
Electronic Communications of the EASST
Volume 21 (2009)

Proceedings of the
3rd International Workshop on

Multi-Paradigm Modeling
(MPM 2009)

Concurrent Design of Embedded Control Software

Marcel Groothuis, Raymond Frijns, Jeroen Voeten and Jan Broenink

10 pages

Guest Editors: T. Levendovszky, L. Lengyel, G. Karsai, C. Hardebolle
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Concurrent Design of Embedded Control Software

Marcel Groothuis1, Raymond Frijns2, Jeroen Voeten2 and Jan Broenink1

1University of Twente, Control Engineering, Faculty of EE-Math-CS, P.O. Box 217,
7500 AE Enschede, The Netherlands, {m.a.groothuis, j.f.broenink}@utwente.nl,

2Faculty of Electrical Engineering, Eindhoven University of Technology, Den Dolech 2,
5600 MB Eindhoven, The Netherlands, {r.m.w.frijns, j.p.m.voeten}@tue.nl

Abstract: Embedded software design for mechatronic systems is becoming an
increasingly time-consuming and error-prone task. In order to cope with the het-
erogeneity and complexity, a systematic model-driven design approach is needed,
where several parts of the system can be designed concurrently. There is however
a trade-off between concurrency efficiency and integration efficiency. In this paper,
we present a case study on the development of the embedded control software for
a real-world mechatronic system in order to evaluate how we can integrate concur-
rent and largely independent designed embedded system software parts in an effi-
cient way. The case study was executed using our embedded control system design
methodology which employs a concurrent systematic model-based design approach
that ensures a concurrent design process, while it still allows a fast integration phase
by using automatic code synthesis. The result was a predictable concurrently de-
signed embedded software realization with a short integration time.

Keywords: Embedded Systems, Case Study, Design Methodology, Mechatronics

1 Introduction
The design process of modern mechatronic systems is becoming more and more cumbersome
due to the increasing complexity and heterogeneity of such systems. This heterogeneous and
multi-disciplinary nature (involving mechanical, electrical, control and software engineering)
makes the design and especially the integration of all parts (both physical and software) a time-
consuming and error-prone task. Traditionally, a sequential design approach is used where each
discipline uses its own design flow, domain-specific terminology, models and tools to (indepen-
dently) design parts of the system. The main reason for this typical design flow is the lack of
a well-integrated method, supported by a heterogeneous toolchain to employ an efficient multi-
disciplinary design methodology. Figure 1 shows the impact of the design process on the overall
design time. To speed up the traditional sequential design process (a), concurrent engineering
techniques should be applied (b). The usage of a model-driven design trajectory (c) can accel-
erate the design process even further because models allow a more thorough and a faster design
space exploration.

There is however a trade-off between a largely concurrent design flow and the integration
efficiency (Figure 1d). On one hand, since the concurrent tracks start at the same time, they
lack details of other (non-finished) parts of the system, and therefore have to rely heavier on
assumptions. This can result in extra integration problems and inconsistencies, since less (or
no) information is exchanged between the concurrent design trajectories. On the other hand,

1 / 10 Volume 21 (2009)

Concurrent Design of Embedded Control Software

Continuous

Time

Control

Discrete

Event

Control

Integration

Continuous

Time

Control

Integration

Continuous

Time

Control

Discrete

Event

Control

Integration

Sequential
design process (a)

Concurrent
design process (b)

Trade-off between concurrency
efficiency and integration efficiency (d)

D
e

s
ig

n
 T

im
e

Continuous
Time

Control

Discrete
Event

Control

Integration

Model-driven concurrent
design process(c)

1

3

2

Specs Specs Specs Specs

Discrete

Event

Control

Figure 1: Impact of different multi-disciplinary design flows on the overall design time

an extensive (early) integration at the model level (1) is also not feasible due to the significant
additional time (2) spend for these integrations in order to shorten the (late) integration time (3).
Furthermore, the heterogeneous nature of mechatronics involves the usage of multiple modeling
paradigms, models of computation (MoC) and tools which complicates this early model-level
integration.

While it is not impossible to couple (co-simulate [GDB08]) or integrate the heterogeneous
models (using Ptolemy II [EJL+03] for example), industry often wants to use existing and the
best (available within the company) tool/method/MoC for each part of the system and keeping
a ’separation of concerns’, while still requiring an integrated and predictable result at the end.
It is desired to have the best of both worlds: efficient concurrent design combined with seam-
less (short) and predictable integration. This requires a systematic and flexible (preferably tool
independent) methodology for multi-paradigm model-driven design of (the ECS software for)
mechatronic systems.

This paper presents a case study on the concurrent design of the Embedded Control System
software (ECS) for a real-world mechatronic setup using our multi-disciplinary and model-driven
ECS design methodology.

The paper is organized as follows: Section 2 gives more information about ECS software.
Section 3 explains the used ECS design methodology. Section 4 presents the case study and
the usage of our methodology, followed by an evaluation on concurrent design and integration
efficiency in Section 5 and conclusions and ongoing work in Section 6.

2 Embedded Control System Software
A typical mechatronic system consists of a combination of a mechanical (physical) system,
mixed-signal and power electronics, and an embedded (motion) control system (ECS). The com-
bination of a mechanical setup and its ECS software requires a multi-disciplinary and synergistic
approach for its design, because the dynamic behavior of the mechanics influences the behavior
of the software and vice-versa (also known as cyber physical systems). Therefore the physical
system and its software should be designed together (co-design approach) to find an optimal and
dependable realization. The purpose of an embedded control system is to control physical pro-
cesses like mechatronic setups and more specific the coordinated mechanical movements (like
position, velocity and acceleration) to get a smooth and precise movement. A typical ECS soft-
ware design contains the layered structure [Ben94] shown in Figure 2. The ECS software is a

Proc. MPM 2009 2 / 10

ECEASST

Embedded software

Actuators

Sensors

Physical process

I/O hardware

Power

amplifier
D/A

A/D
Filtering/

Scaling

Physical system
Soft

real-time
Hard

real-time
Non

real-time

U
s
e

r

in
te

rf
a

c
e

S
u

p
e

rv
is

o
ry

c
o

n
tr

o
l
&

In
te

ra
c
ti
o

n

S
e

q
u

e
n

c
e

c
o

n
tr

o
l

L
o

o
p

 c
o

n
tr

o
l

S
a

fe
ty

 l
a

y
e

r

Figure 2: Embedded Control System and its software structure

combination of an event-driven part (sequence of motions, supervisory coordination and safety)
and a time-triggered part with motion profiles (the trajectory to follow) and loop controllers
(control law). Embedded software for feedback control has challenging hard real-time and low
latency requirements which makes it a special subclass of embedded systems software. Hard
real-time behavior is required for the low-level (near the hardware) layers. The control laws for
the loop control layer require a periodic time schedule with hard deadlines in which jitter and
high latency are undesired.

The usage of a model-driven design flow for mechatronic systems and their software implies
the usage of multiple models of computation (MoC), modeling formalisms and heterogeneous
modeling. Continuous time, ODE (ordinary differential equations) are the typical MoC for dy-
namic system behavior and loop controllers. For the high-level layers of the ECS software vari-
ous types of discrete event MoCs are in use.

3 Methodology
This section presents an overview of the design strategy. Section 4 presents the details with
respect to the case study. Our methodology aims at a concurrent design process with minimal
but sufficient information-exchange between the concurrent tracks (i.e. maximizing concurrency
efficiency), while still relying on a predictable and short integration phase by using a systematic
model-driven design approach supported by a toolchain that supports automatic code synthesis.

3.1 Model-driven Design
One key point in our methodology is to use a model-driven design approach. Model-driven de-
sign is essential for design automation and the extensive use of (executable) models can give
valuable early system feedback. In this way, design errors can be detected long before an (pro-
totype) implementation is realized, so design iterations will be much shorter and less costly.
Also, model-driven design allows fast and thorough design space exploration, resulting in well-
founded design choices in the earliest stages of design.

3.2 Concurrent Design
First, the system is partitioned into a set of concurrent parts (called actors), based on the physical
layout of the system. The top-level interactions of these actors are specified in an abstract model.
The actors themselves can be further partitioned into a continuous-time and a discrete-event part,
since these parts have completely different models of computation. After jointly specifying the
global interfaces and communication strategy between the different parts, they can be designed
fully concurrently.

Based on the abstract system model and the partitioning into discrete-event and continuous-
time parts, a stepwise refinement process is started for each of these parts, where each track

3 / 10 Volume 21 (2009)

Concurrent Design of Embedded Control Software

works towards the joint interfaces from a different direction (top-down vs. bottom-up). The
refinement process is done in a modular, property-preserving way by adding more detail to the
models.

3.2.1 Discrete Event
The discrete event control software (consisting of the supervisory control & interaction and se-
quence control layers in Figure 2) is designed with a top-down approach. With each refinement
step, the externally observable behavior should stay the same, in order to get a local and pre-
dictable stepwise refinement process, which will ensure a seamless coupling of the parts in the
integration phase. The refinement consists of the following three steps [HVG+07]:

1. Abstract modeling: After partitioning the system into several autonomous concurrent sub-
systems called actors, an abstract model representing the high-level (supervisory) interac-
tions between these actors is made.

2. Model refinement: The initial abstract model is refined locally, i.e. the actors are internally
repartitioned into a high-level part and a low-level discrete-event part, while the exter-
nally observable behavior is unchanged. The refined model adds the internal interactions
between the internal high-level control and low-level sequence control of the actors.

3. Synthesis: In the last step, (real-)time behavior and the low-level interaction with continu-
ous-time behavior are added to the actor behaviors. After this step, the model is ready for
automatic property-preserving [HVC07] code synthesis and integration with other soft-
ware layers (like loop-control or a Human-Machine Interface).

3.2.2 Continuous Time
The low-level ECS software layers (loop control and safety in Figure 2) are designed bottom-up
from the mechanical system behavior towards the top-level discrete event software framework
interfaces using the following stepwise refinement procedure ([BGVO07]):

1. Physical Systems modeling: Create a mechanical system model with relevant setup behav-
ior; verify behavior by simulation; use the model to derive the required control laws.

2. Control Law Design: Design the required control algorithms and motion profiles (move-
ment trajectories) using control theory and the model from the previous step; verify stable
and correct controller behavior via simulations.

3. Embedded Control System Implementation: The loop controllers from the previous step
are still based on continuous time assumptions and ideal sensor and actuator behavior.
Include the relevant target behavior (electronics, execution platform) like discretization
(AD/DA conversion), a transformation from continuous time control to digital control in
the model and verify the behavior by simulation.

4. Target Realization: Prepare the loop controllers and motion profiles for inclusion in the
ECS software by adding the event control interfaces. The loop controllers and motion
profiles are synthesized from the model via (partial) code synthesis. The correct working
is validated on the real setup on a per unit base (when possible).

3.3 Fast Integration using Code Synthesis
When the discrete-event and the continuous-time models both contain just enough detail to spec-
ify all properties of interest (competent model), they can be merged into an executable imple-
mentation by synthesizing building blocks sharing a common interface (in for instance C-code).

Proc. MPM 2009 4 / 10

ECEASST

In this way, integration problems caused by design inconsistencies between the concurrent de-
sign tracks can be resolved quickly, since the software integration itself can be fully automated
(i.e. short design iterations). It is required that the synthesis tools are sufficiently complete in
order to generate code for any model element of interest. Furthermore, the code generation must
preserve model behavior (e.g. preserving timing properties).

4 Case-study
With this case study, we demonstrate the design of the embedded control software for a real-
world mechatronic system using our methodology and its supporting toolchain, and analyze the
efficiency of the integration phase after applying our methodology of fully concurrent design
with minimal information exchange. In the experiment, the model-driven and concurrent design
process was executed at two physically separated locations with one common design session at
the beginning for a top-level abstract model and one common session at the end for the integration
and testing process.

4.1 System Description
The Production Cell setup [vdB06] that we have chosen for this experiment is a scaled down lab
version of an industrial plastics molding machine, a typical example of a real-world mechatronic
production line system. Our setup (see Figure 3) consists of 6 Production Cell Units (abbrevi-
ated: PCU). All PCUs operate simultaneously and need to synchronize with its neighbor PCUs
to pass along metal blocks. Each PCU executes a single (pseudo)action in the production process
like feeding (of raw material), molding, extraction from the machine, transportation (belts) and
storage. The storage part is simulated by a rotation PCU that picks up a block at the end of
the production process and transfers it again to the beginning of the setup, resulting in a loop.
Sensors (located before and after the PCUs) are used to detect blocks and are external events for
the PCUs to do their job. The loop in combination with the sensor-events-triggered PCUs can
result in a deadlock when the setup contains 7 or more blocks. The setup needs at least one free
buffer position (next to the sensors) in order to be able to move blocks to the next PCU. When
all sensor guarded buffer positions are occupied, the system cannot move anymore resulting in a
deadlock. The blocks are picked up using electromagnets mounted on the extraction unit and the
rotation unit, transported by the belts and pushed forward by the feeder. The mechanical setup is
connected via power and interface electronics to an embedded PC with an FPGA I/O card, that
runs the embedded control software under real-time (RTAI) Linux.

4.2 Used Modeling Tools and Languages
The 20-sim tool [Con09] is used for the dynamic systems modeling and feedback controller
design. 20-sim supports multi-disciplinary modeling with library components for many engi-
neering disciplines and also supports the domain independent bond-graph notation, which we
used for this case, because its energy-based modeling paradigm support our goals better than the
conventional block diagram approach used by, for example, Simulink. 20-sim supports model
checking and has an extensive control toolbox. It has a customizable template-based C-code
synthesis facility for automatic code synthesis of whole models or submodels (e.g. only the con-
troller) with a strict separation between model dependent and target dependent code. The code

5 / 10 Volume 21 (2009)

Concurrent Design of Embedded Control Software

CPU +

FPGA

Motor 150W

Gearhead 43:1

Encoder

Motor 150W

Gearhead 43:1

Encoder

Al

Extraction unit

Molder
door

Feeder
unit

Feeder belt

Extraction belt

Rotation

unit

Motor 70W

Gearhead 18:1

Encoder

M
o

to
r 1

5
0

W

G
e

a
rh

e
a

d
 1

5
:1

E
n

c
o

d
e

r

Magnet

M
o

to
r 1

5
0

W

G
e

a
rh

e
a

d
 1

5
:1

E
n

c
o

d
e

r

Sensor

Extraction
buffer

Molder
unit

Block movement direction

Embedded
PC

Figure 3: The Production Cell setup

synthesis facility is used for this case to synthesize the continuous time ECS software part.
Discrete event control software is designed and modeled in POOSL (Parallel Object Oriented

Specification Language) [PJ97], a specification language with a formal semantics (based on real-
time CCS), suitable for modeling combined software and hardware systems. The language con-
sists of three conceptual layers; a data, a process and an architecture layer. The data layer consists
of an object-oriented programming model for execution of complex calculations. The process
layer models process behavior and inter-process communication (by synchronous message pass-
ing). The architecture layer clusters processes together to form a hierarchy. The graphical tool
SHESim [GVP+00] is used for simulation and verification of the POOSL model.

For real-time code synthesis from these models, Rotalumis [vB02] is used. This tool contains
several optimizations for predictable real-time execution of POOSL-models and can interface
with external hardware and/or software through the use of primitive data classes. These primitive
data classes link external C++ code to the data layer of POOSL and are used to interface with
the Production Cell sensors and actuators and the continuous time ECS software part.

4.3 Discrete Event Control Software Design
For the design of the discrete event control of the production cell, a top-down approach is used,
where initial abstract models are extended with more details in a systematic stepwise way. This
refinement process is done in a modular fashion, while preserving the externally observable
behavior of the higher levels of abstraction. In this way, the impact of local changes on the
system as a whole is much clearer. The following sections give a detailed overview of these
systematic model refinements as used for the production cell case.

4.3.1 Abstract Model
First, the system is partitioned into a set of independent concurrently working units called actors,
in this case the PCUs of figure 3. Even though the PCUs themselves operate autonomously, their
mutual interactions need to be synchronized and coordinated by handshaking protocols. The
handshake protocols are expressed in the handshake diagram [HVG+07] shown in the left of

Proc. MPM 2009 6 / 10

ECEASST

Feeder

Unit

Molding

Unit

Extraction

Unit

Extraction

belt

Feeder

belt

Rotation

Unit

Extraction

buffer

r
g

(p)
e

r
g

e

r
g

(p)
e

Molding

Door

r eg

r

e

g

r e

r e

From_Extraction_belt()()
 in ? request;
 sel
 [empty] in! grant
 or
 [empty=false] in! postpone;
 [empty] in ! grant
 les;
 in? end {empty:=false};
From_Extraction_belt()().

To_Extraction_buffer()()
 [last] out! request;
 sel
 out? grant{ blocked:=false }
 or
 out? postpone{ blocked:=true };
 out? grant{ blocked:=false }
 les;
 { last:=false; load:=load-1 };
 out! end;
To_Extraction_buffer()().

r e
r = ready
g = grant
(p) = postpone
e = end

Figure 4: Handshake diagram of the production cell (left), and POOSL-code of the handshake
protocol between the extraction belt and extraction buffer actors (right).

Figure 4. The interactions themselves are not specified yet, only an abstract untimed negotiation
sequence between actors is modeled. The handshake model is then formalized in an executable
POOSL model, specifying the synchronization protocol between the extraction belt and the ex-
traction buffer, shown at the right side of Figure 4.

When the extraction belt has a block ready at its end (indicated by Boolean variable last), it
needs to synchronize with the extraction buffer before transferring it, and acts depending on the
state of this buffer. When the buffer is full, the belt should stop moving until the buffer is ready
to accept another block. When the buffer is empty, the belt can continue moving the block onto
the buffer. Therefore, the synchronization starts with the belt sending a request message (out
! request) to the buffer. When the buffer is available (indicated by Boolean variable empty),
it immediately sends back a grant message ([empty] in ! grant), otherwise it will first send a
postpone message. When the belt receives this postpone message, it is blocked by setting the
Boolean variable blocked to true. When the buffer is empty again, it sends a grant message to
the belt, which can then continue moving the block by setting blocked to false. After receiving
the block, the buffer sends an end message to the belt, finishing the handshake.

Even though this model is abstract, and only describes the high-level synchronization interac-
tions between some abstract actors, it provides already useful feedback to the designers, like the
possibility of deadlocks in the system with 7 blocks or more.

4.3.2 Model Refinement
The first refinement step adds the untimed interactions between high-level discrete event control
and the low-level continuous-time behavior of the actors. Effectively, this means adding the se-
quence control layer of Figure 2, still without specifying the actual low-level behavior itself. The
left side of Figure 5a shows the refined model of the extraction belt. The belt actor is internally
expanded into a high-level control part (High ctl), and several low-level parts (SensorF low ctl,
SensorL low ctl and motor low ctl). The outer interface (ports in and out) is exactly the same
as in the abstract model, but the addition of the (yet undefined) low-level parts allows the spec-
ification of internal interactions between the high-level and low-level parts (sequence control).
These additional interactions do not change the observable behavior; in fact the belt actor and its
refinement are observationally equivalent. The right side of Figure 5a shows the POOSL-code of
the refined model. The leftmost block contains the POOSL-code of the High ctrl part, which are
the handshakes of the abstract model extended with the interface to the low-level components,
such as starting or stopping the belt motor (motor ! start, motor ! stop) and reading a sensor (sen-

7 / 10 Volume 21 (2009)

Concurrent Design of Embedded Control Software

SensorL_low_ctl Motor_low_ctl

out in

Extraction_belt_actor

out in

sensorL motor

sensor motor
SensorF_low_ctl

sensorF

sensor

High_ctl

Discrete_Sensor()()
 sel
 sensor ! on
 or
 sensor ! off
 les;
Discrete_Sensor()()

Discrete_Motor()()
 motor ? start;
 motor ? stop;
Discrete_Motor()()

To_Extraction_buffer()()
 [last] out ! request;
 sel
 out ? grant{ blocked:=false }
 or
 out ? postpone{ blocked:=true };
 motor ! stop;
 out ? grant{ blocked:=false };
 motor ! start
 les;
 sensorL? off{ last:=false; load:=load-1 };
 out ! end;
To_Extraction_buffer()().

Continuous()()
 [curstate = prestate]
 curstate := sensor Read;
 delay 0.01;
Continuous()().

Discrete()()
 sel
 [(curstate) & (prestate=false)] sensor ! On { prestate := curstate }
 or
 [(prestate) & (curstate=false)] sensor ! off { prestate := curstate }
 les;
Discrete()().

a) Internal expansion (left) and POOSL-code (right) of the extraction belt actor after the first refinement step

b) POOSL-code of the synthesizable model of the extraction belt sensor after the second refinement step

Figure 5: Second and third refinement steps of the discrete-event POOSL model

sorL ? off, sensorL ? on). The rightmost blocks, which model the low-level behavior, contain
only the interface messages with the high-level control part.

4.3.3 Synthesizable Model
In the last refinement step, the model is extended with low-level continuous-time behavior and
timing information. Figure 5b shows the POOSL-code of the low-level behavior of the extraction
belt sensor. The low-level sensorL (Figure 5a, left), which previously only contained the local
discrete event behavior is now split up into two concurrent processes: a discrete process, con-
taining the interface to the high-level control, and a continuous process for updating the system
state by reading the sensor. After this step, the model is ready for property-preserving synthesis
and integration with the loop-control software.

4.4 Loop Controller Design
The feedback loop controllers and motion profiles for the Production Cell setup are designed
and modeled in 20-sim, following the 4 step approach from Section 3.2.2. Because all 6 PCUs
need only local loop controllers the loop controller designs are separately made for each PCU,
resulting in 6 single-PCU (physical system) models containing the required digital (discrete-
time) PD and PID loop controllers and motion profiles, designed to run at a sample frequency of
1 kHz (see for more info [vdB06]). Furthermore, a safety layer was added to limit output signals
and to shape input signals in order to get robust and safe PCU loop controllers.

4.5 Integration
In order to combine the controllers and motion profiles with the event triggered sequence control
layers within all 6 PCUs (based on the interface agreements), they are extended (in the 20-sim
model) with start/stop and finished signals (data-flow), mapped to rendezvous channel commu-
nication events in POOSL. A special POOSL data class code synthesis template was used in
20-sim to translate the controllers and motion profile as Rotalumis building blocks. FPGA I/O
drivers are written, and separately tested, to access the sensors and actuators on the setup. A

Proc. MPM 2009 8 / 10

ECEASST

periodic time event loop at 1 kHz is used in POOSL to provide the controllers with the required
1 kHz sample time. A correct working discrete-event discrete-time interaction, the interfaces and
the code synthesis templates were tested independently and concurrently using a few small test
examples.

5 Results and Discussion
The case experiment was set-up with minimal design interaction during the concurrent design
stage. The total ECS software design time from specification to integration and testing was less
than 10 days. The final ECS software integration up to the last on-target tests were performed in
less than 2 days without any serious integration issues, resulting in a properly working production
cell setup. The 12 days in total are for this setup a major improvement compared to an earlier
bottom-up ECS design test case on the same setup which took more than 6 weeks [GB09]. Only a
few minor timing details needed to be addressed, like tuning the required delays between sensor
events and the execution of the corresponding actions (for example, the electromagnet on/off
response was slower than modeled and dependent on the exact block orientation, which was not
modeled at all). No other software integration issues were seen.

Essential for the concurrent way of working with minimal interaction is that the designers
have the attitude to focus on their own partition during the concurrent design phase, but, at the
same time think across the boundaries of their discipline to foresee potential integration issues
resulting from local design choices and to ensure that they are covered by inter-disciplinary
information exchange and small early integration tests. Models (ranging from abstract drawings
towards executable models) are essential for this information exchange. The usage of natural
languages can result in misunderstandings, because different disciplines often share the same
terminology, but with a different meaning.

After the joint work on the abstract system level model and the partitioning, the only informa-
tion exchanged for this case during the concurrent design stage are abstract interfaces between
the partitions, their meaning, the required behavior (e.g. events, signals) and their stepwise re-
finements (e.g. data type, units and timing requirements). Besides this information exchange is
it also essential to synchronize the expected behavior of the (other) partitions. The usage of local
refinement ensures that the externally observable behavior remains the same and thus limits the
frequency of information exchange.

The current checks on the consistency of interfaces between the partitions were done manually,
but we are working on automated consistency checking (i.e. for interfaces and shared parameters)
at the model level, using the abstract top-level model as basis. We want to use the information
in this model also to facilitate a further early integration between models using co-simulation
facilities. For this case, we could have re-used the physical system models to test our final
(timed) ECS software against a virtual prototype of the Production Cell setup using co-simulation
(see our work in [GDB08]). Advantage is for example that we can introduce faults and test
safely without damaging our real setup. The disadvantage is that this additional integration step
requires extra time resulting again in the trade-off between fully integrated design and design
time. However, additional (automated) tool support can shorten the additional spend time. For
this setup we did not need this step because the behavior of all ECS software parts was already
verified using simulations and small on-target tests.

9 / 10 Volume 21 (2009)

Concurrent Design of Embedded Control Software

6 Conclusions
The presented case study, demonstrating the concurrent model-driven design of ECS software
for a real-world mechatronic system, shows that application of our methodology has resulted in
a predictable realization with a short integration time, with a good balance between integrated
design and separation of concerns during the concurrent design stage. We have shown that with a
more concurrent approach we can still design reliable ECS software in a quick and efficient way.
Depending on the total design time, the time between two integration tests and the project size,
extra model-level integration steps can become beneficial, essential or a waste of time. Despite
the promising developments in the area of integrated heterogeneous multi-paradigm modeling,
the trade-off between integrated design and efficient concurrent design should be made sepa-
rately for every design project. The presented methodology is not limited to an ECS software
implementation. The same setup is for example also running entirely from an FPGA, created
using the same approach [GB09].

Bibliography

[Ben94] S. Bennett. Real-time Computer Control : An Introduction. Prentice Hall, New York,
2nd edition, 1994.

[vdB06] L. van den Berg. Design of a Production Cell Setup. MSc thesis 016CE2006, Uni-
versity of Twente, Control Engineering, 2006.

[BGVO07] J. Broenink, M. Groothuis, P. Visser, B. Orlic. A Model-Driven Approach to Em-
bedded Control System Implementation. In Western Multiconference on Computer
Simulation WMC 2007, San Diego. Pp. 137–144. SCS, San Diego, January 2007.

[vB02] L. van Bokhoven. Constructive Tool Design for Formal Languages from semantics
to executing models. PhD thesis, TU Eindhoven, The Netherlands, 2002.

[Con09] Controllab Products. 20-sim website. 2009. http://www.20sim.com
[EJL+03] J. Eker, J. W. Janneck, E. A. Lee, L. Jie, X. Liu, S. Ludvig, S. Neuendorffer, S. Sachs,

Y. Xiong. Taming Heterogeneity—the Ptolemy Approach. In Proceedings of the
IEEE. Volume 91(1), pp. 127 – 144. Jan. 2003. doi:10.1109/JPROC.2002.805829

[GB09] M. Groothuis, J. Broenink. HW/SW Design Space Exploration on the Production
Cell Setup. In Communication Process Architectures 2009, Eindhoven, The Nether-
lands. IOS Press, Amsterdam, Nov. 2009. To be published.

[GDB08] M. Groothuis, A. Damstra, J. Broenink. Virtual Prototyping through Co-simulation
of a Cartesian Plotter. In Proceedings of the IEEE International Conference on
Emerging Technologies and Factory Automation, 2008. Pp. 697–700. IEEE Indus-
trial Electronics Society, Sept. 2008. doi:10.1109/etfa.2008.4638472

[GVP+00] M. Geilen, J. Voeten, P. van der Putten, L. van Bokhoven, M. Stevens. Object-
Oriented Modelling and Specification using SHE. 2000.

[HVC07] J. Huang, J. Voeten, H. Corporaal. Predictable real-time software synthesis. Real-
Time Syst. 36(3):159–198, 2007. doi:10.1007/s11241-007-9013-6

[HVG+07] J. Huang, J. Voeten, M. Groothuis, J. Broenink, H. Corporaal. A model-driven de-
sign approach for mechatronic systems. Application of Concurrency to System De-
sign, International Conference on 0:127–136, 2007. doi:10.1109/ACSD.2007.40

[PJ97] P. van der Putten, J.Voeten. Specification of Reactive Hardware/Software Systems.
PhD thesis, Eindhoven University of Technology, The Netherlands, 1997.

Proc. MPM 2009 10 / 10

http://www.20sim.com
http://dx.doi.org/10.1109/JPROC.2002.805829
http://dx.doi.org/10.1109/etfa.2008.4638472
http://dx.doi.org/10.1007/s11241-007-9013-6
http://dx.doi.org/10.1109/ACSD.2007.40

	Introduction
	Embedded Control System Software
	Methodology
	Model-driven Design
	Concurrent Design
	Discrete Event
	Continuous Time

	Fast Integration using Code Synthesis

	Case-study
	System Description
	Used Modeling Tools and Languages
	Discrete Event Control Software Design
	Abstract Model
	Model Refinement
	Synthesizable Model

	Loop Controller Design
	Integration

	Results and Discussion
	Conclusions

