
Electronic Communications of the EASST
Volume 18 (2009)

Proceedings of the
Eighth International Workshop on

Graph Transformation and Visual Modeling Techniques
(GT-VMT 2009)

Improved Flexibility and Scalability by Interpreting Story Diagrams

Holger Giese, Stephan Hildebrandt and Andreas Seibel

12 pages

Guest Editors: Artur Boronat, Reiko Heckel
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Improved Flexibility and Scalability by Interpreting Story Diagrams

Holger Giese1, Stephan Hildebrandt1 and Andreas Seibel1

1 [holger.giese|stephan.hildebrandt|andreas.seibel]@hpi.uni-potsdam.de
System Analysis and Modeling Group,

Hasso Plattner Institute for Software Systems Engineering,
University of Potsdam, Germany

Abstract: In this paper, we present an interpreter for Story Diagrams working on
Eclipse Modeling Framework (EMF) models. The interpreter provides a more flex-
ible and, under certain circumstances, a more scalable solution than the compiled
Java code generated from Story Diagrams by Fujaba. of Dynamic EMF even al-
lows the evolution of meta models at runtime. Story Diagrams can now be modeled
and executed within Eclipse. They can be modified and re-executed by the Story
Diagram interpreter immediately without recompiling the source code and restart-
ing the application. Our implementation also supports higher-order transformations
by using Story Diagrams to modify other Story Diagrams. generation is not appli-
cable, like running systems. While interpretation obviously results in performance
drawbacks, we demonstrate that the Story Diagram interpreter is able to improve
the performance in certain worst-case situations compared to the average generated
code. This is achieved by a dynamic ordering of the matching process, which con-
siders the actual number of elements in an association at runtime. Such a dynamic
ordering can minimize the matching effort considerably. In contrast, Fujaba gener-
ated code uses a static matching strategy. Whereas the Fujaba Story Diagrams have
potentially high performance fluctuations, the performance of the Story Diagram
interpreter is steadier and more scalable compared to the generated Java code.

Keywords: Graph Transformation Systems, Interpreter, Story Diagram

1 Introduction
Story Diagrams [FNTZ00], as supported by the Fujaba Tool Suite1, are an established graph
transformation approach. They have been employed in several applications ranging from be-
havior specification [FNTZ00], reverse engineering [NSW+02], consistency checking [WGN03,
GMW06], and as an implementation technique for model transformations with Triple Graph
Grammars [GW09, GH08] (TGG).

In this paper, we present our new interpreter for Story Diagrams, which works directly on
Eclipse Modeling Framework (EMF)2 models. It allows directly executing Story Diagrams to
access and modify arbitrary EMF-based models. This leads to a higher flexibility. On the one
hand, Story Diagrams are now available in Eclipse and EMF. This streamlines our workflows.
Currently, EMF models are imported into Fujaba, Story Diagrams are modeled with Fujaba, code
is generated, and the code is exported back to Eclipse. One the other hand, Story Diagrams can

1 http://www.fujaba.de
2 http://www.eclipse.org/modeling/emf/

1 / 12 Volume 18 (2009)

mailto:[holger.giese$|$stephan.hildebrandt$|$andreas.seibel]@hpi.uni-potsdam.de

Improved Flexibility and Scalability by Interpreting Story Diagrams

be modified and re-executed by the Story Diagram interpreter immediately without recompiling
the source code and restarting the application. The additional steps of generating code, compiling
code and integrating it into the runtime environment disappear. Modeling Story Diagrams within
EMF leverages higher-order transformations [MCG05] because Story Diagrams can be used to
modify other Story Diagrams.

Furthermore, the interpreter also supports Dynamic EMF. Dynamic EMF objects are not in-
stantiated from specifically generated code classes but from a generic class. This allows creating
and modifying meta models and their instances in runtime environments where the application
of code generation is not feasible.

During the development of a model transformation system based on Triple Graph Grammars,
we encountered performance issues when executing code generated from Story Diagrams by
Fujaba. The reason is the static pattern matching strategy used by the generated code, which is
occasionally not the optimal pattern matching strategy. The interpreter uses a dynamic pattern
matching strategy, which first tries to find matches using those instance links with the lowest
number of elements. This is also the optimal matching strategy in many cases and results in a
better scalability compared to Java code with a non-optimal static matching strategy. We have
conducted an evaluation that compares the runtime performance of the interpreter with the com-
piled Java code of Fujaba. As outlined in [VSV05] and [TBB+08], Fujaba has been shown to be
one of the most efficient graph transformation engines in comparison to AGG [T0̈0], PROGRES
[REEK99], GReAT [BNBK06], and other approaches. Because of that observation, we restrict
our analysis to a direct comparison between the new Story Diagram interpreter and the compiled
Java code of Fujaba.

The paper is structured as follows: We first describe Story Diagrams as supported by Fujaba
in Section 2. Then, we describe our EMF-based meta model of Story Diagrams and the Story
Diagram interpreter in Section 3. In Section 4 we discuss the benefits of interpreting Story
Diagrams implying a higher flexibility (Section 4.1) and scalability (Section 4.2). The paper
closes with some final remarks and an outlook on planned future work in Section 5.

2 Story Diagrams in Fujaba
Story Diagrams extend UML Activity Diagrams by so-called Story Activities to model the be-
havior of a method of a UML Class. Therefore, they are usually used in conjunction with a
UML Class Diagram that describes the structure of a software application. Fujaba is a UML
CASE tool that supports Story Driven Modeling (SDM), which comprises the modeling of Story
Diagrams and the generation of Java code from UML Class Diagrams and their accompanying
Story Diagrams. This way, it is possible to completely create Java applications using the models
provided by Fujaba. Besides Story Activities, Story Diagrams can also contain other kinds of
activities like Statement Activities. These activities contain plain Java code. User defined code
is inserted into the code which is generated by Fujaba. The user-defined code can access objects
matched and created in previous Story Pattern executions and it can create objects that can be
used in following Story Patterns. More details on Story Diagrams can be found in [FNTZ00].

Figure 1 shows a meta model that reflects a simplified UML Class Diagram and Figure 2 shows
an example Story Diagram that describes the doSomething() method of the StoryDiagramTester
class. It operates on instances of the meta model of Figure 2.

Story Activities contain a Story Pattern. A Story Pattern describes a graph transformation rule

Proc. GT-VMT 2009 2 / 12

ECEASST

Figure 1: Example meta model of a simplified UML Class Diagram

Figure 2: Example Story Diagram

that is executed on the object graph of a running application. Story Patterns can match existing
objects, create new objects or delete objects of the running application. For example, the Story
Pattern in Figure 2 searches for a UMLClass object that is connected to the umlClassDiagram via
the elements link, and to a UMLStereotype object (stereotype) via a stereotypes link. The Story
Pattern object umlClassDiagram is already bound to the object that was supplied as the method’s
parameter. The other two Story Pattern objects are unbound. When the Story Pattern is executed,
matches for these Story Pattern objects are searched for in the application’s object graph. If all
Story Pattern objects can be bound to an instance object, a new UMLStereotype object is created
(indicated by <<create>>) and connected to the umlClass and the umlClassDiagram objects.

3 Story Diagram Interpreter Based on EMF
In this section, we will describe the developed Story Diagram interpreter and briefly describe the
meta model of our Story Diagrams, which is based on EMF. The interpreter is implemented as a
plug-in for the Eclipse framework.

Ecore Meta

Meta Model

StoryDiagram

Meta Model

Meta Model

MM1

StoryDiagram

Model
Model M1

«instance» «instance»

«instance»«instance»

«references»

StoryDiagram Interpreter

execute Story Diagram on

Figure 3: Models used by the Story Diagram interpreter.

EMF provides Ecore as a common meta meta model. All EMF-based meta models are in-

3 / 12 Volume 18 (2009)

Improved Flexibility and Scalability by Interpreting Story Diagrams

stances of the Ecore meta meta model. This includes the meta model of Story Diagrams. Figure 3
shows these relationships. Story Diagram models are in turn instances of the Story Diagram meta
model. Another meta model (MM1 in Figure 3) is required that defines the elements that can be
matched and modified by a Story Diagram, e.g., classes, operations and associations. Especially,
the definition of the operation is required, whose behavior is modeled by the Story Diagram.
Therefore, a Story Diagram model references this meta model. Of course, it is also possible, that
a Story Diagram references multiple meta models, including its own meta model.

To execute a Story Diagram, the interpreter needs that Story Diagram, as well as an instance of
the meta model that is referenced by the Story Diagram (M1). These are supplied as parameters
to the interpreter. During execution, that model may be modified, depending on the behavior
modeled by the Story Diagram. If the operation defined in the meta model (MM1) also has
parameters and a return value, these additional parameters can be supplied to the interpreter. The
return value is returned when the interpretation is finished.

The use of the common meta meta model Ecore allows to access all EMF-based models in
a uniform way. All instance objects provide a generic interface to access their properties and
have a reference to their meta class, that provides information about the properties of that object.
This allows working on any EMF-based models without knowing their meta models at design
time. Dynamic EMF objects push that concept even further. Usually, code is generated by EMF
and objects at runtime are instances of these generated classes. Dynamic EMF objects are not
instantiated from specifically generated code classes but from a generic class. Their attributes
and associations can only be accessed via the generic interface mentioned above. The Story
Diagram interpreter uses only this generic interface to access and modify objects and, therefore,
can execute Story Diagrams defined on any EMF-based meta model and can handle normal and
dynamic EMF objects.

3.1 Story Diagram Meta Model
Before explaining the interpreter in more detail, we will look at the meta model of Story Dia-
grams. While Fujaba’s meta model of Story Diagrams is intended to be used to generate code,
it is unsuitable for interpreting a Story Diagram. This is mainly due to the fact, that statement
activities contain plain Java code but Java code cannot be executed directly by our interpreter.
We also support OCL for constraints, which also require changes to the Meta model. Further-
more, Fujaba uses a proprietary meta meta model that makes integration with other tools difficult.
Therefore, we built a new Story Diagram meta model based on EMF.

This meta model is shown in Figure 4. The root node of a diagram, ActivityDiagram, contains
several Activities, each models a method’s behavior. Each Activity contains several ActivityNodes
that are connected by ActivityEdges. These edges can have guards to conditionally branch the
control flow. There are several types of ActivityNodes to model the entry and exit points of
the method, branches, Story Patterns and imperative calls. This follows the notion of Activity
Diagrams of UML 2.0.

InitialNodes, ActivityFinalNodes, DecisionNodes and MergeNodes describe the control flow
inside an Activity. CallActionNodes can be used for imperative calls, StoryActionNodes describe
Story Patterns.

A StoryPattern contains StoryPatternObjects that are connected by StoryPatternLinks. Story-
PatternObjects represent an instance object of a meta class. Similarly, StoryPatternLinks repre-

Proc. GT-VMT 2009 4 / 12

ECEASST

Figure 4: EMF-based Story Diagram meta model

sent instance links of associations. StoryPatternObjects can be augmented by Constraints and
AttributeAssignments. Constraints define conditions that must be met in order to match that Sto-
ryPatternObject to an instance object. AttributeAssignments assign a new value to an attribute.
They are only executed after a valid match for the whole StoryPattern could be found. The val-
ues of AttributeAssignments are calculated by Constraints. The StoryPattern itself can also have
a Constraint that is checked when matches for all StoryPatternElements could be found. This
is useful to specify constraints that include multiple StoryPatternObjects. Constraints on Sto-
ryPatternObjects may not include other elements of the same StoryPattern because these other
elements might not be bound when the constraint is evaluated.

Constraints are uniformly handled by Constraint objects. They contain the constraint expres-
sion and the type of the constraint language. Currently, only OCL is supported. Constraints can
either evaluate to a Boolean value or an object. The latter case is used for AttributeAssignments
to compute values.

CallActionNodes try to resemble Fujaba’s capability to use arbitrary Java code in statement
activities. There are several types of CallActions, that can create a new variable and assign a
value to it, reference an existing variable, create a new object, define a literal of a primitive
type, evaluate an OCL expression and, most importantly, call arbitrary Java methods via Java’s
reflection mechanism (MethodCallAction). This way, user defined code can be integrated into
the execution of the Story Diagram.

3.2 Story Diagram Interpreter
Our tool support for modeling Story Diagrams is currently limited to the tree-based editor gen-
erated by EMF from the Story Diagram meta model. We are working on a graphical editor using
GMF to ease modeling Story Diagrams. Furthermore, we provide a set of basic validation rules
using openArchitectureWare’s3 Check language.

The Story Diagram interpreter is also based on Eclipse. It consists of four major parts (cf. meta
model in Figure 5): The StoryDiagramInterpreter, that manages the interpretation of an activity,
the StoryPatternMatcher, responsible for executing a single Story Pattern, the CallActionNodeIn-
terpreter, responsible for executing call action nodes, and the InterpreterVariablesManager, that
stores the variables used in the activity along with their instance values. It is also used to evaluate

3 http://www.openarchitectureware.org

5 / 12 Volume 18 (2009)

Improved Flexibility and Scalability by Interpreting Story Diagrams

Figure 5: Meta model of the Story Diagram interpreter

OCL constraints using an OCL interpreter.4

InterpreterVariables are used to store information about the variables used in a Story Diagram
at runtime. They are created for used every variable. These are especially StoryPatternObjects
but also the parameters of the operation.

To start the interpretation of an activity, the method executeStoryActivity() of the StoryDia-
gramInterpreter is called. The parameters of the method are the activity to interpret, a list of
values that are used as parameters for the operation modeled by the activity, and the this object
in whose context the activity will be executed.

The interpreter traverses the activity starting at the InitialNode. If a CallActionNode or a Sto-
ryActionNode is encountered, the CallActionIntepreter or the StoryPatternMatcher are called to
execute that node. In case of DecisionNodes, constraints on outgoing activity edges are evaluated
and the interpreter branches accordingly. If a final node is reached, the execution ends and the
return value of the Story Diagram is returned to the caller.

Figure 6: Story Activity of the method doSomething()

Figure 7: Example instance Class Diagram

The StoryPatternMatcher uses a dynamic pattern matching approach. It first tries to find
matches for StoryPatternObjects using those associations, which contain the lowest number of
elements. Figure 6 shows an example Story Diagram and Figure 7 an instance situation. All
references are bidirectional. The instance object cd is supplied as a parameter to the activity.

4 We use the OCL interpreter available at http://www.eclipse.org/modeling/mdt/?project=ocl.

Proc. GT-VMT 2009 6 / 12

ECEASST

Starting from umlClassDiagram, the first Story Pattern object has to be bound by iterating the
elements association. Assume, the interpreter matches stereotype to s1. Now, umlClass can be
bound by either iterating elements a second time, or by following the stereotypes link from s1.
Because the latter contains fewer elements, it is preferred. A possible match for the last Story
Pattern object stereotype2 is searched for by following the stereotypes link from c1. But because
the only element s1 is already bound to another Story Pattern object, no match can be found.
Therefore, the matches for umlClass and stereotype are discarded and the interpreter tries to find
another match for stereotype. But this attempt also fails in the example.

To perform this dynamic matching process, the Story Pattern is analyzed prior execution and
StoryPatternLinks are grouped into to-one and to-many links. When the interpretation starts, it is
checked if a to-one link exists, that starts at a bound StoryPatternObject and ends at an unbound
one. If such a link exists, it is used to bind the target StoryPatternObject of the link. Otherwise,
the to-many links are searched. Now, the actual number of elements in the instance association is
also checked and the link with the lowest number is followed to bind the next StoryPatternObject.
After a StoryPatternObject was bound, constraints on that object are evaluated and all links are
checked, that now have a bound source and target. If these conditions are not met, the match
is discarded and another is sought. If they are met, the next link to bind objects is looked up.
When all StoryPatternObjects could be bound, constraints on the StoryPattern are evaluated. If
these are fulfilled, StoryPatternObjects marked as delete or create are deleted and created, and
AttributeAssignments are executed.

To keep track of matches, a stack is used. Every time, a Story Pattern object is bound, an
element is put on the stack, that contains lists of all bound and unbound objects, and checked and
unchecked to-one and to-many links. If no match can be found for a Story Pattern object, the
top-most stack element is removed and the pattern matching continues using the state of the now
top-most stack element. If the stack runs empty, no match could be found for the Story Pattern.

For debugging purposes, adapters can be registered at the interpreter. Each time, the interpreter
performs an action, a notification is send to the adapters. This can be used to print messages to a
log or to implement a graphical debugger for Story Diagrams.

The dynamic pattern matching strategy allows adapting the matching strategy to the instance
situation. This is useful, if the optimal matching strategy for a Story Pattern differs depending
on the instance situation. However, the interpreter’s matching strategy is not optimal in every
case. Cases can be constructed, where traversing a link with many target elements first results in
a lower overall execution time. But these cases are rather the exception than the rule.

4 Benefits of the Interpreter
In this section, we outline the benefits of the introduced Story Diagram interpreter. We discuss
the improved flexibility in Section 4.1 and the steadier and improved scalability in Section 4.2.
On both aspects, we discuss the impact on projects we are currently working on.

4.1 Flexibility
In this section, we discuss the flexibility benefits of the Story Diagram interpreter by means of
application areas that we already gained experience from. The main improvements in flexibility
are due to the following facts:

7 / 12 Volume 18 (2009)

Improved Flexibility and Scalability by Interpreting Story Diagrams

• We can improve our workflow because we completely ported SDM to the EMF-based
Eclipse platform. Thus, we are able to model and maintain Story Diagrams and further
execute them within the same environment.

• We do not need to generate source code from Story Diagrams, which entails the compila-
tion of Story Diagrams and further the integration of the compiled code into the environ-
ment for execution.

• We can use other EMF-based tools on Story Diagrams. For example, openArchitecture-
Ware’s Check language is used to check well-formedness of Story Diagrams. EMF com-
pare5 could be applied to compare different versions of Story Diagrams etc.

• We have an explicitly defined meta model of Story Diagrams (Ecore) within Eclipse. This
enables to integrate Story Diagrams in the definition of Story Diagrams, which is the
prerequisite for higher-order transformations. Fujaba does not allow referencing the Story
Diagram meta model within Story Diagrams.

• The support of Dynamic EMF enables to do transformations on meta models without
generating code of the mega models. This is most desirable in runtime environments when
code generation is not applicable.

Currently, we are working on two projects, where Story Diagrams are frequently used, which
are briefly explained in the following. Both projects benefit from the first to facts in the previous
listing.

The first project deals with traceability management in an Eclipse-based Model-Driven En-
gineering (MDE) environment.6 We have developed a prototypical MDE environment, which
is able to model the deployment of software products provided by a company into a model of
an IT infrastructure reflecting a customer’s IT. Furthermore, the software products, which are
modeled in the deployment models, are configured variants of reference models, which contain
details of the software product necessary for the deployment domain. Between these models, we
have several kinds of relationships tracing certain aspects, which are required to be managed and
maintained. The management/maintenance operations for these traceability relationships are ex-
pressed by means of Story Diagrams (create and delete operations). Thus, if specific situations in
a certain model instantiation exist, there will be Story Diagrams in order to create new relation-
ships between models/model elements and delete existing relationships, which became invalid
because of unsatisfied constraints expressed in Story Diagrams.

The first prototype suffered from an uncomfortable workflow we were forced to use. Story
Diagrams had to be specified within the CASE tool Fujaba. This required re-modeling the meta
models of the MDE models in Fujaba in order to specify the Story Diagrams. Further, code for
each Story Diagram had to be generated, the code had to be complied and finally integrated into
the Eclipse MDE environment. Furthermore, once the MDE environment is deployed to end-
users, adding or updating existing Story Diagrams requires an additional mechanism to generate
Story Diagram code, compile the code and integrate it into the running MDE environment.

5 http://wiki.eclipse.org/index.php/EMF Compare
6 This project is funded by CA Labs Inc.

Proc. GT-VMT 2009 8 / 12

ECEASST

In a subsequent implementation we encountered that the integration of SDM into Eclipse
fixed all these issues. We can model Story Diagrams within the same environment, and instantly
execute them after specification which safes a lot of time to the user of the environment. Thus,
the whole SDM integration brings more flexibility to the user in this project.

In the other project, a model transformation and synchronization system based on Triple Graph
Grammars [GH08] (TGG) was developed. The system is also based on Eclipse and EMF. The
user specifies a set of declarative TGG rules that describe the model transformation. These rules
are translated into Story Diagrams to make them operational. In this step, some operational
logic is integrated into the Story Diagrams to support features like incremental transformation
and synchronization of the models. Next, Java code is generated from the Story Diagrams. A
transformation engine executed this code to perform model transformations.

The SDM integration could now improve the usability of the system because it would improve
the workflow. After the TGG rules are created by the user and transformed to Story Diagrams,
these could be executed instantly without the need to generate code and restart the transformation
system. This saves a lot of time when a new set of transformation rules needs to be tested and
debugged.

4.2 Scalability
During the development of the TGG-based model transformation system in Eclipse, we discov-
ered that the static matching strategy of the generated code could have a severe impact on the
performance of the overall transformation system. The Story Patterns in the Story Diagrams are
quite complex and the code generator seldom chooses the optimal matching strategy. Especially
in case of large models, this leads to bad scalability of the transformation system. We tried to
avoid the problem by splitting complex Story Patterns into simpler ones to guide the code gen-
erator in choosing the best strategy. However, this does not work in all cases and it increases the
complexity of the overall Story Diagrams making debugging and testing of the transformation
system more difficult. Therefore, the dynamic matching strategy of the Story Diagram Inter-
preter would improve the situation. We could use complex Story Patterns (and simpler Story
Diagrams) and still be sure to have the best matching strategy in most cases.

To compare the dynamic matching strategy to the fixed matching strategies of compiled code
generated by Fujaba, we have conducted a small benchmark7. Of course, this is not meant to
be an exhaustive performance evaluation. It is only limited to the pattern matching parts. Other
performance bottlenecks, like the OCL interpreter, are not considered.

For the benchmark, a simple Class Diagram model was created conforming to the meta model
in Figure 1. In the test models, each UMLClass is connected to exactly one UMLStereotype
object and vice versa, i.e. the number of classes and stereotypes is the same. Figure 7 shows the
general scheme. Test models of different sizes ranging from 200 to 100,000 UMLClass objects
were created, which means a total number of 401 to 200,001 elements. On these test models,
the Story Diagram shown in Figure 6 was executed and the time was measured. The test was
repeated ten times for each model size and the mean time was calculated. Because the Story
Pattern cannot find a match in the instance models, the whole instance models must be traversed.
7 The benchmarks were run on a PC running on an Intel T5500 Core2 Duo Processor with 1.66 GHz and 2.5
GB RAM under Windows XP SP3. We used Fujaba 5.1 with CodeGen2 5.5 to generate Java code from the Story
Diagram. The Story Diagram interpreter runs on Eclipse 3.4.1 and uses EMF 2.4.0. The Java Runtime version is 1.6.

9 / 12 Volume 18 (2009)

Improved Flexibility and Scalability by Interpreting Story Diagrams

We tested three versions of Java code generated by Fujaba from the Story Diagram, and the
interpreter. The interpreter was tested one time using the implementation code generated from
the Class Diagram meta model, the other time using only dynamic objects. This will show the
performance penalty when dynamic objects are used.

The code generated by Fujaba uses a fixed matching strategy, which is defined at generation
time. The code generator prefers to-one associations to match Story Pattern objects. Surprisingly,
the matching order is also influenced by the order in which the links of the Story Pattern are
created when the Story Diagram is modeled.

For the example Story Diagram, there are three major categories of matching strategies. The
first strategy iterates a single time over the elements association to bind the first Story Pattern
object (e.g. stereotype). The remaining two Story Pattern objects are bound via the stereotype
links. This order is depicted in Figure 6 by the numbers. It is the most efficient strategy for the
instance models used in the benchmark and is also used by the Story Diagram interpreter. The
second strategy iterates the elements link two times, the third strategy iterates even three times.
Because the iteration over the elements association dominates the processing effort, the impact of
the model size on the performance can be expected to be much higher than for the first strategy.
For each of these categories, we generated code with Fujaba by varying the order in which the
Story Pattern links were created.8

No. of Interpreter Fujaba generated code
classes compiled code dynamic objects strategy 1 strategy 2 strategy 3 Arithmetic Average Weighted Average

200 6 12 6 34 4,590 1,543 402
400 12 6 1 121 37,450 12,524 3,182
600 12 12 3 271 126,874 42,383 10,710
800 15 22 6 468 300,781 100,418 25,302

1000 24 25 1 728 587,790 196,173 49,347
2000 59 51 7 2,689 n.a. n.a. n.a.
4000 106 110 11 10,703 n.a. n.a. n.a.
6000 156 165 11 24,592 n.a. n.a. n.a.
8000 236 221 14 43,535 n.a. n.a. n.a.

10000 283 276 24 70,393 n.a. n.a. n.a.
20000 481 570 28 n.a. n.a. n.a. n.a.
40000 974 1,119 62 n.a. n.a. n.a. n.a.
60000 1,526 1,615 93 n.a. n.a. n.a. n.a.
80000 1,964 2,187 121 n.a. n.a. n.a. n.a.

100000 2,475 2,717 156 n.a. n.a. n.a. n.a.

Table 1: Average execution time of the interpreter and generated code in msec.

The results of the benchmarks are shown in Table 1 and Figure 8. Note the logarithmic scale of
the diagram. We also calculated the arithmetic and a weighted average9 of the Fujaba generated
code versions. The weighted average can be seen as the expected value for the execution time of
the generated code if the links in the example Story Diagram are created in a random order.

As expected, the performance of the second and third strategies heavily depends on the number
of elements in the model. The execution time grows exponentially. The interpreter is generally
slower than the first Fujaba code version, but the execution time is still acceptable. The perfor-

8 An exception is the first strategy. For some reason, Fujaba only generated code that uses the second or third
strategies. Therefore, we had to ”force” the code generator by removing two elements links from the Story Pattern
and inserting the existence check for these links in the generated code manually. This is probably a bug in the code
generator.
9 The weighted average is calculated by giving the first strategy a weight of 0.417, the second a weight of 0.5 and
the third strategy a weight of 0.083. These values stem from the theoretical probability that the code generator would
choose this matching strategy.

Proc. GT-VMT 2009 10 / 12

ECEASST

1

10

100

1000

10000

100000

1000000

200 400 600 800 1000 2000 4000 6000 8000 10000 20000 40000 60000 80000 100000

No. of classes in model

E
x
e
c
u

ti
o

n
ti

m
e

in
m

s
e
c

Interpreter with compiled code Interpreter with dynamic objects Fujaba code strategy 1 Fujaba code strategy 2

Fujaba code strategy 3 Fujaba Weighted Average Fujaba Arithmetic Average

Figure 8: Average execution time of the interpreter and generated code (logarithmic scale)

mance of the interpreter and the first Fujaba generated code strategy depend almost linearly on
the model size.

The dynamic pattern matching guarantees a good, and in many cases also optimal, matching
strategy. Therefore, the interpreter can make up the performance drawback if the generated
code does not use an optimal pattern matching strategy. This is especially useful, if there is no
generally optimal matching strategy for a given Story Pattern, but the optimal strategy varies
depending on the instance objects. This will definitely be a benefit for the model transformation
system mentioned above.

Surprisingly, the use of dynamic objects instead of compiled implementation code does not
affect the performance very much. For models up to 10,000 classes the difference to using
compiled implementation code for the model elements is not even significant. So the additional
flexibility of dynamic objects does almost not come at the expense of performance.

5 Conclusion and Future Work
In this paper, we presented an interpreter for Story Diagrams based on EMF models and Eclipse.
The whole SDM implementation improved the flexibility in our research projects because of an
improved workflow, the lapse of generating Java code and applying the interpreter for executing
Story Diagrams. It further enables the application of EMF-based tools for further validation
purposes, as well as higher-order transformations.

Furthermore, the interpreter uses a dynamic matching strategy, which makes the performance
of the interpreter scale more steadily. Although the interpreter is generally slower than compiled
code, it can be faster in cases where the static matching strategy of compiled code is not optimal.
In future work, a dynamic matching strategy may be incorporated into generated code to combine
the advantages of both approaches.

Moreover, we want to enhance the usability by improving the visual representation of Story
Diagrams using GMF diagrams. We also want to complement concepts from the Story Diagrams
in Fujaba that are currently not supported by the Story Diagram interpreter, e.g., object sets
and path expressions. Additionally, we plan to improve the control flow in Story Diagrams by
supporting the concepts fork and join to model parallelism in Story Diagrams.

11 / 12 Volume 18 (2009)

Improved Flexibility and Scalability by Interpreting Story Diagrams

Bibliography
[BNBK06] D. Balasubramanian, A. Narayanan, C. van Buskirk, G. Karsai. The Graph Rewriting and

Transformation Language: GReAT. Electronic Communications of the EASST 1, 2006.

[FNTZ00] T. Fischer, J. Niere, L. Torunski, A. Zündorf. Story Diagrams: A New Graph Rewrite Lan-
guage Based on the Unified Modeling Language and Java. In TAGT’98: Selected papers
from the 6th International Workshop on Theory and Application of Graph Transformations.
Pp. 296–309. Springer-Verlag, London, UK, 2000.

[GH08] H. Giese, S. Hildebrandt. Incremental Model Synchronization for Multiple Updates. In Pro-
ceedings of GraMoT”08, May 12, 2008, Leipzig, Germany. 2008.

[GMW06] H. Giese, M. Meyer, R. Wagner. A Prototype for Guideline Checking and Model Transfor-
mation in Matlab/Simulink. In Proc. of the 4th International Fujaba Days 2006, Bayreuth,
Germany. Technical Report tr-ri-06-275, pp. 56–60. University of Paderborn, 2006.

[GW09] H. Giese, R. Wagner. From model transformation to incremental bidirectional model syn-
chronization. Software and Systems Modeling, 1 2009.

[MCG05] T. Mens, K. Czarnecki, P. V. Gorp. 04101 Discussion – A Taxonomy of Model Trans-
formations. In Bezivin and Heckel (eds.), Language Engineering for Model-Driven Soft-
ware Development. Dagstuhl Seminar Proceedings 04101. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2005.

[NSW+02] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, J. Welsh. Towards pattern-based design
recovery. In ICSE ’02: Proceedings of the 24th International Conference on Software Engi-
neering. Pp. 338–348. ACM, New York, NY, USA, 2002.

[REEK99] G. Rozenberg, H. Ehrig, G. Engels, H.-J. Kreowski. HANDBOOK of GRAPH GRAMMARS
and COMPUTING by GRAPH TRANSFORMATION Volume 2: Applications, Languages and
Tools. World Scientific, 1999.

[T0̈0] G. Täntzer. AGG: A Tool Enviroment for Algebraic Graph Transformation. In Proc. of Appli-
cations of Graph Transformation with Industrial Relevance (AGTIVE2000), Kerkrade, The
Netherlands. Lecture Notes in Computer Science (LNCS). Springer Verlag, 2000.

[TBB+08] G. Taentzer, E. Biermann, D. Bisztray, B. Bohnet, I. Boneva, A. Boronat, L. Geiger, R. Geiß,
A. Horvath, O. Kniemeyer, T. Mens, B. Ness, D. Plump, T. Vajk. Generation of Sierpinski
Triangles: A Case Study for Graph Transformation Tools. Pp. 514–539, 2008.

[VSV05] G. Varro, A. Schurr, D. Varro. Benchmarking for Graph Transformation. In VLHCC ’05: Pro-
ceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing.
Pp. 79–88. IEEE Computer Society, Washington, DC, USA, 2005.

[WGN03] R. Wagner, H. Giese, U. Nickel. A Plug-In for Flexible and Incremental Consistency Man-
agement. In Proc. of the International Conference on the Unified Modeling Language 2003
(Workshop 7: Consistency Problems in UML-based Software Development), San Francisco,
USA. Technical Report. Blekinge Institute of Technology, San Francisco, 2003.

Proc. GT-VMT 2009 12 / 12

	Introduction
	Story Diagrams in Fujaba
	Story Diagram Interpreter Based on EMF
	Story Diagram Meta Model
	Story Diagram Interpreter

	Benefits of the Interpreter
	Flexibility
	Scalability

	Conclusion and Future Work

