
Electronic Communications of the EASST
Volume 21 (2009)

Proceedings of the
3rd International Workshop on

Multi-Paradigm Modeling
(MPM 2009)

A practical approach to multi-modeling views composition

Andres Yie, Rubby Casallas, Dirk Deridder and Dennis Wagelaar

10 pages

Guest Editors: T. Levendovszky, L. Lengyel, G. Karsai, C. Hardebolle
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

A practical approach to multi-modeling views composition

Andres Yie13∗, Rubby Casallas2, Dirk Deridder4† and Dennis Wagelaar5‡

1 a-yie@uniandes.edu.co
2 rcasallas@uniandes.edu.co

Grupo de Construcción de Software
Universidad de los Andes, Bogota, Colombia

3 ayiegarz@vub.ac.be
4 dirk.deridder@vub.ac.be

5 dennis.wagelaar@vub.ac.be
System and Software Engineering Lab (SSEL)
Vrije Universiteit Brussel, Brussels, Belgium

Abstract: The use of several view models to specify a complex system is a common
practice to provide the most appropriate abstractions to model its diverse concerns.
When several view models are used to specify a system, it is necessary to compose
them to generate the application. When the view models are expressed in different
Domain Specific Modeling Languages a problem arises because a heterogeneous
composition is required. A possible approach to avoid a heterogeneous composition
is to transform the diverse models into low-level models using a common low-level
modeling language as target. Therefore, when all the view models are transformed
in low-level models specified with a common language, it is possible to apply a ho-
mogeneous composition to obtain the final application. However, it is necessary to
identify the elements to compose in the low-level. In this paper, we present an auto-
matic mechanism to identify which elements will be composed. This mechanism is
based on defining correspondence relationships between the high-level view mod-
els and automatically deriving new correspondence between the generated low-level
models.

Keywords: Model Driven Engineering, Model transformation, Model composition,
Multi-paradigm modeling

1 Introduction

The use of several models to specify a complex system is a common practice in software engi-
neering. The main objective is to provide the most appropriate abstractions to specify the diverse
concerns involved (e.g., UML Class diagrams to specify structure, UML State charts to specify
behavior); each of these models is called a view model.

∗ This author is sponsored by the Caramelos project (VLIR)
† This author is sponsored by the MoVES project (IAP, Belgian Science Policy)
‡ This author is sponsored by the VariBru project (ISRIB)

1 / 10 Volume 21 (2009)

mailto:a-yie@uniandes.edu.co
mailto:rcasallas@uniandes.edu.co
mailto:ayiegarz@vub.ac.be
mailto:dirk.deridder@vub.ac.be
mailto:dennis.wagelaar@vub.ac.be


A practical approach to multi-modeling views composition

Some approaches use appropriate Domain Specific Modeling Languages (DSMLs) trying to
reduce the gap between the problem and the solution domains. The use of several DSMLs
helps experts to express the system specifications. Having the correct DSML for each concern
reduces the accidental complexities introduced while specifying it using a unsuitable language.
For instance, a web application can be specified by means of diverse view models such as data,
navigation and presentation models [CD08]. Each view model is expressed with an appropriate
DSML, for example a Presentation DSML to express the presentation view model using concepts
of the presentation domain, such as dialogs, fields, buttons, etc.

One of the main goals of Model Driven Engineering (MDE) is to automatically generate ap-
plications from models. When several view models are used to specify a system, it is neces-
sary to compose them to generate the application. When the models are expressed in different
DSMLs a problem arises because a heterogeneous composition is required (e.g., composition of
a business entity from a business DSML and a secured resource from the security DSML). This
means that it is necessary to have different composition mechanism for every pair of DSMLs.
A possible approach to avoid a heterogeneous composition is to transform the diverse models
into low-level models using a common low-level modeling language. Moreover, this common
low-level modeling language can be a General-Purpose Language (GPL) to implement the ap-
plication. Therefore, when all the view models are transformed in low-level models specified
with a common language, it is possible to apply a homogeneous composition (e.g., composition
of two Classes) for the complete set of models. A similar strategy is presented in [Van00], where
a common low-level formalism is used to bring together several specification defined in different
formalisms.

Additionally, in order to compose two models it is necessary to identify what elements will be
composed. Sometimes, it is enough to use the signature of the corresponding elements, but when
it is required more flexibility, it is necessary to establish correspondence relationships between
the elements to compose [BBD+06]. These relationships can be defined in a Correspondence
Model (CM) that contains the links between elements to compose.

However, when the different high-level models are transformed into a common low-level lan-
guage it is necessary to derive the correspondence relationships between the generated low-level
models. These correspondence relationships identify the elements that actually will be composed
in the low-level models.

In this paper we present a practical approach to compose multi-modeling views. This approach
uses transformation chains (TC) 1 to bring two high-level models specified in different DSML
into a low-level common language. Additionally, the correspondence links defined between the
high-level models are used to derive a low-level correspondence links which identify which are
the actual low-level elements to compose. In order to obtain the low-level CM our approach
generates traces to identify the target sets of elements in the generated low-level models. Using
these traces it is possible to identify if a target set is generated from an element that belongs to
a correspondence relationship. Additionally, we use a Derivation Model (DM) which contains
constraints that allows us to find the match between the generated elements, discarding incom-
patible ones. Finally, a common composition mechanism is used to integrate the elements of

1 A transformation chain (TC) is a sequence of transformation steps that converts the high-level model, which is
rooted in the problem domain, into a low-level model, which is rooted in the solution domain.

Proc. MPM 2009 2 / 10



ECEASST

each low-level model.
The structure of the paper is as follows: the next section presents an example that is used to

illustrate the proposed solution. Section 3 describes the problem that we tackle. In Section 4
an overview of our solution is presented. Section 5 details how we derive a low-level CM. This
low-level CM is used in Section 6 to execute the actual composition. Finally, the related works
are presented in Section 7, and Section 8 presents the conclusions of our work.

2 Illustrative example

We use as case study a simplification of an MDE implementation where web applications based
on components and their security are modeled using two independent view models. These two
high-level models are specified using two different DSML. The main objective of the first DSML
is to specify the core functionality model using business concepts. The objective of the second
DSML is to specify the authorization policies of the application. In this section both DSMLs are
presented.

2.1 Business modeling language

The three main elements in a DSML are: 1) The abstract syntax where the different terms of the
language are defined. Usually the abstract syntax is defined in a metamodel. 2) the concrete syn-
tax contains the textual or visual representation of a language. 3) The semantics of the language
that is the actual meaning of each concept and possible sentence in the language.

As it was stated before, the first language is used to specify the main functionality of an
application using concepts such as Entity, Attributes and Services. Figure 1(a) presents an extract
of the metamodel of the Business modeling language. The main concept of this metamodel is
Entity, which represents business entities of the application, such as Project or Item. An Entity
has Attributes, Relationships and Services. Using this language we modeled a web based change
management application called Changeset. The business view model of Changeset represents
a software project with items that belong to the project and changes that could be requested
for them. Project, Item and ChangeRequest are concepts conform to the Entity concept. In
Figure 1(b) an extract of the business model of Changeset is presented2.

2.2 Security modeling language

We define a Security language using the SecureUML metamodel defined by Lodderstedt et al.
in [LBD02], which in turn is based on the Role Based Access Control (RBAC) model. Figure
2 shows the metamodel, where the main elements are Users and Groups. A Role can perform a
set of Actions on a Resource and it can be assigned to Users or Groups. The Actions are grouped
as a Permission. Resource and Action are abstract concepts and it is necessary to extend them to
include the resources and the actions to be protected. In our case study, we extend the concept
Resource with EntityResource, AttributeResource and ServiceResource. Additionally, the con-
cept Action is extended to define every action that can be protected in the extended resources..

2 We use the UML/Stereotypes concrete syntax as a common representation for the presented models.

3 / 10 Volume 21 (2009)



A practical approach to multi-modeling views composition

name
environment

Business

name
Entity name

dataType
collectionType

Service

name
roleDestination
roleSource

Association

name
dataType
required

Attribute

associations

target

source

services

attributes

entities

(a)

cancel()

name
dueDate

<<Entity>>
Project

name
description

<<Entity>>
Item

(b)

Figure 1: Business Metamodel (MMbus) and Model (Mbus)

Role

Subject

Group User

Permission

AuthorizationConstraint

Action Resource

EntityResource

AttributeResource

ServiceResourceRead Write

Create

Update

Delete Execute

Figure 2: High-level Security Metamodel (MMsec)

For instance, the security model (Msec) for Changeset has two roles User and Manager. The
role User has a permission over Read actions on the EntityResource Project. This means that
a User can read the information about a Project, but he cannot change it. The role Manager
inherits User permissions and adds Create, Update, and Delete actions on Project and Execute
action on the Project.cancel() ServiceResource. These Permissions mean that a Manager can
read, and change the information of a Project.

3 Problem: Composing multi-modeling views

When a complex system is specified using several view models, it is necessary to compose
them to obtain the required application. Nevertheless, before performing the composition it is
necessary to identify the elements that will be composed. In order to identify those elements we
use a CM. As defined in [BBD+06] a CM is a model that explicitly describes the relationships
between elements of different models. Furthermore, the CM is the definition of what to compose,
which elements, described in the models, will be composed. At the high-level of abstraction, the
CM model is constructed manually by the modeler.

3.1 High-level Correspondence Model (CMhigh−level)

We align the two high-level models using a CM which relates the elements to be composed. For
example, in figure 3 the application model (Mbus) contains the entity Project and the security

Proc. MPM 2009 4 / 10



ECEASST

model (Msec) contains the resource Project that needs to be protected. The CM between both
models CMhigh−level represented in the figure as black lines with circles in their ends, contains a
relationship with links to the entity Project and the resource Project. Additionally, the Attribute
dueDate is related in the CM to the AttributeResource dueDate. The modeler creates these
correspondence links because he knows the meaning of the relationships between elements.

+cancel()

name
dueDate

<<Entity>>
Project

name
description

<<Entity>>
Item

<<Role>>
User

<<Role>>
Manager

<<EntityAction>>-Project : create
<<EntityAction>>-Project : update
<<EntityAction>>-Project : delete
<<ServiceAction>> Project.cancel : execute

ManagerProject

<<Permission>>

equivalence

Mbus Msec

items

<<Permission>>

<<EntityAction>>-Project : read
<<AttributeAction>>dueDate : read

UserProject

<<ServiceResource>>cancel()
<<AttributeResource>>dueDate

<<EntityResource>>
Project

0..*

Figure 3: High-level View Models.

3.2 Heterogeneous composition

A heterogeneous composition is the integration of two models expressed in two different lan-
guages. This means that is necessary to define the compositional semantic for every pair of
concepts in both languages. In our case, to compose the business view model and the security
view model will be a heterogeneous composition. For instance, if we have the concept Entity
that belongs to a Business modeling language, and the concept Resource that belongs to a Secu-
rity modeling language, it is necessary to define what it means to compose them, e.g., if every
Service and Attribute of the Entity will be protected too. Similarly, if a third language is added, it
will be necessary to define a composition semantic for each pair of languages, increasing to the
complexity of implementing a multi-view solution.

Our strategy is to avoid the heterogeneous composition transforming each view model into a
low-level model defined using a common modeling language. After the composition we perform
a composition between homogeneous concepts, for instance, to compose two Classes. There-
fore, if the complete set of view-models is transformed in to a common low-level language, a
homogeneous composition can be applied. However, a new problem appears: how to identify the
element to compose in the low-level models. In other words, how to derivate the CM between
the low-level models.

4 Approach overview

The overall approach is to transform both high-level models into low-level models that conform
to the same existing metamodel (e,g,. Java metamodel), or conform to an extension of it. We
align both high-level models by using a CM, which needs to be propagated through the complete
transformation chains. The main challenge is to define a mechanism to automatically derive the

5 / 10 Volume 21 (2009)



A practical approach to multi-modeling views composition

new correspondence relationships, having in mind that the TC increments the complexity of the
models by adding elements at each step.

To derive a low-level CM it is necessary to trace back the elements of the low-level models
and to check if they come from pairs of related elements in the high-level. With a trace model
(T M) [ANRS06] we determine the elements in both low-level models that come from a couple
of related elements in the high-level. For instance, an Attribute in the business view model is
transformed in the low-level model into: an Attribute, a GetterMethod and a SetterMethod. In
the security model a ResourceAttribute with a ReadPermission is transformed in the low-level
security model into: a private Attribute and an annotated ReadMethod. Therefore, we have
to trace back all these low-level elements and verify that the high-level source element (e.g.,
Attribute) from which they originate, is related with a correspondence relationship to the high-
level concern-specific element (e.g., ResourceAttribute).

Once, we establish which elements in the low-level models came from a pair of correspondent
elements in the high-level models, we have to relate them by identifying the correct match for
each one. For instance, a GetterMethod (in the low-level application model) can be related
to a ReadMethod (in the low-level security model) but not to a WriteMethod. The modeler
has to specify constraints, to avoid erroneous correspondences. A constraint is a relationship
between two metaclasses that defines if the correspondence link between concepts that conform
to them can be established or not. In our solution this set of constraints is called a Derivation
Model (DM). This approach is presented too in the context of transformation chain evolution
[YCWD09].

Figure 4 presents the general schema of our approach. In the left, the business view model
is transformed into a Java model (MMbus, Mbus, MM java, M java, T1)3. In the right the security
view model is transformed into a Java model too (MMsec, Msec, MMsec− java, Msec− java, T2).
CMhigh−level is the high-level correspondence model that aligns the two high-level models. T MA

and T MS are the trace models that relate the high-level models with the low-level models. The
DM relates the low-level metamodels with constrains between their metaclasses. The DM is used
to generate the transformation T3, that uses the trace models and the CMhigh−level to generate the
CMlow−level .

T1 T3 T2

MMbus MMsec

MMjava MMsec-java

Mbus*

Mjava Msec-java

Msec*
CMhigh-level*

Mfull

CMlow-level

composition

Application code
G1(*) Manually defined by the application modelers

TMA TMB
DM

Model Metamodel

Figure 4: General Schema

Finally, the low-level models are composed and transformed into code by the original model-
to-text transformation (G1).

3 MM = Metamodel, M = Model, T = Transformation Chain

Proc. MPM 2009 6 / 10



ECEASST

5 Derivation of Correspondence Model

To implement our strategy, low-level correspondence relationships have to be derived automati-
cally. The transformation (T3), produces the low-level CM.

5.1 Derivation

Two elements a′ and b′, from application and security models respectively, will have a corre-
spondence relationship if: 1) There is a CM relationship at the higher level between a and b,
where a′ was produced from a by T1, and b′ was produced from b by T2. 2) The metaclasses ma′

and mb′ where a′ conforms to ma′ and b′ conforms to mb′, allow for correspondence relationship
between their instances. Intuitively, the first condition establishes that elements a′ and b′ trace
back to a pair of elements that have a high-level correspondence relationship between them. The
second condition means that the metaclasses ma′ and mb′ are the same metaclass or extensions of
the same one. Therefore, it is permitted to define correspondence links between their instances
and finally to compose them. If both conditions are satisfied for an element a′ and b′, T3 will
produce a correspondence link between a′ and b′.

In figure 5, a correspondence link is created between the GetterMethod getDueDate in M java

and the annotated ReadMethod readDueDate in Msec− java because they satisfy both conditions.
First, getDueDate traces back to the Attribute dueDate in Mbus when T1, transformed it and read-
DueDate trace back to the AttributeResource dueDate in Msec when T2 transformed it. Addi-
tionally, the Attribute dueDate and the AttributeResource dueDate were related by the high-level
CM (CMhigh−level). Second, the GetterMethod and ReadMethod the metaclasses are allowed to
be related. However, is not possible to create a correspondence link between the SetterMethod
setDueDate and the annotated ReadMethod readDueDate because these metaclasses do not have
a constraint that allows to relate them.

<<Attribute>>
dueDate

<<Entity>>
Project

<<Attribute>>
dueDate

<<Class>>
Project

<<GetterMethod>>
getDueDate

<<SetterMethod>>
setDueDate

<<Role>>
User<<Permission>>

<<AttributeAction>>-dueDate : read
readDueDate

 

<<AttributeResource>>
dueDate

-private

<<Attribute>>
dueDate

@DeclareRoles("User")
<<Class>>

@RolesAllowed("User")

<<ReadMethod>>
readDueDate

T1 T3 T2

equivalence

<<EntityResource>>
ProjectMbus

Mjava

Msec

Msec-java

CMlow-level

CMhigh-level

Figure 5: Detailed schema

5.2 Traceability

When T1 is applied to the Attribute dueDate, it is transformed into the Attribute dueDate, the
GetterMethod getDueDate and the SetterMethod setDueDate. In order to make this information
available to T3, we generate trace links between output elements and input elements. The same

7 / 10 Volume 21 (2009)



A practical approach to multi-modeling views composition

happens in the T2 side, T3 needs to know if the ReadMethod traces back to a related AttributeRe-
source. Once T1 and T2 are executed, two tracing models are generated (T MA and T MS). With
these two tracing links, T3 can find the elements in both lower-level models that trace back to the
pair of related elements in both higher-level models.

We generate a tracing model when each transformation (i.e., T1 and T2) is executed. This
model conforms to a Traceability Metamodel and it has links between every source element and
its target elements.

5.3 Derivation Model

The modeler has to define a Derivation Model (DM) to make explicit if the instances of two
metaclasses are allowed or not to be related by a correspondence link. In the same way, the mod-
eler has to decide about the propagation of the compatibility relationships. If two metaclasses
are compatible, are their submetaclasses compatible too? Are the composites compatibles too?

We have defined different types of constraints in the Derivation Metamodel. These types
are: Inheritable constraint (to allow submetaclasses), Final constraint (to reject submetaclasses),
Incompatible constraint (to explicitly reject two metaclasses, and Composition constraint (to
allow composites). Due to space restrictions the details of the semantics of these constraints are
out of the scope of this paper.

5.4 Generating the CM Transformation

T3 receives as input the high-level CM, but T3 cannot use the DM as input. The DM is defined
at metamodel level and a transformation rule only receives models as inputs. Therefore, it is
necessary to express the constraints as part of the transformation rules. For this reason we, use a
High-Order Transformation (HOT) that receives the DM as input and produces T3.

In our case study, the GetterMethod getDueDate in the application side can be connected
to the ReadMethod readDueDate, because the metaclasses GetterMethod and ReadMethod are
compatible. As it was presented before, there is a constraint that allows these two elements to
be connected. The case of GetterMethod and WriteMethod is clear that they are incompatible
metaclasses and a correspondence link cannot be defined between their instances. In this way
it is possible to relate only the compatible pairs of elements and not every generated element in
each side.

6 Composition

The final step is to compose both low-level models to obtain a complete low-level model of
the application. In this composition, the generated CM (CMlow−level) is an essential input. This
model has the information of what will be composed. In Changeset, the Classes in the application
low-level model (M java) will be composed with the annotated Classes in the security low-level
model (Msec− java), the Attributes in (M java) with the private Attributes in (Msec− java), and the
Methods in (M java) with the annotated methods in (Msec− java). By using the correspondence links
it is possible to identify every pair of elements to be composed. To do the actual composition we
use a mechanism based on the UML Package Merge [DDZ08].

Proc. MPM 2009 8 / 10



ECEASST

7 Related work

In our approach we integrate several of the ideas presented in the following works. These ideas
help us to model the application and its concerns in independent models and delay the composi-
tion to the lower-level of abstraction where a heterogeneous composition is performed.

Following the multi-modeling principle, Cicchetti and Di Ruscio present in [CD08] a proposal
for modeling a web application using three independent models: a data model, a composition
model, and a navigation model. A weaving model (correspondence model) is defined between
the data model and the composition model, and an additional weaving is defined between the
composition model and the navigation model. These three models are composed using the CMs
into a high-level model. This high-level model conforms to a platform independent web meta-
model, such as WebML or Webile. These web modeling languages try to integrate all the required
concepts for web application modeling in a common metamodel. However, this research does
not try to generate the final application code, only the complete high-level model. Nevertheless,
it is not always possible to find a common high-level metamodel that includes all the required
concepts of the different concerns to model an application. In our research, we want to bring the
independent models to the lowest-level taking advantage of the reduced semantic gap between
the metamodels at this level and the models richer in implementation details.

In [CD06], Cibran et al. present an approach to define business rules on an application as
aspects. The business rules are modeled using a DSML. The relationships between the business
rules and the application are defined using a connection DSML. This DSML abstracts the differ-
ent patterns of how the business rules are connected with the application code. This connection
language can be seen as a CM that relates two different models of the application. Both models
are transformed to low-level models. The connections are also transformed and aspect code is
generated from them. In our approach, using the DM and the HOT we automate the generation
of the transformation that creates the relationships between the low-level models.

8 Conclusions

Our approach facilitates the modeling of different concerns using separated view models each
one close to the problem domain. The different view models are aligned using correspondence
relationships between their elements. These correspondence relationships explicitly capture the
overlapping and dependencies among their elements. Additionally, our approach offers an auto-
matic derivation mechanism to identify the elements to compose in the low-level models based
on the correspondence relationships defined between the high-level models. With this mecha-
nism, it is possible to maintain both models aligned from the high-level until the lowest-level
through the transformation chain. This is the main difference of our work with other approaches
where these relationships are only defined as an input, but not maintained during the transforma-
tion chain. As a result of delaying the actual composition to the lowest-level where all the models
conform to the same metamodel or to an extension of it, it is possible to perform a homogeneous
composition using a single composition mechanism.

We implemented the derivation mechanism and the composition mechanism using the Atlas
Modeling Language (ATL) [JK06] and in our current work we are exploring the modeling of

9 / 10 Volume 21 (2009)



A practical approach to multi-modeling views composition

an application in three or more models and bringing theses models to the lower level, where
they will be composed. This is a complex problem, because the interactions among the different
modeled concerns can generate several inconsistencies.

Bibliography

[ANRS06] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, Y. Shaham-Gafni. Model traceability.
IBM Systems Journal 45(3):515–526, 2006.

[BBD+06] J. Bézivin, S. Bouzitouna, M. Del Fabro, M. P. Gervais, F. Jouault, D. Kolovos,
I. Kurtev, R. F. Paige. A Canonical Scheme for Model Composition. Model Driven
Architecture Foundations and Applications, pp. 346–360, 2006.
doi:10.1007/11787044 26
http://dx.doi.org/10.1007/11787044 26

[CD06] M. Cibran, M. D’Hondt. A Slice of MDE with AOP: Transforming High-Level
Business Rules to Aspects. Proceedings of the 9th International Conference on
MoDELS/UML, 2006.

[CD08] A. Cicchetti, D. Di Ruscio. Decoupling web application concerns through weaving
operations. Science of Computer Programming 70(1):62–86, 2008.
doi:http://dx.doi.org/10.1016/j.scico.2007.10.002

[DDZ08] J. Dingel, Z. Diskin, A. Zito. Understanding and improving UML package merge.
Software and Systems Modeling 7(4):443–467, October 2008.
doi:10.1007/s10270-007-0073-9
http://dx.doi.org/10.1007/s10270-007-0073-9

[JK06] F. Jouault, I. Kurtev. On the architectural alignment of ATL and QVT. In SAC ’06:
Proceedings of the 2006 ACM symposium on Applied computing. Pp. 1188–1195.
ACM, New York, NY, USA, 2006.
doi:http://doi.acm.org/10.1145/1141277.1141561

[LBD02] T. Lodderstedt, D. Basin, J. Doser. SecureUML: A UML-Based Modeling Lan-
guage for Model-Driven Security. UML 2002 - The Unified Modeling Language :
5th International Conference, Dresden, Germany, September 30 - October 4, 2002.
Proceedings, pp. 426–441, 2002.
http://www.springerlink.com/content/a82dhdta602g43r5

[Van00] H. Vangheluwe. DEVS as a common denominator for multi-formalism hybrid sys-
temsmodelling. IEEE International Symposium on Computer-Aided Control System
Design, 2000. CACSD 2000, pp. 129–134, 2000.

[YCWD09] A. Yie, R. Casallas, D. Wagelaar, D. Deridder. An approach for evolving transfor-
mation chains. MoDELS ’09: Proceedings of the twelfth ACM/IEEE international
conference on Model Driven Engineering Languages and Systems, pp. 551–555,
Oct 2009.

Proc. MPM 2009 10 / 10

http://dx.doi.org/10.1007/11787044_26
http://dx.doi.org/10.1007/11787044_26
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2007.10.002
http://dx.doi.org/10.1007/s10270-007-0073-9
http://dx.doi.org/10.1007/s10270-007-0073-9
http://dx.doi.org/http://doi.acm.org/10.1145/1141277.1141561
http://www.springerlink.com/content/a82dhdta602g43r5

	Introduction
	Illustrative example
	Business modeling language
	Security modeling language

	Problem: Composing multi-modeling views
	High-level Correspondence Model (CMhigh-level)
	Heterogeneous composition

	Approach overview
	Derivation of Correspondence Model
	Derivation
	Traceability
	Derivation Model
	Generating the CM Transformation

	Composition
	Related work
	Conclusions

