulation

Contrary to our previous work, the RETE net implementation used throughout this paper relies
on asynchronous message passing. This involves a message queue attached to the network, con-
taining update messages manifested as objects. Each message object specifies a recipient node,
the tuple representing the update, and the sign (insertion or deletion). The message consump-
tion cycle fetches the first message from the queue and delivers it to the appropriate node; the
node will place any propagated output messages to the end of the queue, thereby achieving asyn-
chronous messaging. Change notifications issued by model manipulation are simply put into the
queue; then the update propagation phase consists of looping the message consumption cycle
until the queue becomes empty.

transformation RETE

change notification

change notification

pattern query

(a) General concept

transformation RETE

sourcePlace query

token removed notification

targetPlace query

token removed notification

token added notification

(b) fireTransition concurrently (c) Petri net states

Figure 7: Concurrent pattern matching

Using asynchronous messaging, the load on the main thread of the transformation can be re-
duced by executing the incremental pattern matcher (which consumes change messages from the
queue) in a separate thread. When the transformation manipulates the model (see Figure 7(a)),
it only has to send the new update message to the message queue, and continue its operation.

Proc. GT-VMT 2009 6 / 15



ECEASST

The thread of the pattern matcher will execute the update propagation in the background, ideally,
without imposing a performance penalty on the transformation thread. When the message queue
becomes empty, the RETE network has reached a fixpoint; the pattern matcher thread then goes
to sleep and will not resume its operation until a new update message is posted.

When the transformation initiates pattern matching, it has to assure that background update
propagations have terminated and the matches stored at the production nodes are up-to-date; so
if necessary, it will have to sleep until RETE reaches its fixpoint.

Figure 7(b) shows how the Petri net firing rule fireTransition (defined in Figure 5) may behave
in such a concurrent system. (i) First, the set of source places is fetched instantaneously from the
pattern matcher. (ii) Then, one token is deleted in every source place, each of them issueing a
notification to the pattern matcher thread that results in some update propagation in the RETE net.
(iii) Next, the list of target places is retrieved after update propagation is finished. (iv) Finally,
a new token is created at each target place, resulting in subsequent notifications. Figure 7(c)
displays the corresponding states of the Petri net model.

Initial performance results. While the local search based pattern matchers operate with cheap
model changes and costly pattern queries, the sequential RETE-based matcher [BÖR+08] has a
moderate overhead on model change balanced by instant pattern queries. This novel concurrent
incremental pattern matching approach combines the advantages of the former two: it has cheap
model manipulation costs, and potentially instant pattern queries. Although the transformation
might have to wait for the termination of the background pattern matcher thread, the worst case
of this time loss is still comparable to the update overhead of the original RETE approach.

This concurrent approach is expected to improve performance over a non-concurrent im-
plementation (as described in Section 3) if there are comparatively infrequent pattern matcher
queries and complex model changes between them. This would correspond to a forall style con-
trol flow when all matches of a pattern are obtained first, and then each of them is processed (po-
tentially) simultaneously, which is common in model-to-model transformation scenarios. This
complements the traditional advantage of incremental pattern matching, which manifested espe-
cially on as long as possible style control flows: when single matches are selected and processed
one by one until there are no matches of the pattern.

Initial experiments1 have shown that the concurrent approach improves performance by up to
20% on the Sierpinsky benchmark of [SNZ08]. For building a Sierpinsky-triangle of 8, 9 and 10
generations, our original RETE ran for 2.6s, 8.3s, and 26.2s, while the concurrent solution took
2.2s, 6.9s, 22.8s to terminate, respectively.

4.2 Multi-threaded pattern matching with RETE

The concurrent patten matching approach can be improved further given that the hardware ar-
chitecture is capable of running multiple threads efficiently. There are various approaches of
parallelizing the RETE algorithm, see Section 6 for details. Here we present a simple solution.

The basic idea is to employ multiple pattern matcher threads to consume update messages.
However, if these threads share the same message queue and RETE nodes, and multiple threads

1 Environment: 2.2GHz Intel Core 2 Duo processor, Windows Vista, Sun Java 1.6.0 11, 1GB heap memory

7 / 15 Volume 18 (2009)



Parallelization with Incremental Pattern Matching

could access the same node simultaneously, this could easily lead to complex inconsistency
problems, which could not be easily avoided by locks.

Our proposal splits the network into separate RETE containers, each of which is responsible
for matching a set of subpatterns. A container has its own distinct set of nodes, and assigns each
RETE container to a dedicated pattern matcher thread consuming update messages of a dedicated
queue. Each container is responsible for forwarding messages to its nodes using the dedicated
message queue. This way, two threads are not allowed to operate on the same RETE node, thus
maintaining mutual exclusions is not necessary.

Forwarding messages between two containers is accomplished by enqueueing the message in
the target container. Figure 8(a) depicts a parallel version version of Figure 6 illustrating how a
RETE net can be split into several containers for parallel execution.

PRODUCTION
sourcePlace

INPUTINPUT
INPUT

JOIN JOIN

RETE container RETE container

thread thread

(a) RETE containers

transformation RETE1

change notification

pattern query

RETE2

forward 
update

synchronize

change notification

(b) Message sequence

Figure 8: Multi-threaded pattern matching

Figure 8(b) illustrates how changes performed by the transformation induce update propaga-
tion in the RETE net. The update propagation spreads between containers, and is processed in
parallel. When the transformation needs to match a pattern, however, it will have to synchronize
with the pattern matcher and wait until all RETE activity has settled.

If a container runs out of update messages to process, it reaches a local fixpoint, otherwise
it remains active. The global fixpoint is reached when all containers are in a local fixpoint. In
order to retrieve up-to-date and consistent match sets, the transformation thread has to wait for a
global fixpoint. This thread synchronisation goal, however, is not trivial to accomplish, since a
container can leave its local fixpoint and become active again before a global fixpoint is reached
due to incoming messages from other, still active containers. To address this issue, we have
developed and implemented a termination protocol based on logical clocks.

Termination protocol for RETE containers Each container Ci is equipped with a logical
clock (denoted as clocki) that is incremented whenever a local fixpoint is reached by the message
consumption thread of the container (denoted threadi). Each time container Ci sends an update
message to container Ck, the message is appended to the message queue of Ck and the value of

Proc. GT-VMT 2009 8 / 15



ECEASST

clockk is retrieved and stored in ci as criterioni[k], all as a single atomic step2. The retrieved
clock value imposes a termination criterion: the network can only reach a global fixpoint if the
value of clockk exceeds the received snapshot. This means that the relayed message has been
delivered to the recipient node in Ck and all of the (local) consequences have been resolved,
resulting in a new local fixpoint in Ck, which is required for a global fixpoint.

When Ci reaches its local fixpoint, it atomically increments its clock and reports the event to a
global RETE network object; this report includes the incremented clocki, along with the values
criterioni[k] for each k. Similarly, when the transformation changes the model and consequently
sends a change notification (formulated as an update message) to an input node in container Ck,
it hands over the message to the message queue of Ck, fetches the clockk from that container and
reports it to the network object as a termination criterion, also performed as a single atomic step.

The global network object maintains an array criterionglobal[k] storing the largest reported
criterion for each k, and clockreported [i] for the latest clock value reported by Ci. Upon receiving
the report, the global network object evaluates whether a global fixpoint is reached and wakes
the transformation thread when appropriate. Determining whether a global fixpoint holds is as
simple as checking, for each container, whether the highest reported termination criterion value
stemming from that container is exceeded by its the latest reported fixpoint-time clock value.
This Termination Condition is formulated as:

∀k : clockreported [k] > criterionglobal[k] (1)

The above protocol is proven to be able to determine global fixpoints. The proof and further
details are available in [Ber08].

Performance discussion. It is important to point out that the performance of such a system
may depend highly on the amount of synchronization and replication that is necessary when
messages are passed between the containers. In theory, it would seem beneficial if the subpat-
terns (deployed to separate RETE containers) had a low number of interconnections, but further
research is necessitated to achieve this in practice. An ideal application scenario would be sev-
eral transformations or parts of the same transformation that are known to use different patterns;
allowing easy, straightforward splitting and parallelisation of the RETE net, with a low amount
of inter-connectedness. By partitioning the patterns into relatively independent containers, a
multi-threaded RETE pattern matcher may achieve high performance.

4.3 Multi-threaded model manipulation

In case of incremental pattern matching, the usefulness of optimizing the pattern matcher has
its limitations, as significant CPU time is spent on the rule application itself. Further gains in
performance can only be achieved by accelerating the execution of rule application and model
manipulation. For this purpose, we exploit multi-core architectures to provide multi-threading
for the model manipulation component as well.

2 the outlined procedure is only necessary if k 6= i; messages sent and received within the same container can use
the message queue without any interaction with clocks

9 / 15 Volume 18 (2009)



Parallelization with Incremental Pattern Matching

Multi-threading for model manipulation can be achieved easier if pattern matching is per-
formed in a separate thread, as described in Subsection 4.1 (or multiple threads, as in Subsec-
tion 4.2). When model manipulation threads change the model, they send update notifications
atomically, which involves inserting an update message addressed to the appropriate input node
into the message queue of the node’s container. When a transformation thread requires the set of
matches for a certain pattern, the pattern matcher call returns them immediately if the network is
in a global fixpoint, or suspends the thread (but not others) until that fixpoint state is reached.

Conflict prevention Several approaches aim to achieve serializable (i.e. thread-safe) paral-
lelisation of graph transformation rule applications, either for rule instances within one trans-
formation sequence, or for separate transformation runs. Most advanced solutions exploit the
declarative nature and concurrency theory of graph transformation (critical pairs, etc.) to execute
non-conflicting rules in parallel [Mez07].

Unfortunately, in many practical cases, model transformations are intertwined with hard-to-
analyze imperative actions, or simply, there are too many conflicts. Furthermore, even if conflict-
free high-level behaviour is guaranteed, there can still be conflicts caused by low-level imple-
mentation details (concurrent access to edge lists, etc.) that have not been taken into account.
Therefore low-level solutions are necessary for ensuring exclusion in parallel execution.

Locking scheme Exclusion can be provided by imposing a locking system on the model space.
If a thread acquires a lock, other threads will have to wait until it is released before they can ac-
quire a conflicting lock. The lock system can have, for instance, a model-level, an element-level,
or hierarchy-based lock granularity; locks may be held for the length of an elementary model
manipulation operation, or longer sequences; also, a read lock / write lock model is preferable.
However, our experiments (see below) showed that great care must be taken in the choice of
locking strategy.

A high ratio of lock conflicts could mean that the lock scheme itself becomes a bottleneck and
prevents the improvement of performance by parallelization, therefore locks should be compat-
ible whenever possible. On the other hand, over-specializing locks for the sake of compatibility
would result in too many individual lock acquisitions, which can have a considerable overhead.
Therefore the transformation system must strike a balance in order to achieve good scalability
even in write-intensive scenarios. The locking strategy can be predetermined, configurable by
the transformation author, or decided by reasoning on the declarative description of the graph
rules. This is a challenge that necessitates further research.

Initial performance results. A high amount of synchronization can diminsh performance both
through waiting and overhead. Parallel execution of read-intensive transformations, however, is
relatively conflict-free, therefore it does not heavily suffer from waiting, and can scale up to
multiple CPU cores efficiently. A suggested application scenario would be parallel code genera-
tion, with each thread producing a separate output file from a corresponding aspect of the source
model. Code generation is usually a read-only operation; we also believe that using different
aspects of the model aids in the partitioning of the RETE net.

Our current VIATRA2 implementation supports multiple transformation threads, concurrent

Proc. GT-VMT 2009 10 / 15



ECEASST

pattern matching, and model-level R/W locking. We used this system to measure the perfor-
mance of parallel code generation, namely generating PNML [JKW02] descriptions of several
Petri nets within the model space. This application scenario has the advantage that transformation
jobs are entirely read-only. However, since all generation jobs basically follow the same algo-
rithm and use similar Petri-nets, it does not easily lead to partitioning the RETE net; therefore,
we used concurrent pattern matching, but with a single RETE container. The initial expriments3

show that this system has a quasi-linear scalability. A Petri-net generated by the procedure
in [BHRV08] as “Size 50000” was used as a sample input. Two PNML code generators in se-
quence ran for 2.9s each, 5.8s altogether. Two code generators in parallel ran for 3.7s each, but
they took only 3.9s altogether.

On the other hand, we have also conducted preliminary measurements on the AntWorld case
study of GraBaTs 2008 [Gra08]. Our parallel solution to this benchmark turned out not to scale
well; in fact, it was slower than the sequential one. The results have showed that a naive lock-
ing scheme (the entire model has to be locked on each elementary operation) results in poor
scalability in case of a write-intensive transformation like AntWorld.

Due to the complexity (and sometimes strange characteristics) of parallel algorithms, further
measurements are required to compare its performance with non-incremental approaches.

5 Integration into the VIATRA2 model transformation framework

This section describes how the concepts described in Section 4 were incorporated into VIATRA2.
Subsection 5.1 gives a basic overview of the architecture of VIATRA2 and how it was changed to
support parallelized graph transformation. Subsection 5.2 briefly introduces how the proposed
parallelization techniques are made available in the transformation language of VIATRA2.

5.1 Architecture

XForm Interpreter

ThreadThreadThreadThreads

Viatra2 Model Space

Incremental 
Pattern Matcher

Container

Thread

Container

Thread

Container

thread
notification

model 
manipulation

pattern 
matching

RETE 
updates

Container

thread

LocksLocksLocksLocks

Figure 9: Architecture and workflow

VIATRA2 was designed with a modular architecture.
In the context of this paper, the most important com-
ponents are the model space, the transformation inter-
preter, and the incremental pattern matcher (see Fig-
ure 9). The model space contains and manages all
modeling data, including models and metamodels. The
transformation interpreter executes the ASM program
that defines the transformation; during the process, pat-
tern queries are directed towards the incremental pat-
tern matcher and the model is potentially manipulated.
Finally, pattern matcher modules are responsible for re-
turning the results of pattern queries. The incremen-
tal pattern matcher accomplishes this by using pattern

caches that are continously maintained in accordance to change notifications received from the
model space and internal RETE updates.

3 Environment: 2.2GHz Intel Core 2 Duo processor, Ubuntu 8.10, x64 OpenJDK 1.6.0 0, 1.5GB heap memory

11 / 15 Volume 18 (2009)



Parallelization with Incremental Pattern Matching

The parallelization of graph transformation required changes in all three presented modules.
The model space now offers a locking scheme to deal with conflicting transformation threads, as
required by Subsection 4.3. The RETE net is divided into one or more containers, each operated
by its dedicated thread, as described in Subsection 4.1 and Subsection 4.2. RETE updates can
now either happen within one container, or be delivered as an asynchronous message between
containers. Transformations are run by several interpreter threads that are executed in parallel,
as proposed in Subsection 4.3.

5.2 Language features

VIATRA2 transformation designers have the option to select either a local search-based pattern
matcher module or the incremental pattern matcher (see [BHRV09] for details). This annotation
has been extended with a parameter to enable the parallelized pattern matching features described
in Subsection 4.1 and Subsection 4.2.

The first listing in Figure 10 shows how this option was specified for the PNML generator
example, selecting the parallelized version of the incremental pattern matcher for all pattern
queries of the transformation petrinet2PNML. The annotation can also specify the type of pattern
matcher on a per-pattern basis, thus the incremental and the local search-based pattern matchers
can be combined. However, for performance considerations, it is not wise to mix the parallel
and the non-parallel versions of the incremental pattern matcher, because it would cause two
separate RETE nets to be built for the two techniques, which can result in a significant increase
of memory consumption.

Multi-threaded model manipulation is also available from the language; the second listing in
Figure 10 shows two ASM rule invocations (the two PNML generation jobs) executed in parallel,
instead of sequentially, as proposed in Subsection 4.3.

@incremental(’parallel’=’1’)
machine petrinet2PNML{
...
rule generate(in Key, in PN) = seq {
...
}

}

...
parallel
{
call generate("out2.pnml", ...);
call generate("out3.pnml", ...);
}
...

Figure 10: Language elements enabling parallel features

6 Related work

Incremental pattern matching. Incremental updating techniques have been widely used in
different fields of computer science (including view updates in relational databases [GMS93]).
In graph/model transformation tools, PROGRES [SWZ99] supports incremental attribute update
performing immediate invalidation of partial matchings, while the validation of partial matchings
are only computed on request (i.e., when a matching for the LHS is requested). The transforma-
tion engine of TefKat [LS05] performs an SLD resolution based interpretation to construct and
incrementally maintain a search space tree representing the trace of transformation execution

Proc. GT-VMT 2009 12 / 15



ECEASST

[HLR06]. The uniform, incremental handling of model elements and patterns can be considered
a unique, advanced feature of the approach. [VVS06] proposes to store a tree for the partial
matches of a pattern, and incrementally updates it upon model changes.

RETE networks. RETE networks [For82], which stem from rule-based expert systems, have
already been used as an incremental graph pattern matching technique in several application sce-
narios including the recognition of structures in images [BGT90], and the co-operative guidance
of multiple uninhabited aerial vehicles in assistant systems as suggested by [MMS08]. Our con-
tribution extends this approach by supporting a more expressive and complex pattern language.

Parallel RETE. There is also some work in literature in the context of parallel or distributed
RETE implementations. For instance, [AT98] focuses on parallelizing rule applications, [MK90]
parallelizes pattern matching. Unfortunately, certain approaches focusing on expert systems are
hard to be accessed, e.g. due to vague patent descriptions [Lin05], and certain industrial solutions
might not be published at all. Anyhow, these approaches rarely provide proofs to guarantee the
global termination of local updates as mentioned in Subsection 4.2, which is specific to our
model transformation context.

Parallel graph transformations. In addition to large amount of theoretical work on concur-
rent and parallel aspects of graph transformation, relatively little practical work has been carried
out. Some advanced solutions were proposed by G. Mezei [Mez07] who analyses pattern con-
flicts and groups executable rules into independence blocks to execute them in parallel. Further
contributions also introduced parallel pattern search for first occurence and all occurrences. Our
current work is complementary to his work, as it offers parallelization with a different pattern
matching paradigm. Future research shall be conducted to identify how to combine the strength
of the two approaches.

The GrGen.NET transformation system follows a different approach [Sch08] to avoiding par-
allelization conflicts: the model itself is split into several partitions, and different threads operate
on different fragments. Pattern matches bridging multiple partitions are dealt with separately.

As an alternative solution to managing conflicts, Roberto Bruni has recommendended that we
should investigate the possibility of employing an optimistic concurrency strategy in the future.

7 Conclusion

The paper introduced various techniques for parallelizing graph transformation systems using
incremental pattern matching. More specifically, we discussed how to exploit the power of mod-
ern computers with multiple processor cores, tailored to the specialities of incremental pattern
matching. Our approach decouples model manipulation and pattern matching, and then paral-
lelizes each of these phases.

We also sketched conditions when the proposed solutions are expected to perform best: (i)
transformations with longer model manipulation sequences, (ii) transformation runs accessing
different patterns, and (iii) transformation runs that are read-intensive.

Finally, an initial implementation of all the three presented ideas has been integrated to the
VIATRA2 model transformation framework, and an initial performance evaluation of these par-
allelization techniques was carried out.

13 / 15 Volume 18 (2009)



Parallelization with Incremental Pattern Matching

Acknowledgements: This work was partially supported by EU projects SENSORIA (IST-3-
016004) and SecureChange (ICT-FET-231101), and the László Schnell Foundation.

Bibliography

[AT98] M. M. Aref, M. A. Tayyib. Lana—Match algorithm: a parallel version of the Rete—
Match algorithm. Parallel Comput. 24(5-6):763–775, 1998.
doi:http://dx.doi.org/10.1016/S0167-8191(98)00003-9

[Ber08] G. Bergmann. Incremental graph pattern matching and applications. Master’s thesis,
Budapest University of Technology and Economics, May 2008.
http://home.mit.bme.hu/∼bergmann/publications/bergmann diploma 2008.pdf

[BGT90] H. Bunke, T. Glauser, T.-H. Tran. An Efficient Implementation of Graph Gram-
mars Based on the RETE Matching Algorithm. In Ehrig et al. (eds.), Graph-
Grammars and Their Application to Computer Science. Lecture Notes in Computer
Science 532, pp. 174–189. Springer, 1990.

[BHRV08] G. Bergmann, A. Horváth, I. Ráth, D. Varró. A Benchmark Evaluation of Incremen-
tal Pattern Matching in Graph Transformation. In ICGT. 2008.

[BHRV09] G. Bergmann, A. Horváth, I. Ráth, D. Varró. Efficient Model Transformations by
Combining Pattern Matching Strategies. In Proc. of ICMT ’09 , 2nd Intl. Conference
on Model Transformation. Springer, 2009. Accepted.

[BÖR+08] G. Bergmann, A. Ökrös, I. Ráth, D. Varró, G. Varró. Incremental Pattern Matching
in the VIATRA Model Transformation System. In Karsai and Taentzer (eds.), Graph
and Model Transformation (GraMoT 2008). ACM, 2008.

[BS03] E. Börger, R. Särk. Abstract State Machines. A method for High-Level System Design
and Analysis. Springer-Verlag, 2003.

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg (eds.). Handbook on Graph
Grammars and Computing by Graph Transformation. Volume 2: Applications, Lan-
guages and Tools. World Scientific, 1999.

[For82] C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence 19(1):17–37, September 1982.

[GMS93] A. Gupta, I. S. Mumick, V. S. Subrahmanian. Maintaining views incrementally (Ex-
tended abstract. In In: Proc. of the International Conf. on Management of Data,
ACM. Pp. 157–166. 1993.

[Gra08] GraBaTs - Graph-Based Tools: The Contest. 2008. http://www.fots.ua.ac.be/events/
grabats2008/.

Proc. GT-VMT 2009 14 / 15

http://dx.doi.org/http://dx.doi.org/10.1016/S0167-8191(98)00003-9
http://home.mit.bme.hu/~bergmann/publications/bergmann_diploma_2008.pdf
http://www.fots.ua.ac.be/events/grabats2008/
http://www.fots.ua.ac.be/events/grabats2008/


ECEASST

[HLR06] D. Hearnden, M. Lawley, K. Raymond. Incremental Model Transformation for the
Evolution of Model-Driven Systems. In Nierstrasz et al. (eds.), MoDELS. Lecture
Notes in Computer Science 4199, pp. 321–335. Springer, 2006.

[JKW02] M. Jungel, E. Kindler, M. Weber. The Petri Net Markup Language. In In S. Philipi,
editor, Algorithmen und Werkzeuge fur Petrinetze (AWPN), Koblenz. June 2002.

[Lin05] P. Lin. System and method to distribute reasoning and pattern matching in forward
and backward chaining rule engines. US Patent application 20050246301, 02 2005.

[LS05] M. Lawley, J. Steel. Practical Declarative Model Transformation With Tefkat. In
Bézivin et al. (eds.), Proc. of the International Workshop on Model Transformation
in Practice (MTiP 2005). October 2005. http://sosym.dcs.kcl.ac.uk/events/mtip05/.

[Mez07] G. Mezei. Supporting Transformation-Level Parallelism in Model Transformations.
In Automation and Applied Computer Science Workshop. Budapest, Hungary, 2007.

[MK90] M. Mahajan, V. K. P. Kumar. Efficient parallel implementation of RETE pattern
matching. Comput. Syst. Sci. Eng. 5(3):187–192, 1990.

[MMS08] A. Matzner, M. Minas, A. Schulte. Efficient Graph Matching with Application to
Cognitive Automation. In Schürr et al. (eds.), AGTIVE 2007. Springer Verlag, 2008.

[Roz97] G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph Trans-
formations: Foundations. World Scientific, 1997.

[Sch08] J. Schimmel. Parallelisierung von Graphersetzungssystemen. Master’s thesis, Uni-
versitat Karlsruhe, 2008.

[SNZ08] A. Schürr, M. Nagl, A. Zündorf (eds.). Applications of Graph Transformations with
Industrial Relevance, Third International Symposium, AGTIVE 2007, Kassel, Ger-
many, October 10-12, 2007, Revised Selected and Invited Papers. Lecture Notes in
Computer Science 5088. Springer, 2008.

[SWZ99] A. Schürr, A. J. Winter, A. Zündorf. The PROGRES approach: language and envi-
ronment. Pp. 487–550, 1999.

[VB07] D. Varró, A. Balogh. The model transformation language of the VIATRA2 frame-
work. Sci. Comput. Program. 68(3):214–234, 2007.

[VVS06] G. Varró, D. Varró, A. Schürr. Incremental Graph Pattern Matching: Data Structures
and Initial Experiments. In Karsai and Taentzer (eds.), Graph and Model Transfor-
mation (GraMoT 2006). Electronic Communications of the EASST 4. EASST, 2006.

15 / 15 Volume 18 (2009)

http://sosym.dcs.kcl.ac.uk/events/mtip05/

	Introduction
	Foundations of model transformation
	Model transformation example: Petri nets
	Foundations of metamodeling
	Graph patterns and graph transformation

	RETE-based incremental graph pattern matching
	Parallel transformation with incremental pattern matching
	Concurrent pattern matching and model manipulation
	Multi-threaded pattern matching with RETE
	Multi-threaded model manipulation

	Integration into the Viatra2 model transformation framework
	Architecture
	Language features

	Related work
	Conclusion

