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Abstract: SIGNAL is a high-level data-flow specification language that equally
allows multi-clocked descriptions as well as single-clocked ones. It has a formal se-
mantics and is supported by several formal tools for simulation and static validation.
This generality renders it useful for various specification, simulation, and verifica-
tion tasks in embedded system design. SMV, in turn, is a language and model
checker where synchronous models are single-clocked by definition. Roughly, we
use standard techniques to describe clocks by Boolean variables, with the advantage
that the number of such variables is kept to a minimum througha static analysis pro-
vided by the SIGNAL compiler. In particular, we propose a translation from possibly
multi-clocked SIGNAL specifications into SMV specifications for their correspond-
ing verification by model checking.

Keywords: Synchronous programs, Multiple-clocks, SMV, Model checking

1 Introduction

The increasing complexity of embedded systems and the costsassociated with failures in their
engineering and operation demand for models and tools that enable safe design and formal vali-
dation. In the past years, system design based on thesynchronous model[BB91] has attracted the
attention of many academic and industrial actors. This paradigm consists in abstracting the non-
functional implementation details of a system, thus fostering a focused reasoning on the logic
behind the instants at which the system functionalities should be secured. A benefit of designing
with languages based on the synchronous model (e.g. ESTEREL [BG92], L USTRE [HCRP91],
or SIGNAL [LTL03]) is the availability of associated verification tools.

Among synchronous languages, a salient feature of SIGNAL is the notion ofpolychrony: the
capability to describe systems in which components may havedifferent clock rates. This expres-
sivity coupled with its (compiler) ability to statically synthesize schedules (reasoning about the
logic behind the source clock constraints) allows to embrace complex systems that arise in the
form of GALS (globally-asynchronous locally-synchronous) or (loosely) time-triggered architec-
tures, and thus renders the model checking of such specifications highly attractive.

SMV, in turn, is a language and model checker where synchronous models are single-clocked
by definition. However, this apparent constraint does not prevent us from describing and veri-
fying SIGNAL multi-clocked specifications as we demonstrate here. In order to describe multi-
clocked computations using a single-clocked framework we use standard techniques to describe
clocks by Boolean variables [BBG+00], with the advantage that the number of such variables is
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kept to a minimum through a static analysis provided by the SIGNAL compiler. Such analysis
produces a hierarchy of clocks (ordered by set inclusion) which is useful to avoid proliferation
of SMV state variables.

The paper presents in Section2 syntactic and semantic highlights of our source SIGNAL pro-
grams and the target SMV programs. Section3, in turn, describes a generic SMV translation for
each SIGNAL kernel operator. Then in Section4 we provide examples of translations for (pos-
sibly multi-clocked) SIGNAL specifications and show the use of the SIGNAL compiler analysis
to reduce the number of SMV state variables. The behaviours of the translated examples will be
examined in Section5 by model checking with SMV itself. Next, in Section6 some elements for
comparison with related work on model checking for other synchronous languages are presented.
Finally, some concluding remarks and pointers for future work are given in Section7.

2 SIGNAL and SMV: Syntax and semantics

In this section we introduce the SIGNAL kernel language and a subset of the SMV language used
for our translation, as well as highlights of each language semantics.

2.1 SIGNAL kernel

SIGNAL is a data-flow relational language that relies on the polychronous model [LTL03, BGL08].
It handles possibly infinite sequences of typed values called signals. A signalx is implicitly in-
dexed by discrete time, thus denoting the sequencext where t ∈ H, H ⊆ N. At any instant
(arbitraryt ∈ N) a signal may bepresent, at which point it holds a value, orabsent. There is no
actual value associated with a signal when it is absent, by contrast with the instants when it is
present. The instants of absence of a signal are denoted withthe special symbol⊥, in the se-
mantics. Signals may be of standard types, e.g. Boolean, integer, real, etc. Additionally, there is
a particular type of signal calledevent . A signal of this type is alwaystrue when it is present.
The set of instants (index setH above) where a signalx is present represents itsclock, noted
x̂ (which implicitly denotes a signal ofevent type). A processis a system of equations (also
called elementary processes) over signals that specifies relations between values and clocks of
the signals. Aprogram is a process. SIGNAL relies on a few primitive constructs that define
elementary processesfrom which bigger processes may be built. Next the definitionof four
elementary processes and two other constructs to build bigger processes, and to mask signals,
respectively.

• Function.y:= f(x1,...,xn)
def
≡ x1t 6= ⊥⇔ ... ⇔ xnt 6= ⊥⇔ yt = f (x1t , ...,xnt)

• Delay.y:= x $ 1 init c
def
≡ xt 6= ⊥⇔ yt 6= ⊥⇔ [(t > 0 ∧ yt = xk ∧ k = max{t ′ |

t ′ < t ∧ xt ′ 6= ⊥}) ∨ (t = 0 ∧ yt = c)]; (c is a compile time constant).

• Undersampling.y:= x when b (whereb is Boolean)
def
≡ yt = xt if bt = true,

elseyt = ⊥; (observe that expressiony:= when b is equivalent toy:= b when b ).

• Deterministic merge.z:= x default y
def
≡ zt = xt if xt 6= ⊥, elsezt = yt .
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Table 1: Clock relations for primitives.

construct clock relations
y := f(x1,...,xn) ŷ = x̂1 = ... = x̂n

y := x $1 init c ŷ = x̂

y := x when b
ŷ = x̂∩ [b],

[b]∪ [¬b] = b̂ and[b]∩ [¬b] = /0
z := x default y ẑ= x̂∪ ŷ

• Parallel Composition.P1|P2
def
≡ union of equations ofP1 andP2.

• Hiding. P where x
def
≡ x is local to the processP.

Derived operators are defined using the primitive operatorsabove. For instance, asynchro-
nizationequationx ˆ= y specifies thatx andy have the same clock. Moreover, the equation
x ˆ= y ˆ+ z asserts that the clock ofx is the union of the clocks ofy and that ofz . A mem-
ory: y := x cell b init y0 allows to memorize iny the latest value carried byx when
x is present or whenb is true. Processes can be abstracted and declared, in a standard way, by
explicitly designating their input and output signals (preceding their declarations with “?” and
“ ! ”, respectively), with the sole constraint that the designated input signals cannot be defined
(i.e. occur in the lhs of a:= symbol) inside such a process.

2.2 Static analysis ofSIGNAL specifications

In order to assess the consistency of the clock relations associated with a program, and to orga-
nize the control of such a program, the compiler synthesizesaclock hierarchy[ABL95, BGL08].
A clock k1 is said to be greater than a clockk2 if k2 is included ink1 in terms of sets of instants.

Table1 shows theclock relationsimplicit in each primitive construct of SIGNAL . For the
undersampling construct, the clock of the Boolean signalb is partitioned into[b] and[¬b]. The
sub-clock[b] (resp. [¬b]) denotes the set of instants where the Boolean expressionb is present
and true (resp. false). Clock relations are automatically added and (possibly) new relations
between clocks are inferred by the compiler from any programto be analyzed. For a program
P = P1|...|P n, its resulting relations between clocks are the result of applying the clock
calculus on the conjunction of the clock relations associated with the sub-processesPk, k∈ 1..n.

Theclock calculus[ABL94], in turn, seeks the greatest clock in the program, calledmaster
clock, from which all other clocks in the program can be extracted.In this case, the clock
hierarchy is a tree. Nonetheless, in some programs, such a unique master clock may not exist.
In this latter case, there are several local master clocks and the clock hierarchy is a forest. Note,
however, that the root of a tree may not correspond with the clock of an input signal.

A program in which the clock hierarchy is a tree isendochronous. Such a program can be run
in an autonomous way (its master clock plays the role of an activation clock). Otherwise, the
program needs extra information from its environment to be run in a deterministic way.

The automatic code generation, for an endochronous program, relies on the synthesized clock
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SMVpgr → ModuleMain | ModuleStmt SMVpgr
ModuleStmt → MODULE id[( IdList)]

VARVarDclLst
ASSIGNAssignStmt
INVAR InvarStmt

VarDclLst → ε | id : Type; VarDclLst

AssignStmt → ε | lhs := rhs ; AssignStmt
InvarStmt → ε | s bool exp

lhs → init(id) | id | next(id)
rhs → cnst exp | set exp | caseexp

caseexp → case casesesac ;
cases → 1 : rhs ; | bool exp: rhs ; cases

Figure 1: Subset of SMV language.

hierarchy. Each clock is represented by a Boolean variable (booleanization stage [BBG+00])
which is true when the clock is present, and false otherwise.For every signal, its value is mean-
ingful (under a multi-clock interpretation) when the Boolean representing its clock has the value
true. This allows to organize the control of the applicationfollowing the clock hierarchy.

2.3 SMV: A subset

For our translation purposes we use only a subset of the SMV language. We present such a
subset using the syntax of SMV that is compatible with the three versions [McM01, McM99,
CCJ+05] of the language currently available on the web (SMV from CADENCE, SMV from
CARNEGIE-MELLON UNIVERSITY, and NUSMV). We identify the following syntax with the
oldest [McM01] of the three versions.

Syntax

Our SMV programs will consist of modules with parameters, except for the reserved module
main . Module declarations may not be nested. Each module has a name, (possibly) a list of
parameter names, and at most three sections: a section for variable declarations and/or mod-
ule instantiation, marked at the beginning by theVARreserved word; a section describing the
variable values (initial, current or next instant), initiated by theASSIGNkeyword; and, a sec-
tion describing invariants between the variables of the referred module, and whose beginning is
marked by the reserved wordINVAR. DEFINE, FAIRNESSandSPECsections are not con-
sidered for the moment, but their use will be motivated when we present translation examples
(Sect.4), and some verification (Sect.5) on them.

Figure1 depicts the grammar of our subset of SMV. The possible type (Type) of an identifier
(id ) is integer (or intervals thereof),boolean , enumerated, or the name of another module;
in this last case the identifier is used to refer to an instanceof the referred module, and appropriate
expressions should be given as parameters for the intended instance. Access to members of a
module instance is through a dot notation (i.e.id.var id ).

An expression of an invariant is of type Boolean and may only contain module variables in
its present form (i.e. no use ofinit or next operators are allowed). The right-hand-side of
an assignment (rhs), for the case of a constant expression (cnst exp), is a valid expression (e.g.
containing arithmetic, Boolean or comparison operators) using any of the possible type values
for a correct typing of the identifier in the left-hand-side;a right-hand-side, for the case of a set
expression (set exp), uses curly braces to extensively list the elements (separated by commas) of
the desired set. Operations on sets are union and test of membership.

Proc. AVOCS 2009 4 / 15



ECEASST

VAR
f, h x, h y: boolean;

ASSIGN
init(y) := C;
next(y) := case

f & next(h x) : x;
1 : y;

esac;
init(f) := h x;
next(f) := f | next(h x);

INVAR
(h y <-> h x)

(a) y := x$1 init C in SMV

VAR
h x, h y, h b: boolean;

ASSIGN
init(y) := x;
next(y) := case

next(h y) : next(x);
1 : y;

esac;
INVAR

(h y <-> (h x & h b & b))

(b) y := x when b in SMV

Figure 2: Function and undersampling operators in SMV

Semantics

Assignments for the first value (signaled by the use ofinit keyword on thelhs) of a program
variable are only executed in the first instant of program execution, whereas assignments for the
next instant are executed to obtain the value of the designated variable starting from the second
instant. Assignments with no occurrences ofinit or next in their lhs are executed at all
instants. The order in which assignments are executed is given by the data dependencies existing
between the variables occurring in the right-hand-sides ofthe assignments to execute (among all
assignments of a program including those added by process instantiation). The rule that dictates
the (partial) order of assignment execution says that a variable is first assigned before its value
is used in a right-hand-side evaluation. Invariants define (possibly) extra relations/constraints
to those already imposed by the assignments, thus limiting the valid executions of the source
program to those where the invariant expressions hold.

3 From SIGNAL to SMV

Let us now describe a possible translation from simple equations in the SIGNAL kernel, to SMV
module fragments. We will assume, for simplicity of exposition, that there is only one kernel
operator per equation. Also, the translation for each such SIGNAL source equation is an SMV
program fragment where variable declarations will be omitted (whenever possible) to allow for a
greater translation generality, provided that their translation depends on whether they are input,
output or local in the presence of multiple SIGNAL processes. Roughly, the translation has an
SMV variable to carry the value of each source signal, as wellas a Boolean SMV variable
to denote its clock. An instant of an SMV execution corresponds to an instant of SIGNAL

execution. The multi-clock reading of an SMV generated program comes from reading pairs of
SMV variables: one denoting its clock and another carrying its value (if any).

Delay See SMV translation in Figure2(a). Variablesh x , h y , and f were added by the
translation. The first two represent the clock ofx andy respectively, while the last variable is
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VAR
h x, h y, h z: boolean;

ASSIGN
init(z) := case

h x: x;
1: y;

esac;
next(z) := case

next(h x): next(x);
next(h y): next(y);
1: z;

esac;
INVAR

(h z <-> (h x | h y))

(a) z := x default y in SMV

VAR
h x, h y, h z: boolean;

ASSIGN
init(z) := f(x,y);
next(z) := case

next(h z): next(f(x,y));
1: z;

esac;
INVAR

(h z <-> h x) & (h x <-> h y)

(b) z := f(x,y) in SMV

Figure 3: Merge and function operators

used to detect the first instant of signalx . The guard labeled with1 in thecase statement is the
default choice if none of the offered options holds. It is important to note here that the previous
value ofx should be kept (in its SMV definition, not shown here) in case it is absent (typically
the default case in anext assignment) since this SIGNAL operator will refer to the previous
value in SIGNAL semantics, which is not necessarily that of SMV. Also, note here that the value
of y is kept in case its first instant does not coincide with that ofSMV. Variablef is needed to
detect the first instant ofy (or x since they are synchronous).

For the SIGNAL kernel operators that follow we decided to keep the previousvalue of the de-
fined variable, considering a general schema of translation, but in some particular occurrences of
such operators we may not need to keep the value. The use of assignments that keep the value by
default, allows for stuttering steps in our translation: a fundamental property if compositionality
is desired.

Undersampling The SMV translation is depicted in Figure2(b). Here we (potentially) need
three clocks, one for each signal. Theinit definition fixes the value to that ofx disregarding
clock h y . This is correct, however, because ifh y holds in the first instant then the value is
correct, and if it doesn’t then the value is not important, thus any value is valid in this last case.

Merge Figure3(a) depicts the translation into SMV. Here, as above, we have three (clock)
SMV variables. Once again, the initial assignment definition for the default case (labeled with
1) appears arbitrary; it is justified, however, with a similarreasoning as that used for the under-
sampling operator above.

Function Refer to Figure3(b) for the SMV translation. The reason for the initial instant
assignment is similar to that used for thewhen operator above. Whether the output is present or
not, the chosen value will be good.
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3.1 Improving the translation into SMV

So far we have proposed an intuitively correct translation from SIGNAL elementary processes
into SMV modules. We anticipate/conjecture that this translation is correct given the straightfor-
ward coding style of data-flow and clock constraints into SMVassign statements and invariants.
Nonetheless, scalability is another desirable feature. Tothis aim we would like to reduce the
number of SMV (state) variables introduced by our translation, since the number of such vari-
ables may (sometimes) render the state space exponentiallybigger. The natural candidates for
elimination are the clock variables, and perhaps also the SMV variables corresponding to signal
source variables.

In order to avoid state variables in the translation the reader should know that SMV allows to
define a variable as a function of other variables without theuse ofnext or init operators.
That is, such assignments may only refer to the present values of other SMV variables. In order
to identify such variable definitions SMV provides a sectionnamedDEFINE. Roughly, uses of
the variables so defined are replaced by their definition thussparing some state variables.

At first sight, we may think that there is no need to introduce state variables for signals defined
through operatorwhen, or default , or function , since they all refer to values in the same
instant. It would be tempting to replace them by their equivalent in theDEFINE section, and
thus their values would be arbitrary when absent. However, this replacement would be incorrect
when the values they define are referenced through a SIGNAL delay operator. Recall that the
clock of a SIGNAL variable coincides with the instants of the associated SMV Boolean variable
when it has valuetrue , which isnot necessarilythe previous SMV instant. Consequently, for
those SIGNAL elementary processes using kernel operatorwhen, default , or function that
do not define a value used in a delay operator, one may replace the SMV translation proposed
above by one referring to present values in the corresponding DEFINE section.

For the SMV (clock) variables introduced we propose to have one state SMV variable per tree
root in the forest constructed (during clock calculus) by the SIGNAL compiler. The remaining
SMV (clock) variables will be assigned in theDEFINEsection. It is important to note here a shift
in the translation. So far we translated clock relations as Boolean formulas in theINVAR section
by pure constraint reasoning. Replacing such constraints with assignments (in theDEFINE
section) renders the constraintsfunctional. In summary, SMV variables that represent source
SIGNAL clocks and are associated with an internal node in one of the trees found by the SIGNAL

compiler may be translated using assignments in the corresponding SMVDEFINE section. In
addition, the number of clock variables may be reduced by using one variable per synchronous
equivalence class found by the compiler, as well as by elimination of those clocks (variables)
found to be empty.

4 Translation examples

In the following we will provide examples of source SIGNAL specifications and their transla-
tion into SMV. Such SIGNAL examples will make part of a bigger specification describinga
communication protocol for loosely time-triggered architectures [BCL+02].
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4.1 A one-placeFIFO

Consider a one-placeFIFO in SIGNAL , fifo 1 in Figure4(a). Its content is the last value writ-
ten into it. The output (signalsx ) may only be read/retrieved after at least one instant that it was
entered. The number of instants between a write and a read mayincrease non-deterministically.
Each such instant is given by the (internal) clock of the local Boolean signalb (interleave
process). Before translating into SMV we will give thefifo 1 program to the SIGNAL com-
piler so that the hierarchy of clocks becomes evident as wellas other optimisations applied by the
compiler. For this program the compiler produces the SIGNAL program depicted in Figure4(b).
The hierarchy of clocks is made visually evident by the nesting of parallel1 subprocesses (the
only subprocess in this example comprises lines5-13 ). The root of the only tree is that of the
clock defined at the top, line3. This line also indicates that the clockh b is not fixed, but a free
variable which could have any value at any instant. Line4 gives the set of signals that share the
same clock (h b). Lines6,8 indicate what is the name of the clock of signalsx,sx , respec-
tively, whereas lines5,7 give their definitions. Finally, lines9-11 provide the definition of the
fifo 1 outputsx (through the use of the value of an intermediate variabletmp ).

Now the translation of the compiledfifo 1 program into SMV is in Figure5. Translation
of the negated delay spans lines13-20 ; translation of thecell operator lays between lines
5-12 ; and, thewhen operator is translated into line24 (if the type of tmp was not Boolean
then acase statement would have been used). There is a clear depart fromthe translation
schemes presented in Section3. This stems from several improvements in the translation (al-
ready suggested at the end of Section3), and with some conventions in the compiler program
generation, Figure4(b). A first convention exploited in our translation says that all uses ofwhen
operator have as first operand a synchronous expression (i.e. all its signals share the same clock)
and second operand a signal denoting a clocksmaller or equalto that of the first operand. As a
result, our translation into SMV (Figure2(b)) need not test the clock (h x ) of the first operand
together with the clock (h b) and value (b) of the second operand; it suffices to guard the use
of the first operand value by the clock given as second operand(i.e. expressionh y <-> h x
& h b & b becomesh y <-> h b & b). The next convention states that occurrences of
the default operator have the standard formx:= (a when h f) default (b when
h g) (with possibly moredefault and their corresponding operators) whereh f,h g are
clocks anda,b are synchronous expressions. Note here that clock signalh g should be defined
(implicitly or explicitly) as the difference between the clocks ofx andh f . Our translation of this
operator (Figure3(a)) won’t have to translate thewhen operator occurrences in such equations,
they serve to identify the clock guard for eachcase branch of thedefault operator. Finally,
to discuss thecell operator recall that, in general, an equationx := y cell z init C
is equivalent to the two equationsx := y default (x$1 init C) | x =̂ y +̂ when
z . Uses of suchcell operator have as second operand the clock of the defined signal. That is,
z above will be a signal denoting the clock ofx , andy is either a synchronous expression or a
when operator.

An explanation of the simplification in the translation (lines13-20 , Figure5) of the negated
delay (line12 , Figure4(b)) is in order. Because the definition ofbw is quasi-circular (through a
function operator and a one instant delay) we do not need the extra f variable to detect the first

1 The SIGNAL parallel composition operator is commutative and associative.
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process fifo 1 = (? boolean x;
! boolean sx;)

( | sx := current 1(x, ŝx)
| interleave(x,sx) |)

where
process current 1 = (? boolean wx;

event c;
! boolean rx;)

( | rx := (wx cell c init false)
when c

|);
process interleave = (? boolean x,

sx; !)
( | x =̂ when b
| sx =̂ when (not b)
| b := not(b$1 init false)
|) where boolean b; end;

end;

(a) One-placeFIFO in SIGNAL

1: process fifo 1 = (? boolean x;
2: ! boolean sx;)
3: ( | h b := ˆ h b
4: | h b =̂ tmp =̂ b
5: | ( | h x := when b
6: | h x =̂ x
7: | h sx := when (not b)
8: | h sx =̂ sx
9: | sx := tmp when h sx
10: | tmp := (x when h x) cell
11: h b init false
12: | b := not (b$1 init false)
13: |)
14: |) where event h b, h sx, h x;
15: boolean tmp, b; end;
16: end;

(b) fifo 1 after clock calculus

Figure 4:fifo 1 source: Before and after applying clock calculus

instant, neither do we need an extra state variable (thex variable in Figure2(a)) to guarantee that
the delayed value is the correct one. All the information, clock-wise and data-wise, is comprised
in the same signal, hence the compact SMV code generation. A straightforward generalisation
of this reasoning allows us to translate in the same way all equations with form:y := f(x$1
init C) , wheref is a SIGNAL function operator.

A two-place FIFO. Let us now consider the translation of the two-placeFIFO resulting from
composing two one-placeFIFOs, as shown by processfifo 2 in Figure6(a). For reasons of
space we won’t show the compiled version2 of fifo 2 but use the generated SMV code (Fig-

2 The compiler automatically inlines all process instances.

1: MODULE fifo 1(x,h x)
2: VAR
3: h b, b, tmp: boolean;
4: ASSIGN
5: init(tmp) := case
6: h x : x;
7: 1 : 0;
8: esac;
9: next(tmp) := case
10: next(h x) : next(x);
11: 1 : tmp;
12: esac;

13: init(b) := case
14: h b : 1;
15: 1 : 0;
16: esac;
17: next(b) := case
18: next(h b) : !b;
19: 1 : b;
20: esac;
21: DEFINE
22: h x := h b & b;
23: h sx := h b & !b;
24: sx := h sx & tmp;

Figure 5: One-placeFIFO in SMV.
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process fifo 2 = (? boolean x;
! boolean xok;)

( | xok := fifo 1(
fifo 1(x))

|) where
process fifo 1 ...

where
process current 1 ...
process interleave ...
end;

end;

(a) Two-placeFIFO in SIGNAL .

MODULE fifo 2(x, h x)
VAR

ff11: fifo 1(x, h x);
ff12: fifo 1(ff11.sx, ff1.h sx);

INVAR
ff11.h sx <-> ff12.h x

DEFINE
xok := ff12.sx;
h xok := ff12.h sx;

(b) Two-placeFIFO in SMV.

Figure 6: SIGNAL and SMV: A two-placeFIFO

ure5), and compose two instances offifo 1 accordingly. An interesting feature of thefifo 2
SIGNAL program is that it is not endochronous (unlikefifo 1) and thus has multiple (master)
clocks. Its translation into SMV (Figure6(b)) uses the same schemas as for endochronous pro-
grams though. Yet another feature of the generated code is the existence of a clock constraint
in the form of an SMV invariant. This expression was not translated as a clock definition since
the SIGNAL compiler was unable to verify its validity, hence its form ofconstraint rather than a
directed assignment (as those appearing in aDEFINE section, for instance).

4.2 The whole communication protocol

We’ve applied the mentioned simplifications for the complete specification of the protocol pro-
posed by Benveniste et al. [BCL+02] (seeftp://ftp.irisa.fr/local/signal/publis/SIG2SMV/for the
whole protocol and its translation). Our simplification rules with the aid of the compiler reduced
the number of state variables from 98 to 27 (disregarding anypossible reductions in the SMV
internal representation of such models), with the ensuing improvements in verification time.

5 Some model checking

Here we will pose some CTL [CGP00] queries (and LTL whenever possible, in order to ease
the reading) to our previous SMV programs (Section4) in order to elucidate some behaviour
information from the SIGNAL source or the SMV translation. Also, our queries aim at illustrating
the use of the SMV clock variables introduced by the translation.

5.1 The need forFAIRNESS constraints

Recall thefifo 1 SMV module (Fig.5). We are interested to know whether the SMV trans-
lation correctly assignstrue for the first instant (in SIGNAL ) of b, given that the default case
assignsfalse (i.e. 0). Also recall that the first instant of an SMV program does notnecessar-
ily correspond to the first instant of some SIGNAL clocks. An LTL query could be as follows:
(!h b U b) . Our formula states that alongall paths from the initial state(s) of the system our
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signal may remain absent until it is first present with value1. However, the SMV model checker
says that our model fails to follow this LTL specification, and gives us a one-state trace to support
such a response. A close examination of the counter-exampleshows that it is a state with a loop
transition to it; that is, a behaviour of our system where thesignal (h b) is forever absent. This
is a valid behaviour and is desirable for compositional reasons. For model checking, however,
it is best to ignore behaviours consisting only of such self loops. Fortunately, SMV provides
ways of ensuring that our queries are verified on (possibly looping) behaviours where something
interesting happens. This may be achieved using SMVFAIRNESSstatements torestrict the
verification to paths where such statements hold infinitely often. Hence, for ourfifo 1 exam-
ple, we added the following line:FAIRNESS h b, and then our model verifies our LTL query
above. Let us assume that appropriateFAIRNESSconstraints have been added to all our exam-
ples and our LTL/CTL goals are to be verified along fair paths.Clearly the correctFAIRNESS
statements refer to the clocks of the root(s) of the tree(s) found during clock calculus.

Now, we can check whether the Boolean (guard) signal (b) is alternating, by posing the
LTL query: G( ( (h b & b) -> X(!h b U !b) ) | ( (h b & !b) -> X(!h b
U b) ) ) . By such formula we mean that all states where the signal is present and true are
always followed by a sequence of states where the signal may be absent until it first arises (is
present) with value false, or the converse (for the signal values only). As expected, the SMV
answer is affirmative.

5.2 Some non-determinism

Let us now query thefifo 2 module (Fig.6(b)) where a stored value can only be retrieved
(at least) two instants after it has been written, and not before. A CTL formula for inspecting
whether given an input event (h x ), in the next instant, an output event (h xok ) is possible
could be expressed asAG(ff11.h x -> EX(h xok)) . For this goal the model checker
answersno and gives a counter-example where every arrival of the output occurs two instants
after an input was received. One may think that the output isalwaysavailable exactly two instants
after an input is placed, and thus pose the LTL queryG(ff11.h x -> X(X(h xok))) .
Unfortunately this is not the case, as shown by another counter-example generated by SMV; the
first output arrives four instants after the first input and then every three instants after another
input. This (apparently) non-deterministic behaviour is due to the polychronous nature of the
SIGNAL source by virtue of the two instances of thefifo 1 process (and more specifically,
of the interleave process). Nonetheless we may assert that in general, there is always a
behaviour for which after exactly two instants the output will arrive, in CTL: AG(ff11.h x
-> EX(EX( h xok ))) . Alternatively, we may claim that given the input the outputwill
always eventually arrive, in LTL:G( ff11.h x -> F(h xok) ) ) and thus verify this with
the model checker. Note that (in part) due to the imposedFAIRNESSconstraints, given an input,
the output will eventually arrive, even when the constraintis not on the input or output variables.

5.3 Correctness of the whole communication protocol

Before verifying the correctness of the protocol we succeeded in verifying the correctness of a
claimed specification property (property number 16 [BCL+02]) of the protocol implementation:

11 / 15 Volume 23 (2009)



Model Checking SIGNAL

never two writing events between two successive bus/buffersampling events. Finally, we posed
the same two CTL goals (to prove correctness of the protocol)to our SMV translation and thus
confirmed the answer previously reported [BCL+02].

6 Related Work

Here we provide some comparison elements for work on model checking for three synchronous
languages: ESTEREL, LUSTRE and SIGNAL , and work on model checking multi-clocked speci-
fications outside the synchronous paradigm.

From the language expressivity perspective it is worth noting that ESTEREL and LUSTRE

assume a master clock3, while SIGNAL does not impose such a constraint. We may say thatthe
subsetof SIGNAL programs that are found to be endochronous by the compiler coincide with
those synchronous programs with a single master clock.

For LUSTRE alone there is a model checker called LESAR [Ray06]. It is based on symbolic
model checking too, and is able to reason about numerical constraints (convex polyhedra) on the
transition systems, unlike SMV. However, LESAR is unable to validate liveness properties; only
safety properties can be proved. A case study [BWL06] comparing model checking using LESAR

and SMV (among other validation tools), shows the improved power of SMV compared with
LESAR. In such comparison some translation from LUSTRE is used, but unfortunately it is not
provided. Nonetheless, a close examination of the LUSTREsources for their example shows that
their programs were already single-clocked, and thus the translation into SMV appears much
simpler than ours. Also, a manual translation from ESTEREL to LUSTRE is mentioned (not
provided) to reach the facilities of SMV.

Two other transformations from LUSTRE to SMV are mentioned in [MMM05, MAWW05].
Neither of them provide the transformation rules used, nor the LUSTRE subset that could be
translated.

For model checking ESTERELprograms we know of a proposal [MHM+95] that first translates
such programs into an intermediate representation calledBoolean automata, and then translates
such programs into SMV. However, the actual definition and transformation into Boolean au-
tomata is not provided and it appears that not all such Boolean automata could be described in
their version of SMV.

SIGALI [MRLS01] is the model checker for SIGNAL . It is tightly integrated with the (SIGNAL )
compiler internal representation and optimisations. In addition to model checking, SIGALI is also
useful for controller synthesis [BBG+01]. However, it does not generate counter-examples (nor
witnesses). From the beginning, it was conceived as a decision procedure and some limited form
of counter-example generation is possible for safety properties only. The problem of generating
counter-examples may be cast as controller synthesis to somewhat project the source program on
all the behaviours that lead to a given unsafe set of states. Such program projection may be inter-
preted as a set of counter-examples. As regards the input language, Sigali only supports Boolean
and event signals whereas SMV has some (limited form of) integer reasoning and offers the pos-
sibility to bridge to bounded model checkers too. Nonetheless, in SIGALI , signal clocks need not
always be explicit in LTL/CTL goals, they may remain implicit unlike our proposal for SMV.

3 Esterel V7 appears to be multi-clocked, though.
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We argue that making clocks explicit fosters a good understanding of the source specification,
besides the potential feedback provided by counter-examples.

Outside the synchronous approach there is the work of Clarkeet al. [CKY03] and the work of
Ganai and Gupta [GG07]. In the context of bounded model checking, the former considers linear
relations (equality and/or inequality) between clocks as input and then synthesises an automaton
that describes all possible schedules of the clock ticks. Even though the system of linear relations
may reference precise clock frequencies the synthesised automaton refers to logical instants, as
in SIGNAL . Stuttering transitions are problematic for the automatonrepresentation since it is not
evident which is(are) the master clock(s), if any. The authors appear to circumvent the problem
for their experiments but a definitive answer is missing. Their proposal is tightly dependent on
their bounded model checker and the kind of properties checked appears to be restricted to safety
issues only, whereas we are not dependent on safety properties and bounded model checking
remains one possibility amongst several.

In a refinement of this work, Ganai and Gupta [GG07] propose a specialised translation of
LTL goals for clocked specifications, which apparently render the bounded model checking
scalable, for multiple-clocks. By contrast, we do not propose any model checking technique,
neither an optimised translation of clocked LTL/CTL formulas. However, we propose a tightly
integrated (with the SIGNAL compiler) translation from specifications with multiple clocks into
SMV where bounded model checking is one option.

Last, but not least, SMV itself provides a syntax for composing (single-clocked) modules
asynchronously, using theprocess keyword. This language feature offers the possibility to
express some coarse-grained multi-clocked specificationswithout the need for extra explicit sig-
naling (as is the case of our SMV Boolean variables to denote clocks). By contrast, in our
source SIGNAL multi-clocked specifications clocks are finely interwoven.The challenge here
is to derive a so-calledGALS (globally-asynchronous locally-synchronous) description from the
SIGNAL source multi-clocked specifications in order to match and profit from this SMV lan-
guage feature (i.e. asynchronous composition of single-clocked modules).

7 Concluding Remarks

We have shown a simple source-to-source translation from SIGNAL (multi-clocked) specifica-
tions to single-clocked SMV programs for the purpose of CTL verification. Then we refine the
translation taking into account the compiler analysis of the source SIGNAL program, in order
to reduce the number of state variables added by the translation. This optimisation allows us to
eliminate signal variables as well as (Boolean) clock variables. We stick to a syntax compatible
with the three versions of SMV currently available. We presume soundness of our translation
given the semantic proximity of the two languages and because the SMV coding neatly reflects
the clock relations (using invariants or definitions) and data-flow (with assignments). The gen-
erality of our proposed translation is exercised through modeling and verification of SIGNAL

specification with multiple master clocks. There are two additions to common/standard use of
SMV and CTL for model validation, namely,(a) clocks are explicit in SMV and LTL/CTL
goals, and(b) fairness constraints are needed for ensuring reactivity ofthe model behaviours;
such constraints refer to the clocks of all the roots found during clock calculus.
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Boolean SMV variables are used to model SIGNAL clocks. The translation automatically adds
the Boolean clocks, and it is the user who will be responsiblefor a correct combination of clocks
and signals while querying (in LTL or CTL) the produced SMV model. The chief condition
for a sound use of explicit clocks is thatthe value of a signal is only meaningful when its clock
evaluates totrue . As a result, the user is only concerned with knowing the nameof the clock
of a signal and for every occurrence of the signal name (in a temporal formula) add the conjunct
to test its presence (by referring to a true occurrence of itsclock variable).

Future work. Here we only used the LTL/CTL verification functionality of SMV. We plan
to experiment with other functionalities (bounded model checking, bounds analysis, refinement
checking, induction, and compositional verification). In order to reduce the load to the user on
combining clocks and signal values while querying the SMV model, we envisage automating
the addition of clocks to temporal formulas without them.
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