
Electronic Communications of the EASST
Volume 20 (2009)

Proceedings of the
Third International Workshop on
Foundations and Techniques for

Open Source Software Certification
(OpenCert 2009)

Automatic Analysis of Applications for Portability AcrossLinux
Distributions

Vladimir Rubanov

9 pages

Guest Editors: Luis Barbosa, Antonio Cerone, Siraj Shaikh
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Automatic Analysis of Applications for Portability Across Linux
Distributions

Vladimir Rubanov 1

1 vrub@ispras.ru
Institute for System Programming of the Russian Academy of Sciences,

Russian Linux Verification Center
http://linuxtesting.org/

Abstract: Problems with portability of applications across various Linux distribu-
tions is one of the major sore spots of independent software vendors (ISVs) wishing
to support the Linux platform in their products. The source of the problem is that dif-
ferent distributions have different sets of system libraries that vary in the interfaces
(APIs) provided, with respect to both composition and behavior. And the critical
questions arise such as which distributions my applicationwould run on or what
can I specifically do to make my application run on a greater number of distribu-
tions. This article presents an approach and the Linux Application Checker tool that
help to answer such questions by automatically analyzing the target application and
confronting collected data with the internal knowledge base containing information
about the various real world distributions. Additionally,Linux Application Checker
is an official tool approved by the Linux Foundation for certifying applications for
compliance with the Linux Standard Base (LSB) standard, theleading effort for the
single Linux specification.

Keywords: Linux, Application portability

1 Introduction

There are more than 500 public Linux distributions in the modern world (see for example
http://lwn.net/Distributions/). And each of these distributions represents a unique combination of
versions/modifications of the base upstream components such as kernel, shared libraries, system
commands, etc. In this article, we consider Linux distributions mainly as system platforms en-
abling operation of third-party applications. In this perspective, the main components of a Linux
distribution are the kernel itself and a set of system libraries that provide application program-
ming interfaces (APIs – functions or global data) to the applications.

The problem comes from the fact that different distributions can provide different versions of
libraries (including custom modifications introduced by specific distribution developers). This
can result in different sets of interfaces both from the composition (entire libraries or some in-
terfaces within the same library may be missing in some distributions) and from the behavioral
(the same interface can behave differently on different distributions) points of view. That is
why it becomes so difficult to create a portable application that can be run on any distribution
out-of-the-box. The task becomes even more difficult if the application vendors want to have

1 / 9 Volume 20 (2009)

mailto:vrub@ispras.ru
http://linuxtesting.org/
http://lwn.net/Distributions/


Automatic Analysis of Applications for Portability Across Linux Distributions

their applications portable in the binary form (which is critically important for commercial ven-
dors). That is why applications that work on one distribution may fail on another and supporting
multiple distributions becomes a serious problem for application developers. Of course, it is pos-
sible to develop specific versions of an application for particular distributions but this is rather
expensive and may not be affordable for some developers so that they might completely reject
supporting Linux platform. This inhibits growth of Linux applications and the adoption of the
platform itself as developers want to develop applicationsfor Linux not just for RedHat or Suse.

Distribution developers try to mitigate these problems by supplying several versions of the
same shared library in their distributions so that applications could find and use appropriate
versions. Efforts to standardize some common subset of libraries and their interfaces that can
be found in most of the modern distributions also help to dealwith the portability problems (see
Linux Standard Base (LSB)[LSB], [Rub07]).

However, application developers still have to separately analyze each specific distribution that
they want to target their application at to check which libraries and interfaces it provides. And
then manually extract the common subset in all the target distributions to understand which func-
tions can be relied upon by the application. The applicationthen needs to be developed/modified
to use only this subset of libraries and interfaces. Automating this process of portability analysis
and decision support is a critical step to help developers tocreate portable applications that can
be run out-of-the-box on a wide variety of Linux distributions.

In this article, we present results of theRussian Linux Verification Center [LVC] at theInsti-
tute for System Programming of the Russian Academy of Sciences (ISPRAS)[ISP]. Under
cooperation with theLinux Foundation [LF] we collected data about main Linux distributions
in a central knowledge base and developed a tool (Linux Application Checker ) for automatic
analysis of application portability across these analyzeddistributions. The data in the knowledge
base is constantly updated to be in synch with the state of theLinux art.

The article contains two sections. The first one introduces the knowledge base about mod-
ern Linux distributions maintained under the auspices of the Linux Foundation – the leading
consortium dedicated to fostering growth of Linux. The second section presents the Linux Ap-
plication Checker tool designed for automated analysis of cross-distribution portability of Linux
applications.

2 Linux Foundation Ecosystem Knowledge Base

To standardize, protect and promote Linux, the leading IT-companies (IBM, Intel, HP, Novell,
Oracle and many others) formed an international non-profit consortiumThe Linux Foundation
[LF], which now represents the main power in the World that unites efforts and expertise of
various organizations and persons that are interested in ensuring the further growth and success
of Linux as a platform. The consortium also provides a neutral forum to discuss various issues
and make collaborative decisions.

One of the main technical activities of the Linux Foundationis development of theLinux
Standard Base (LSB)standard. The core idea of the standard is to describe a subset of Linux
interfaces provided by various libraries that constitute the single Linux platform from the appli-
cation developer point of view. This subset should be present in most Linux distributions and

Proc. OpenCert 2009 2 / 9



ECEASST

should provide the same functionality in each of them. Description in the standard should include
information about binary level symbols (i.e. names of ELF (Executable Link Format) symbols)
of all interfaces and API-level information (parameters, return values and corresponding types)
including behavior specification of the interfaces.

LSB is a living standard, which means it is regularly revisited and new versions are released.
Usually, each LSB version corresponds to one generation of the main Linux distributions (e.g.
LSB 3.0 is for RHEL 4 and SLES 10, while LSB 4.0 is for RHEL 5 and SLES 11). So one of the
key success factors for developing and supporting an interface standard like LSB (covering more
than 30,000 interfaces!) is a proper technical infrastructure that automates the main processes
for maintaining the standard itself and that brings the standard closer to real developers.

The Linux Foundation (formerly Free Standards Group) already developed a basic infrastruc-
ture for the first LSB versions in the early 2000s. But with thegrowth of the standard, it was
realized that a next-generation infrastructure is needed that should include many more compo-
nents and automate many more processes in the standards development. In 2006, the Linux
Foundation jointly with ISPRAS launched a newLSB Infrastructure Program [Inf].

In context of this paper, the important direction of this newprogram was building a newcentral
database(MySQL based), which became the backbone of the entire technical LSB infrastructure.
The database contains integrated information about the LSBstandard itself, about its surrounding
Linux ecosystem and various operational matters like active certifications. The current database
contains 97 tables with over 89 million records. There are three parts of the database:

1. The standardizationpart includes information about LSB elements that constitute the
essence of the standard itself.

2. Thecommunitypart contains information about real-world modern Linux distributions and
applications.

3. Thecertificationpart keeps information about the certification status of various products,
audit operations, fee payments, etc.

The second part of the database (also known asLinux Foundation Ecosystem Knowledge
Base) is most interesting for the topic of this paper because it isthis part that enabled creation
of the Linux Application Checker tool for automated analysis of cross-distribution portability
of Linux applications. Basically, the information in this part represents the structure of popular
Linux distributions in terms of specific libraries and theirinterfaces provided by each distribution
to applications. As of March 2009 the database includes information about 88 versions of Linux
distributions.

The contents of the database are open to the community and canbe browsed in a user-friendly
way using theLSB Navigator [Nav] web-portal.

3 Linux Application Checker

Collecting information about the structure of popular Linux distributions in a central database
was the principal step to enable automated cross-compatibility analysis of applications. But in

3 / 9 Volume 20 (2009)



Automatic Analysis of Applications for Portability Across Linux Distributions

order to effectively implement this analysis, it was important to create a tool that automates
corresponding further steps:

1. Understandexternal dependencies(external libraries and interfaces needed) of the target
application.

2. Compare the applications dependencies with the information aboutlibraries and interfaces
provided by each Linux distributionfrom the knowledge base.

3. Visualizethe resultsand provide additional hints on how to fix some issues.

TheLinux Application Checker tool (or App Checker in short) developed jointly by ISPRAS
and Linux Foundation serves this purpose. Additionally, itchecks some other compatibility
issues (e.g. names of ELF sections in binary files) but the main point remains in the match of the
libraries/interfaces required by application with the libraries/interfaces provided by distributions.

Linux Application Checker provides visual user interface based on a simple embedded web-
server. At the starting page (Application Check), users should select a set of components that
constitute the target application package. The leaf components to be analyzed are single binary
files in ELF format (executables or .so libraries). Also, AppChecker checks Perl, Python and
shell scripts for compatibility issues. To facilitate the selection process for complex applications,
it is possible to indicate groups of components by selectingaggregate entities:

• whole directories(all executable files and .so libraries as well as Perl, Python and shell
scripts in the directory will be considered as belonging to the application);

• installation packagesor tarballs in RPM, DEB, tar.gz, tar.bz2 formats (all files of the
proper types in the packages will be considered as belongingto the application);

• packages already installedin the system.

During analysis, App Checker inspects all the components indicated as belonging to the appli-
cation (both directly and through the aggregate entities) and performs a number of checks. All
the checks can be divided into two groups:

• cross-distribution compatibility analysisbased on the Linux Foundation Knowledge Base
(LF KB);

• certification checkson compliance with theLSB standard.

The first kind of checks is for the general audience of Linux application developers interested
in maximizing portability of their products. App Checker provides a number of reports concern-
ing specific compatibility issues that can prevent the application from running on certain Linux
distributions. The most common reason is libraries or interfaces required by the application but
missing in some distributions. Information about requiredlibraries is taken from ELF-files of the
application by filtering DTNEEDED records of the .dynamic section. Required interfaces are
taken by filtering ELF-symbols from the .dynsym and .symtab sections. Internal dependencies

Proc. OpenCert 2009 4 / 9



ECEASST

between the components of the application itself are excluded from the list of external depen-
dencies.

If available and appropriate, App Checker provides additional information and recommenda-
tions on how to fix detected compatibility issues. These recommendations are taken from the
known issues sections in the Linux Foundation Knowledge Base (for example, advice on replac-
ing some deprecated interfaces by more portable modern counterparts or recommendations to
include some missing library as a part of the application package).

LSB checks are more specific. Their main purpose is to analyzecompliance of the appli-
cation with the LSB standard in the context of formal certification. The report generated by
these checks serves as the main input on which to base decisions about LSB certification of
applications. Analysis of external dependencies of the application is performed as well but the
dependencies are confronted with the libraries and interfaces included in the LSB, not in any
specific distribution. Basically, it is checked that the application uses only those libraries and
interfaces that are standardized by the LSB. Also, App Checker ensures compliance of other as-
pects like binary structure of ELF-files and .rpm packages, usage of the specific dynamic loader,
etc.

3.1 Using Linux Application Checker Reports to Analyze Applications

At the end of the analysis, Linux Application Checker provides a report structured into a few
subsections shown in separate tabs. The general look of the report is presented at Figure1.
There is a short summary at the top of the report starting witha color coded one-line compat-
ibility verdict (green – no compatibility issues, yellow – some issues, red – numerous issues)
supplemented with a few lines of statistics on the number of found issues of different kinds like
the number of incompatible distributions, unused libraries, non-LSB elements, etc. There are 5
tabs/reports below that present detailed information about compatibility issues in different views.
The sections below discuss each of these reports in more detail.

3.1.1 Distribution Compatibility Report

This tab is open by default and contains information about compatibility of the analyzed applica-
tion with particular Linux distributions (information on which is present in the LF KB). The data
is presented as a table with each line corresponding to one distribution. Each line is color coded
in green (the application is fully portable), yellow (thereare minor issues) or red (there are seri-
ous compatibility issues). It is important to understand that compatibility verdicts actually mean
possibility to successfully run application but they do notguarantee that the application will
actually behave correctly. The compatibility analysis is mainly based on confronting available
in each distribution libraries and interfaces with those required by the application. By leaving
the mouse pointer over specific lines in the table, it is possible to see a hint that contains more
detailed information on the number of compatibility issuesof various kinds for corresponding
distributions. By clicking on the table it is possible to expand the table and see detailed infor-
mation for all lines at once (in additional columns). There is a special type of unknown libraries
– the presence of these libraries is not guaranteed to be reliably analyzed in all the distributions.
This is because the LF KB contains information about presence of just a selected set of so called

5 / 9 Volume 20 (2009)



Automatic Analysis of Applications for Portability Across Linux Distributions

Figure 1: Linux Application Checker Report Header

approved libraries as it would consume too much space if we stored information about all li-
braries present in each distribution. Meanwhile, the list of approved libraries covers those that
are most widely-used by applications and currently includes 1177 names. This list was formed
by analyzing more than a thousand popular applications and creating a union of all the libraries
required by these applications. And we continue adding to the list as we come across new li-
braries needed by new applications.

So, the first report allows easy understanding of which particular distributions contain all the
necessary libraries and interfaces for the application while allowing the user to choose to see the
list of missing entries for incompatible distributions (the list is shown in separate window when
clicking on a proper links inside the table).

Another interesting aspect that App Checker can also detectis so called unused libraries. Such
libraries are included in the external dependencies of someapplications components but no actual
interfaces are then used from these libraries. Usually, unused libraries can be easily eliminated
by just correcting build options of the application, which improves portability of the application.

3.1.2 Application Components Report

The next tab presents information about particular components of composite applications (see
Figure2) like executable files, shared .so libraries and Perl, Python and shell scripts. For each
component, compatibility status is shown – the number of distributions this component is com-
patible with (this helps easily identifying problematic components) with the next two columns
providing detailed information about the number of problematic libraries and interfaces from the
components external dependencies (those ones not providedby some distributions). The num-

Proc. OpenCert 2009 6 / 9



ECEASST

Figure 2: Application Components Report

Figure 3: External Libraries Report

ber of unused libraries is shown for each component (if any) and a special column summarizes
LSB-compliance status of the components. Any cell in the table can be clicked to see the list of
specific entries behind the summary numbers shown.

3.1.3 Reports on External Libraries and Interfaces

The third and the fourth tabs (see Figure3) present information about the applications external
libraries and external interfaces respectively (the unionfor all app components excluding internal
dependencies).

For each library, the following information is shown:

• the list of app components that require this library;

• the actual number of interfaces that are used by the app from this library (unused libraries
have red 0 in this column);

• the number of distributions that provide this library;

• LSB status of the library.

The fourth tab with external interfaces is quite similar. Itjust contains the list of interfaces
instead of libraries and a couple of additional columns:

7 / 9 Volume 20 (2009)



Automatic Analysis of Applications for Portability Across Linux Distributions

• interfaces version (like GLIBC2.3);

• name of the library that provides this interface.

At both tabs, there are a number of filters that allow the view to be limited to only interesting
records. For example it is possible to define specific distributions that are of interest for analysis
(e.g. by excluding old distributions) – the compatibility column will be recalculated accordingly
including the color coding. Also, it is possible to limit theview to only those entries that are
relevant to a specific app component or library (in case of interfaces). A special filter allows the
view to be focused on entries concerning particular problemtypes (entries with compatibility
problems, unused libraries, non-LSB entries, deprecated entries, etc.).

3.1.4 LSB Certification Report

The fifth (the last) tab is devoted to the official certification report on compliance of the target
application with the LSB standard (a specific LSB version is selected at the initial screen when
specifying the application to check). The list of issues found is displayed in subsections that
can be grouped either by application component or by issue type. If there are no critical issues
then it is easily possible to apply for the formal certification right away by clicking a link in
the report, which will smoothly bring the user to the online certification system at the Linux
Foundation server and will ensure all the data necessary forinitiating the certification process
is transparently transferred to the server (first of all the technical certification report). As soon
as the certification process is complete the application is automatically included into the official
LSB-certified Product Registry.

3.2 Sharing Data about Applications with the Community

As a part of its Linux Ecosystem Knowledge Base, the Linux Foundation maintains information
about real world applications. Thats why all ISVs (Independent Software Vendors) are invited to
provide information about their applications to the Linux Foundation, which then can be shared
with the community through the LSB Navigator web-portal [Nav].

Apart of the general information (name, home page, application type, etc.), this information
basically includes the list of external dependencies of theapplication. The information about
applications is useful to the Linux Foundation and the community for understanding which li-
braries and interfaces are most popular among ISVs. This in particular helps to make decisions
on which libraries and interfaces to include/exclude to/from the LSB standard.

The Linux Application Checker is the easiest way to submit information about your applica-
tion to the Linux Foundation. There is a special Upload Info link at the summary area of the
App Checker reports. Clicking this link brings a form requesting a few additional informational
items. After filling in these items it is possible to just press Upload button that will automatically
put all the necessary information about the app right away tothe Linux Foundation FTP-server.
Alternatively, for those highly concerned with privacy, itis possible to save a file with all the
necessary information, inspect it and then send to a speciale-mail.

Proc. OpenCert 2009 8 / 9



ECEASST

4 Conclusion

Differences between Linux distributions regarding the services, libraries and the library inter-
faces provided to applications create serious difficultiesfor ISVs, who have to create different
builds of their applications for different Linux distributions. Fortunately, initiatives like Linux
standardization and efforts of distribution vendors to support legacy applications help to form a
common basis that can be found in most of distributions. Applications that use only this basis
become portable across various distributions. The core of this basis is the LSB standard while
there are actually many different surrounding bases dependent on the target segment of distribu-
tions. That is why it is very important for ISVs to have automated tools that can help them to
understand this basis in the case of their specific segment oftarget distributions in the context of
their particular application.

The leading IT-companies are committing significant resources (partly through the Linux
Foundation) to making it possible to easily build portable applications for Linux. The Linux
Foundation Ecosystem Knowledge Base and the Linux Application Checker tool presented in
this paper that help ISVs analyze (and consequently fix appropriately) their applications for
cross-distribution portability are the flagship achievements in this field at the moment. Addi-
tionally, Linux Application Checker is an official tool for certifying applications for compliance
with the various versions of the LSB standard. The latest version of this open source tool can be
downloaded from the pages of the LSB Infrastructure Program[Inf].

Bibliography

[Inf] LSB Infrastructure Program.
http://ispras.linuxfoundation.org/

[ISP] Institute for System Programming of the Russian Academy of Sciences.
http://ispras.ru/

[LF] Linux Foundation.
http://linuxfoundation.org/

[LSB] Linux Standard Base Homepage.
http://www.linuxfoundation.org/en/LSB/

[LVC] Russian Linux Verification Center.
http://linuxtesting.org/

[Nav] LSB Navigator Portal.
http://linuxfoundation.org/navigator/

[Rub07] V. Rubanov. Linux Standard Base (LSB): Single LinuxSpecification and Support In-
frastructure.Proceedings of SECR 2007, 2007.

9 / 9 Volume 20 (2009)

http://ispras.linuxfoundation.org/
http://ispras.ru/
http://linuxfoundation.org/
http://www.linuxfoundation.org/en/LSB/
http://linuxtesting.org/
http://linuxfoundation.org/navigator/

	Introduction
	Linux Foundation Ecosystem Knowledge Base
	Linux Application Checker
	Using Linux Application Checker Reports to Analyze Applications
	Distribution Compatibility Report
	Application Components Report
	Reports on External Libraries and Interfaces
	LSB Certification Report

	Sharing Data about Applications with the Community

	Conclusion

