
Electronic Communications of the EASST
Volume 23 (2009)

Proceedings of the
Ninth International Workshop on

Automated Verification of Critical Systems
(AVOCS 2009)

Verification of safety requirements for program code using data
abstraction

F.P.M. Stappers and M.A. Reniers

17 pages

Guest Editor: Markus Roggenbach
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Verification of safety requirements for program code using data
abstraction

F.P.M. Stappers1 and M.A. Reniers2

1 f.p.m.stappers@tue.nl 2 m.a.reniers@tue.nl
Department of Mathematics and Computer Science, TU/e,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract: Large systems in modern development consist of many concurrent pro-
cesses. To prove safety properties formal modelling techniques are needed. When
source code is the only available documentation for deriving the system’s behaviour,
it is a difficult task to create a suitable model. Implementations of a system usually
describe behaviour in too much detail for a formal verification. Therefore automated
methods are needed that directly abstract from the implementation, but maintain
enough information for a formal system analysis.

This paper describes and illustrates a method by which systems with a high degree of
parallelism can be verified. The method consists of creating an over-approximation
of the behaviour by abstracting from the values of program variables. The derived
model, consisting of interface calls between processes, is checked for various safety
properties with the mCRL2 tool set.

Keywords: verification, safety requirements, translation, data abstraction, case study

1 Introduction

Subcontracting, buying off-the-shelf-components, and outsourcing are common in companies
that develop and build embedded systems [10, 21, 30]. These companies require high quality
and fault free components. Regrettably, when integrating components from different suppliers,
unforeseen errors occur or unexpected behaviour is encountered [25].

Since the number of components in industrial systems grow, more lines of code are needed
to control the system’s behaviour [27]. To ensure that shipped systems are fault-free, tests are
performed. Unfortunately, the absence of errors cannot be guaranteed by executing tests.

To prove the correctness of a system formal methods like model checking are needed [7]. Usu-
ally, these models are built from the available documentation. However, if a system is developed
under pressure (e.g., prototyping, limited resources, etc.) or hardly any information is available,
the implementation often becomes the main source for deriving behavioural models.

Deriving models from documentation is hard. Creating usable models from source code is
even harder. Without any abstraction techniques, the models are too big to be used for the
analysis of behavioural properties. We observe that many relevant properties can be stated in
terms of the interface calls between processes. By abstracting from internal actions, it is possible
to combat state space explosions. Nevertheless, the resulting models are still too large, because
conditions (depending on values of program variables) determine if interface calls take place.

1 / 17 Volume 23 (2009)

mailto:f.p.m.stappers@tue.nl
mailto:m.a.reniers@tue.nl

Verification of safety requirements for program code using data abstraction

In this approach we abstract from variables and assignments and therefore systematically ex-
plore every alternative for every condition. This way an over-approximation of the possible
interactions between the components is created, preserving a simulation relation [29]. The ap-
proach can be used for verifying safety requirements [19] on the interface communication in the
sense that any safety requirement that holds for the over-approximation also holds for the real
system.

The goal of this paper is to assess the feasibility of the method sketched above by means of
a case study. Since modern languages consist of many features and hierarchical structures, this
paper assumes that the source code for the control software of embedded systems is written in a
simplified concurrency programming language (SCPL, Section 3). SCPL incorporates the core
features for describing concurrent imperative programs and the constructs found in the studied
application. Note that we do not incorporate object oriented design and complex data structures
issues such as classes, inheritance and templates. We conjecture that most contemporary pro-
gramming languages can be translated to mCRL2, though this needs further investigation. We
also argue that it is possible to extend SCPL, such that it explicitly deals with communication. In
order to prove the practical value of the method it has been executed by hand on a large case study
consisting of 236 parallel threads. Based on our case study, we see no problems to automate the
method.

Programs written in SCPL are transformed to models in mCRL2 [14] for which safety require-
ments are verified. To show feasibility, the method is demonstrated on the implementation of a
controller for a printer that manufactures Printed Circuit Boards (PCBs).

This paper is structured as follows. Section 2 gives a brief introduction to the relevant frag-
ments of the language mCRL2 and the modal µ-calculus. Section 3 describes the translation
from SCPL to mCRL2 used to acquire the model for the different components. In Section 4 and
Section 5 the abstraction technique is applied on an industrial system. It describes the system
and the framework on which the case study is demonstrated. The case study demonstrates that
we were able to prove useful requirements for this complex system. Section 6 discusses related
work. Section 7 concludes with our results, discussion and future work.

2 Preliminaries

2.1 Syntax and semantics of mCRL2

An mCRL2 process is built from data-parameterised multi-actions and a collection of process
operators. In this paper, a fragment of the syntax of the un-timed mCRL2 language is used. It is
given by the following BNF:

P ::= α p P+P p P ·P p P‖P p ∂B(P) p ΓV (P) p X
α ::= τ p a(~d) p α | α

The small p indicates a choice between symbols in the expression of the BNF. In this syntax
α denotes a multi-action. A multi-action consists of actions combined by the big |. The empty
multi-action is denoted by τ . An action a(~d) consists of an action name a and possibility a
data parameter vector ~d (the syntax of which is left unspecified). A multi-action represents the
simultaneous execution of the constituent actions.

Proc. AVOCS 2009 2 / 17

ECEASST

Processes are denoted by P. For processes, + denotes non-deterministic choice, i.e., a choice
between behaviours, · denotes sequential composition, i.e., a process followed by another pro-
cess, and ‖ denotes parallel composition, i.e., the interleaved execution of both processes. The
operator ∂B blocks all actions from set B of action names, i.e., prevents the occurrence of the
specified actions. ΓV applies the communications described by the set V to a process. A com-
munication in the set V is of the form a1 | · · · | an → a. Application of ΓV to a process means
that any occurrence of the multi-action a1(~d) | · · · | an(~d) is replaced by a(~d), for any ~d. X is a
reference to a process definition of the form X = P, i.e., the process X behaves as prescribed by
P.

The semantics associated with an mCRL2 process, as used in the mCRL2 tool set, is a transi-
tion system where the transitions are labelled by multi-actions. A more elaborate description of
the syntax and (timed) semantics are given in [13, 14].

2.2 Modal µ-calculus

Modal µ-calculus formulae are used to describe behavioural properties. These properties are
then automatically verified against a behavioural model described in mCRL2. Modal formulae
are specified in a variant of the modal µ-calculus extended with regular expressions [12] and
data. The restricted fragment of the modal µ-calculus used in this paper is as follows:

φ ::= false p [ρ]φ
ρ ::= a p ρ ·ρ p ρ∗

a ::= a(~d) p ¬a(~d) p true

In this syntax, φ represents a property, ρ represents a set of sequences of actions and a rep-
resents the presence of a data parameterised action a(~d), the absence of a data parameterised
action ¬a(~d), or any given action (represented as true). The property false holds for no model.
The property [ρ]φ states the property that φ holds in all states that can be reached by a sequence
described by ρ . To describe action sequences concatenation and iteration can be used. A more
elaborate description of the µ-calculus and its semantics can be found in [5, 12].

3 Modelling the systems behaviour

Creating a model that preserves the essentials of a system, which is still useful for simulation or
verification purposes is difficult. Depending on the requirements that are to be verified, different
approaches and abstraction techniques need to be used. For large systems, the abstraction needs
to be chosen such, that these properties can still be verified. In this paper, we try to verify safety
requirements for a system, for which the behaviour is specified in more than 200 concurrent
processes. If all statements are translated without a proper abstraction, it is merely impossible
to verify properties due to the well-known state space explosion problem. Therefore a system-
atic method is required that transforms code into a useful model, appropriate for current model
checking techniques [7]. Because the requirements can be formulated in terms of interface calls
between concurrent processes, the abstraction is performed on the internal operations of the indi-
vidual processes. By abstracting from internal data (e.g., values of variables), conditions cannot

3 / 17 Volume 23 (2009)

Verification of safety requirements for program code using data abstraction

be evaluated accurately. Therefore, conditionals are replaced by non-deterministic choices be-
tween the alternatives. This creates an over-approximation of the systems behaviour, because
potentially more behaviour can happen. If a safety property holds for the over-approximation,
it must hold for the real system. On the other hand, if a safety property does not hold for the
over-approximation, it may still hold for the real system.

As indicated in the Introduction, we describe our approach in Simplified Concurrency Pro-
gramming Language (SCPL). With SCPL it is possible to specify a parallel program, because it
has a notion of concurrency. The syntax of SCPL is described by the following BNF:

〈program〉 ::= 〈program〉 〈process〉 p 〈process〉
〈process〉 ::= proc C = 〈statement〉 return
〈statement〉 ::= call N p x := e p 〈statement〉;〈statement〉 p

if b then 〈statement〉 else 〈statement〉 fi p
while b do 〈statement〉 od p do 〈statement〉 od p
suspend p resume N

A program consists of at least one process. A process consists of a unique identifier, the
process identifier, and a body: a process with process identifier C and body of statements S is
specified by means of proc C = S return. It is assumed that each program contains a process with
process identifier init that represents the process that is to be activated initially. The body of a
process consists of statements that denote calls to other processes call N (where N is a non-empty
set of process identifiers), multi-assignments x := e, sequential compositions S;S′, conditionals
if b then S else S′ fi, the (in)finite repetitions while b do S od and do S od; and statements
suspend and resume N for the suspension and the continuation of (sets of) processes.

We do not present a formal semantics of this language, because these programming constructs
are relatively well-known. An informal semantics is given in the upcoming sections.

3.1 Translation Scheme

The translation function A takes a program written in SCPL and produces an mCRL2 spec-
ification, i.e., a tuple consisting of an initial process in mCRL2 and a set of mCRL2 process
equations. For each process with identifier C in the SCPL program, there exists a process equa-
tion defining the recursion variable XC in mCRL2. In the translation the following actions are
used

• Starts(C) denotes a request for starting process C;

• Startr(C) denotes acceptance of the request for starting process C (by process C);

• Dones(C) denotes the return of process C (by C);

• Doner(C) denotes notification of termination for a run of process C;

• Suspends(C) denotes the suspension of process C. If a process gets suspended the calling
process interprets the suspend signal as the relevant part of the process is finished and the
calling process can continue;

Proc. AVOCS 2009 4 / 17

ECEASST

• Resumer(C) denotes the acceptance of the request to resume process C;

• Resumes(C) denotes the request to resume process C that is suspended.

Start, Done, Suspend and Resume denote the synchronizing actions between corresponding
requests, which will be explained later in this section.

Assuming that the name of the initial procedure is init, the translation function A is defined
as:

A (p1 · · · pk) = (∂Bl(ΓE(ΓB(Starts(init) ·Doner(init)‖ (
∥∥

C∈PD
XC)))),

⋃k
i=1A

′
χi
(pi))

where

• Bl = {Starts,Startr,Dones,Doner,Resumes,Resumer,Suspends} denotes the set of blocked
actions;

• B = {Starts | Startr→ Start, Dones | Doner→ Done} denotes primitive communications;

• E = {Suspends | Doner→ Suspend, Resumes | Resumer→ Resume} denotes the set of ad-
ditional communications;

•
∥∥

j∈J X j describes the processes running in parallel and is recursively defined as:

∥∥
j∈ /0 X j = τ,

∥∥
j∈J∪{k} X j = Xk ‖

(∥∥
j∈J\{k} X j

)
;

• the sets χi of process identifiers are pairwise disjoint and are disjoint from the set of recur-
sion variables used to capture the processes defined within the program;

• A ′ denotes the translation function for processes which is defined in the rest of this section.

The encapsulation operator ∂Bl and communication operators ΓE and ΓB are applied to the
parallel composition of the processes to synchronize successful interface calls between processes
and to block individual non-successful interface calls. The different local communication oper-
ators ΓE and ΓB are required to guarantee unique solutions. For example, Γ{a|b→c,a|d→e}(a|b|d)
has multiple outcomes, namely c|d and e|b.

Each process of the program is associated with at least one mCRL2 process equation by means
of the translation function A ′

χi
: one of these corresponds to the translated process, while the

others are introduced to capture repetitions in the body of a process. To ensure that the introduced
recursion variables differ from other recursion variables, the translation function is parameterized
by a set of recursion variables χi that are free to be used and are chosen sufficiently large.

We assume that the initialization process init can only be called from outside the system.

3.2 Processes

Processes decompose the system’s functionality into smaller manageable parts, where each pro-
cess carries out a specific task. If a task is too complex for a single process it is often refined
by invoking other more basic processes. The behaviour of a process can be implemented as a

5 / 17 Volume 23 (2009)

Verification of safety requirements for program code using data abstraction

function, subroutine, procedure or some functional behaviour. The behaviour of an individual
process is defined by statements placed in some order.

Let proc C = S return denote the implementation of a process, where C defines the process
identifier and S defines the control flow and data transformations. A process can be invoked by
using a call and when the process completes the set of tasks it will notify the calling process with
a return.

In SCPL all processes that can be addressed are defined in the program. A process is either
busy (by performing tasks) or idle. A busy process can become temporarily idle, until another
process addresses the suspended process to continue. For processes that not have been suspended
(e.g., are idle), the resume will not activate the execution of a process (e.g., the process stays idle).
The translation function for a process is denoted by A ′

χ , where χ denotes the set of available
recursion variables. The translation function for process identifier C and statement S is given by:

A ′
χ(proc C = S return) =

{
XC = Startr(C) · tp ·Dones(C) ·XC

+ Resumer(C) ·Dones(C) ·XC

}
∪Ep

where (tp,Ep) = A ′′
χ,C(s) and A ′′

χ,C is the translation function for statements as defined in the
following subsection. The first summand of the equation specifies the starting of the process.
The second summand is used to reflect the call for resuming an idle process. The translation
function is parameterised by the identifier C of the process that is being translated. This identifier
is later used to notify that a process is suspended.

3.3 Statements

In this subsection the transformation A ′′
χ,C of statements is discussed. Let p and q denote state-

ments and b a Boolean expression.

Interface calls An interface call contains a non-empty set of process identifiers. If the set con-
tains one element, it behaves as a call to a single process. If the set contains more elements, it
behaves like a call to multiple process, which need to be executed concurrently. A call simulta-
neously enables the start of the processes referred to in the set N. Processes can only be started
if they are idle. If a call is addressed to a busy process, the call is postponed until the process
becomes idle after completing the current task entirely. For processes that are temporarily idle
the call is also postponed. A process that performs a call, resumes after all called processes have
either suspended or completed their tasks. The interface call statement is translated as follows:

A ′′
χ,C(call N) =

(
|n∈NStarts(n) · |n∈NDoner(n),∅

)
where |n∈N α(n) is inductively defined as:

|n∈∅ α(n) = τ, |n∈N∪{k} α(n) = α(k) | |n∈N\{k} α(n).

Since there is no need to introduce additional process equations, the second element is empty.

Proc. AVOCS 2009 6 / 17

ECEASST

Assignments The multi-assignment statement x := e defines the atomic value update for the
variables x1, . . . ,xn with the values of e1, . . . ,en. As discussed earlier, we choose to abstract from
variables and the assignments to those. A multi-assignment is translated as follows:

A ′′
χ,C(x := e) = (τ,∅)

where the assignment itself is translated to an internal non-observable action; there is no need
for additional process equations.

Sequential composition Almost every imperative programming language allows the execution
of statements in a sequential order. It is evident, that the control flow depends on the sequential
order and needs to be preserved. The translation for the sequential composition is as follows:

A ′′
χ,C(p ; q) = (A ′′

φ ,C(p) ·A ′′
ψ,C(q),Ep∪Eq)

where φ and ψ are sets of recursion variables such that φ ∩ψ = /0 and φ ∪ψ ⊆ χ . These sets
can always be chosen large enough to allow for the subsequent translations to have enough fresh
recursion variables available. Take for example the set of recursion variables that contains a
unique variable for each loop.

Conditionals The evaluation of a conditional depends on the values of variables. By abstract-
ing from the values of variables, it is impossible to determine the outcome of a condition. There-
fore, conditionals are modelled as non-deterministic choices. The conditional statement is trans-
lated as follows:

A ′′
χ,C(if b then p else q fi) = (A ′′

φ ,C(p)+A ′′
ψ,C(q),Ep∪Eq)

where φ and ψ are sets of recursion variables such that φ ∩ψ = /0 and φ ∪ψ ⊆ χ . These sets
can always be chosen large enough to allow for the subsequent translations to have enough fresh
recursion variables available.

Loops Loops are used to repeat statements that need to be carried out several times in succes-
sion. Loops are either used for computational purposes (for which they need to be finite) or for
controlling the control flow (possibly infinite).

Loops are modelled by means of recursion variables. If a control loop is finite, it has a condi-
tion which determines whether or not to abort the loop. Such a conditional choice is modelled as
a non-deterministic choice (as is the case for conditionals). Of course, for infinite loops, there is
no reason to introduce such non-determinism.

The reason for having infinite loops in SCPL is that virtually all systems have a part that needs
to run continuously during executing and for which it is not possible to abort this process. In
these circumstances it must not be possible to end the control flow. An infinite loop and a finite
loop are translated as follows:

A ′′
χ,C(do p od) = (Y,{ Y = tp ·Y}∪Ep)

A ′′
χ,C(while b do p od) = (Y,{ Y = tp ·Y + τ}∪Ep)

7 / 17 Volume 23 (2009)

Verification of safety requirements for program code using data abstraction

where Y denotes a fresh recursion variable from χ , and tp and Ep are defined as (tp,Ep) =
A ′′

χ\{Y},C(p). Note that an additional τ is required for a finite loop to make a non-deterministic
choice between loop continuation or loop termination.

Processes suspension If a system runs multiple parallel processes, it is often desired to suspend
the execution of a process before it may proceed. For this reason SCPL has a statement that
suspends a process.

A ′′
χ,C(suspend) = (Suspends(C) ·Resumer(C),∅).

Process continuation Processes that are suspended become (temporarily) idle, until another
process requires the continuation. SCPL offers a solution, that enables the continuation of a
suspended processes by means of a resume statement. Note, that when a process is idle (after
completing a task), it cannot be resumed or started by a resume. As for interface calls, multiple
processes can be resumed (concurrently) by a single resume. The resume statement is translated
as follows:

A ′′
χ,C(resume N) =

(
|n∈N Resumes(n) · |n∈N Doner(n),∅

)
.

To illustrate the translation, consider the following example.

Example 1 (Translation by example) Consider a system with two concurrent processes init and
P. Process P has two computational parts, that should be suspended in between. init calls P and
waits until P finishes the first computational part. When finished, the init process resumes P in
order to execute the second part.

proc init = call P; proc P = b:= true;
resume P suspend;
return b := false

return

After applying the transformation we obtain the following mCRL2 specification:

Xinit = Startr(init) ·Starts(P) ·Doner(P) ·Resumes(P) ·Doner(P) ·Dones(init) ·Xinit

+ Resumer(init) ·Dones(init) ·Xinit

XP = Startr(P) · τ ·Suspends(P) ·Resumer(P) · τ ·Dones(P) ·XP

+ Resumer(P) ·Dones(P) ·XP

with the following initialization:

∂Bl(ΓE(ΓB(Starts(init) ·Doner(init)‖Xinit ‖XP))).

The corresponding labelled transition system is depicted below:

Start(init) Start(P) τ Suspend(P) Resume(P) τ Done(P) Done(init)

Proc. AVOCS 2009 8 / 17

ECEASST

4 Industrial application

To test the approach, it is applied on an industrial system, called “Lunaris” [26]. The Lunaris is
an Etch Resist Printer, intended to operate in the manufacturing of printed circuit boards (PCBs).
In current PCB production processes, the substrate is laminated with a photo resist and using a
lithographic process the desired photo mask is created on the substrate. With the development
of the Lunaris, it is possible to skip the expensive task of creating the mask that is required for
illuminating the photo resist. By directly printing the resist in the desired pattern, it is possible
to create customized and individual PCBs at lower costs.

This prototype printer has been developed for one year and has been extensively tested within
this period. While the system has many physical components, we limit ourselves to verify be-
havioural system requirements at the level of the controller. At controller level, the Lunaris
consists of 245 multi-threaded tasks (running in parallel) that are implemented in C# [1]. The
tasks specify behaviour for amongst others printing, movement of physical components, logging
and error handling. In total 170.000 lines of code are needed to implement the behaviour. The
code is distributed over 120 classes in 40 files.

Translating the code to mCRL2 directly is possible, however this will make any exhaustive ver-
ification technique useless. A brief analysis shows that more than 101000 transitions are needed,
if we want to incorporate all behaviour. For this reason we apply the abstraction techniques
proposed in Section 3.

The Lunaris has 7 different axes over which mechanical components move. The areas in which
they operate overlap each other. If two such mechanical components operate in the same area
they may collide and cause damage to the system. By means of special rules in the controller
this should be prevented.

The controller must be defined by using a predefined set of tasks. In turn, these tasks can
execute other tasks, which are not directly available to the controller. Since we do not have
access to the implementation of the controller, we allow the predefined tasks to be executed in
arbitrary order, when performing the verification.

Different tasks run in parallel, but it is not possible to run the same task simultaneously mul-
tiple times. Every task belongs to a certain activity type, e.g., logging, error handling, time
delaying, ignore errors, operate hardware, etc.

The tasks are called via a master-slave protocol. A task is a master if the task itself requests
execution of another task. A task is a slave if another task requests its execution. We assume
that the communication takes place over non-lossy channels. The following message types are
communicated between tasks:

Start A Master wants to start a task on a slave.

Done A Slave indicates that a task has been successfully terminated.

Resume A Master wants to resume a task on a slave.

Suspend A Slave suspends the current process and notifies the master.

By means of several simplifications we obtain processes described in SCPL from the C# code
for tasks. First, we only consider the tasks that are relevant for manufacturing a product. There-
fore, nodes that are exclusively used for logging and error-handling local to components are

9 / 17 Volume 23 (2009)

Verification of safety requirements for program code using data abstraction

excluded. This can be decided based on the activity types of the tasks. Second, we only consider
“good weather” behaviour. “Good weather” behaviour is the assumption that the components
behave without faults. This means that a printhead is not broken, the system prints when it is
supposed to, communication channels are not lossy, etc. Third, we assume that protocols used
for communication are handled correctly by the framework and the embedded software is im-
plemented according to the specification. For this reason we do not have to specify and verify
the software that provides the communication or the software on the embedded systems. Fourth,
the execution of a task requires a certain amount of time. We decide not to model time aspects.
This way, we prove that the correctness of the controller is not affected by performance. Note
that this decisions prohibits us to verify performance properties. Fifth, for the initialization we
assume the system is turned off and all components are positioned such that they reside in their
initial position. Finally, we apply a pre-processing step to the classes. We know for every class
the number of objects it produces. Therefore we can transform the object oriented program into
a procedural multi-threaded program.

After these simplifications, we obtain 236 single threaded process, running in parallel. Based
on their type of behaviour, the task templates can be decomposed into “execute tasks” and
“switch tasks.”

4.1 Execute Tasks

An execute task is a task that is executed once. An example of an execute task is moving the
printhead device to a given position. When started, an execute task automatically completes after
a finite amount of processing time.

The semantic structure of an execute task becomes as the hierarchical state machine depicted
in Figure 1. A sub-task is indicated by a rectangle. Single lined boxes indicate that the sub task
consists of a single state. Double lined boxes indicate that the sub task is a hierarchical state
machine, which can send and receive different types of calls.

Idle Executing

Start/-

-/Done

Idle Executing

EnabledStopping

Resume/- Start/-

-/Suspend

Resume/-

-/Done

Figure 1: State diagrams of an Execute Task and Switch Task

The behaviour of an execute task with identifier C can be mapped to a process of the form:

proc C = “Executing” return

Proc. AVOCS 2009 10 / 17

ECEASST

4.2 Switch Task

A switch task is a task that whenever started, needs to be stopped explicitly. Switch tasks are
often used to enable hardware components (e.g., to enable controllers if the system reaches a
certain run-level).

If a switch task is invoked, it first executes some behaviour, after which it comes into a stable
enabled state. There it waits, until it receives an external signal to resume and finalize the task.
Tasks that call a switch task, continue after the called switch task reaches the stable enabled state.

A switch task can be mapped to the hierarchical state machine depicted in the right of Figure 1.
The behaviour of a switch task with identifier C is mapped to a process of the form:

proc C = “Executing”; suspend; “Stopping” return

5 Verification of framework properties

To validate that the technique can be used to verify safety requirements, this section discusses
the requirements that have been verified with the help of the obtained mCRL2 specification. The
actions used in the formulae are obtained from the mCRL2 specification.

To ensure correct behaviour, safety rules are formulated for the architecture. A safety rule is
a condition that may not be violated by the execution of an action. The Lunaris has two kinds
of safety rules. The first set consists of eight rules which represents warnings. If such a rule is
violated, the system will raise a warning, but will continue to operate. These safety requirements
are of the form: The “Switch Task (ST)” must be running if the “Execute Task (ET)” is executed.
Such properties are expressed by the following formulae template:

• An execute task ET may not be started before the switch task ST is “Enabled:”

[(¬Suspend(ST))∗ ·Start(ET)]false
∧ [true∗ ·Start(ST) · (¬Suspend(ST))∗ ·Start(ET)]false

• An execute task ET may not be stopped after the switch task ST is being stopped:

[true∗ ·Start(ET) · (¬Done(ET))∗ ·Resume(ST)]false
∧ [true∗ ·Start(ET) · (¬Done(ET))∗ ·Done(ST)]false

The analysis shows that three of the eight safety rules are superfluous, i.e., a warning can not
arise in any behaviour of the system (and hence do not occur if the controller implementation is
without any flaws).

The second class of rules consists of 30 safety properties which only allow the execution of
a task (T), if it is safe to do so. These tasks involve the movement of the printhead calibration
system or shuttle. Since they physically operate in each other’s workspace, it is possible that the
system can incur physical damage if such a safety property is violated. As a result the system
halts, if a rule is violated. To verify that the rules are valid throughout execution, temporal
logic formulae of the conjunction of the following forms have been constructed (S, T , and U are
actions),

[true∗ ·S · (¬T)∗ ·U]false

11 / 17 Volume 23 (2009)

Verification of safety requirements for program code using data abstraction

where T is the task that may not be executed between tasks S and U .
All of the formulae have been checked and four requirements are violated in the model. Since

the verification has been performed with a controller that is in no way restricted, the controller
should contain restricted behaviour (e.g., should never perform tasks in a certain order) in order
to rule out the requirement violations.

Translating the code by hand to the model, has been achieved by taking incremental steps
that add more and more involved C#-files until we obtained a model without any deadlocks.
If a deadlock was encountered in the model, it meant that the model was incomplete, e.g., a
communication between interfaces was missing.

In order to verify temporal formulae the specification is linearised to a linearised process
specification. For all the requirements, this linearisation step has been executed just once. This
took approximately 53 minutes on a computer with an Intelr Pentiumr D930 processor and 2
Gb RAM running Linux. The subsequent verification for a single requirement took less than 15
minutes.

6 Related work

To determine if a system is free from programming bugs, inconsistencies, run-time errors, or
non-portable constructs various tools like LINT [9, 17], POLYSPACE [16], and QA-C++ [24]
can act as an extension to standard debuggers. When it comes to the verification of dynamic
properties (deadlocks, unexpected behaviour) tools like Java PathFinder [23] or StEAM [20] can
be used. These tools use a virtual machine in which models are translated to byte code, and
executed afterwards to verify properties. Unfortunately, the size of the code is related to the
underlying state space that needs to be explored, e.g., it becomes harder, or even impossible to
verify dynamic safety properties. As stated by Java PathFinder: “While software model checking
in theory sounds like a safe and robust verification method, reality shows that it does not scale
well.”

One can argue that the work presented here is comparable to the theory of abstract interpreta-
tion. In abstract interpretation [22], abstract values are chosen for variables. Behavioural models
obtained via this approach depend on the (initial) values of data variables. Consequently, it re-
quires manipulation of the data variables. For relatively small systems, this method is fruitful.
However, for larger systems, this may lead to a state space explosion, due to the number of paral-
lel processes combined with the number of possible abstract data values. In order to verify larger
systems, either a more coarse grained abstraction is required (thereby losing information) as we
do in this paper or state space reduction techniques (symmetry reduction, bisimulation reduc-
tion, etc.) need to be applied. Since almost every thread specifies unique behaviour, we could
not benefit greatly from symmetry reduction. The application of bisimulation reduction tech-
niques requires the generation of the underlying state space. Without any abstraction techniques,
the approximated size of the state space should roughly be 101000 states.

Work related to our method can also be found in the Bandera tool set [8]. The Bandera tool
set translates Java source code to a model, which is used to verify properties about the system by
model checking techniques. Unfortunately, large (software) systems lead to state spaces that are
beyond today’s computational power. The Bandera tool set itself, only accepts closed code. For

Proc. AVOCS 2009 12 / 17

ECEASST

this reason the system needs to be complete before it can be verified. With help of extensions it
is possible to verify open systems (e.g., an environment generator for Bandera [28]), but it still
requires a full and correct implementation of a source code unit. Since our method abstracts
from variables we can deal with partly implemented units and code skeletons.

The author of [18] presents a way for checking component behaviour compatibility, written in
behaviour protocols and checked with the Spin model checker afterwards. Using LTL formulae,
they manage to verify properties on a well documented system of 20 components. In our case
study we tackled a bigger system running 230 concurrent processes, and performed a success-
ful verification with a different tool set. Next to that the semantics of our components differs:
we cope with processes that can be suspended and need to be resumed afterwards, while the
components mentioned in [18] do not facilitate this mechanism.

Work presented in [15] shows a method for directly deriving a Promela specification from C
code. This technique creates for every command a corresponding action in a Promela specifica-
tion. In [31] another approach is taken with Promela. Here experiments are conducted with a
virtual machine based approach for state space generation. By evaluating the byte-code language,
they provide a way to efficiently execute operational semantics for modelling and programming
languages. Undoubtedly, these techniques perform well on small toy examples for examining
specific code constructs. However when changing the scope from specific code constructs to the
control flow for examining larger concurrent systems, more rigorous techniques are required. In
that sense, the method described in this paper can be viewed as an extension to their techniques.

Notice that our work shares resemblance with SLAM by Ball et al. [3]. One of the SLAM
approaches is based on refining the abstractions (in order to rule out spurious counter-examples),
and turns software implementations into boolean programs [2]. The basic idea is to leave out
data initially, and include it when needed later on. Data that is included in the refinement applies
to variables that are used in conditions. With help of a theorem prover and additional iterations
for refinement the SLAM method tries to determine if it can solve the equations, thereby ter-
minating the loop. In rare cases, it is possible that the theorem prover used by SLAM cannot
solve the equations, which leads to a non-terminating algorithm. Consequently, verifying safety
requirements becomes impossible. Our method does not use a theorem prover. If variables of a
loop condition can change their values we assume that the condition eventually is violated, by
which the loop terminates.

Counterexample-Guided Abstraction Refinement (CEGAR) (see [6]) is an automatic iterative
abstraction-refinement methodology for which a datapath abstraction results in an approximation
of the original design, i.e., if the approximation turns out to be too coarse, the approximation is
automatically refined up to a point for which it can either generate a counter example or disprove
it. While this technique is adaptive, our method is not. Therefore our approach can be seen as an
instantiation of a first time right for CEGAR.

In D-Finder [4], a compositional method for checking invariance properties is presented. The
basis of the method is an algorithm that iteratively computes invariants of components until they
are strong enough to imply a global invariant that needs to be checked. In contrast with our
method, where an over-approximation of the model is obtained, the method used in D-finder
over-approximates the local properties of the components.

Another approach related to ours, can be found in VeriSoft [11]. Their approach consists of
a systematic exploration of a state space by executing arbitrary code written in any language.

13 / 17 Volume 23 (2009)

Verification of safety requirements for program code using data abstraction

They guarantee complete state space coverage up to some depth, hence a partial state space
exploration. Consequently, this only guarantees safety properties up to a certain depth/bound
and not for the entire system.

Another related approach is program slicing [32]. This technique selects parts of the source
code which are of interest to the values of specific variables. Our approach takes this to the
extreme, by abstracting from all the variables and focus on calls between interfaces. Perhaps the
technique of program slicing could also have been instrumental in abstracting from less relevant
aspects of the model such as the logging of events.

7 Concluding remarks

In this paper, we have shown how safety properties can be verified for complex systems con-
sisting of over more than 200 processes running in parallel. In particular, we have proposed a
procedure for translating code specifying behaviour into mCRL2, with the help of an intermedi-
ate programming language preserving a simulation relation. Although we explicit mention the
use of mCRL2 model checker, this method can also be incorporated by other model checkers.

The smallest state space that we were able to derive from the model consisted of 76256 unique
states and 253145 transitions for 236 tasks running in parallel. The rather small amount of states
results from the dependencies between the mutual nodes.

In this paper, the method is described in terms of a general programming language SCPL and
modelling language mCRL2. In principle, the method can be used in combination with many
implementation languages (C, C++, C#, Pascal, Delphi, Java . . .) and verification languages that
have similar constructs for describing behaviour such as synchronized communication, sorts to
encode different processes and non-determinism. The semantics-preserving translation of a real-
life programming language to mCRL2 is considered future work.

Another possibility for future work is to add resources in the model e.g., time to complete a
task, power consumption or the network traffic weight. By adding these it is possible to check
whether the model exceeds maximal outer limits or claim more resources than available.

Future research can be conducted in the area of model refinement. If a safety property does
not hold, it might be that the property is violated as a result of the over-approximation. The
same holds for a liveness property that is fulfilled. To determine if these are artifacts the relevant
conditions and variables need to be incorporated in the model. While this is feasible to do by
hand for small systems, it is impossible for industrial sized systems. Therefore automatic model
refinement, may be included in future research activities.

Finally, we are considering to study the over-approximation technique in isolation. For this
approach, existing mCRL2 models that depend on data and for which the requirements are ex-
pressed independently of the data may be considered. On such models we may conduct ex-
periments that indicate whether applying the abstraction technique from this paper significantly
reduces the number of states and whether this helps in verifying requirements.

Acknowledgements This work is supported as part of the ITEA project Twins 05004. We
would like to thank NBG Industrial Automation for the opportunity to conduct the experiments
on the Lunaris, Muck van Weerdenburg for his assistance in obtaining the temporal formulae,

Proc. AVOCS 2009 14 / 17

ECEASST

and the reviewers for their constructive suggestions and valuable contributions.

Bibliography

[1] Tom Archer and Andrew Whitechapel. Inside C#. Pro-Developer Series. Microsoft Press,
second edition edition, 2002.

[2] Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker for boolean
programs. In Klaus Havelund, John Penix, and Willem Visser, editors, Proceedings of
the 7th International SPIN Workshop on SPIN Model Checking and Software Verification
(SPIN’00), Stanford, CA, USA, volume 1885 of LNCS, pages 113–130. Springer, 2000.

[3] Thomas Ball and Sriram K. Rajamani. Automatically validating temporal safety properties
of interfaces. In Matthew B. Dwyer, editor, Proceedings of the 8th international SPIN
workshop on Model Checking Software (SPIN’01), Toronto, Ontario, Canada, volume 2057
of LNCS, pages 103–122. Springer, 2001.

[4] Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, and Joseph Sifakis. D-finder: A
tool for compositional deadlock detection and verification. In Ahmed Bouajjani and Oded
Maler, editors, Proceedings of the 21st International Conference on Computer Aided Ver-
ification (CAV 2009), Grenoble, France, volume 5643 of LNCS, pages 614–619. Springer,
2009.

[5] Julian Charles Bradfield. Verifying Temporal Properties of Systems. Progress in Theoretical
Computer Science. Birkhäuser, 1992.

[6] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. Journal of
the ACM, 50(5):752–794, 2003.

[7] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press,
2000.

[8] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S. Pasareanu,
Robby, and Hongjun Zheng. Bandera: extracting finite-state models from Java source code.
In Proceedings of the 22nd international conference on Software engineering (ICSE 2000),
Limerick, Ireland, pages 439–448, 2000.

[9] Ian F. Darwin. Checking C programs with Lint. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, 1988.

[10] G. Reza Djavanshir. Surveying the risks and benefits of it outsourcing. IT Professional,
7(6):32–37, 2005.

[11] Patrice Godefroid. Model checking for programming languages using Verisoft. In Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of Programming
Languages (POPL’97), Paris, France, pages 174–186. ACM Press, 1997.

15 / 17 Volume 23 (2009)

Verification of safety requirements for program code using data abstraction

[12] Jan Friso Groote and Radu Mateescu. Verification of temporal properties of processes in
a setting with data. In Armando Martin Haeberer, editor, Proceedings of the 7th Inter-
national Conference on Algebraic Methodology and Software Technology (AMAST 1998),
Amazonia, Brasil, volume 1548 of LNCS, pages 74–90. Springer, 1999.

[13] Jan Friso Groote, Aad Mathijssen, Michel Reniers, Yaroslav Usenko, and Muck van Weer-
denburg. The formal specification language mCRL2. In Ed Brinksma, David Harel, Ange-
lika Mader, Perdita Stevens, and Roel Wieringa, editors, Methods for Modelling Software
Systems (MMOSS), number 06351 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany,
2007. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany.

[14] Jan Friso Groote, Aad H.J. Mathijssen, Michel A. Reniers, Yaroslav S. Usenko, and Muck J.
van Weerdenburg. Analysis of distributed systems with mCRL2. In M. Alexander and
W. Gardner, editors, Process Algebra for Parallel and Distributed Processing, chapter 4,
pages 99–128. Taylor & Francis Group, 2009.

[15] Gerard J. Holzmann. From code to models. In Proceedings of the Second International
Conference on Application of Concurrency to System Design (ACSD 2001), Newcastle upon
Tyne, UK, pages 3–10. IEEE Computer Society Press, 2001.

[16] PolySpace Inc. Polyspace verification toolsuite. http://www.polyspace.com.

[17] Stephen Curtis Johnson. Lint, a C program checker. Technical Report Comp. Sci. Tech.
Rep. 65, Bell Laboratories, 1978.

[18] Jan Kofron. Checking software component behavior using behavior protocols and SPIN.
In Yookun Cho, Roger L. Wainwright, Hisham Haddad, Sung Y. Shin, and Yong Wan Koo,
editors, Proceedings of the 2007 ACM Symposium on Applied Computing (SAC’07), Seoul,
Korea, pages 1513–1517. ACM Press, 2007.

[19] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on
Software Engineering, 3(2):125–143, 1977.

[20] Peter Leven, Tilman Mehler, and Stefan Edelkamp. Directed error detection in C++ with
the assembly-level model checker StEAM. In Susanne Graf and Laurent Mounier, editors,
Proceedings of the 11th International SPIN Workshop on Model Checking Software (SPIN),
Barcelona, Spain, volume 2989 of LNCS, pages 39–56. Springer, 2004.

[21] Sesh Murthy, Rama Akkiraju, Richard Goodwin, Pinar Keskinocak, John Rachlin, Freder-
ick Wu, James Yeh, Robert Fuhrer, Santhosh Kumaran, Alok Aggarwal, Martin Sturzen-
becker, Ranga Jayaraman, Robert Daigle, and Jan A. Van Mieghem. Coordinating invest-
ment, production, and subcontracting. Manage. Sci., 45(7):954–971, 1999.

[22] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Analysis.
Springer, 1999.

[23] Java PathFinder, August 2008. http://javapathfinder.sourceforge.net.

Proc. AVOCS 2009 16 / 17

ECEASST

[24] PRQA. QA-C++ toolsuite. http://www.programmingresearch.com/.

[25] C.V. Ramamoorthy, C. Chandra, H.G. Kim, Y.C. Shim, and V. Vij. Systems integration:
problems and approaches. In Proceedings of the Second International Conference onSys-
tems Integration (ICSI’92), Morristown, NJ, USA, pages 522–529, 1992.

[26] Nieke Roos. Océ geeft aanzet tot open innovatie in inkjet, August 2007. Mechatronica
Magazine.

[27] D.P. Siewiorek, R. Chillarege, and Z.T. Kalbarczyk. Reflections on industry trends and
experimental research in dependability. IEEE Transactions on Dependable and Secure
Computing, 1(2):109–127, April-June 2004.

[28] Oksana Tkachuk, Matthew B. Dwyer, and Corina S. Pasareanu. Automated environment
generation for software model checking. In Proceedings of the 18th IEEE International
Conference on Automated Software Engineering (ASE 2003), Montreal, Canada, pages
116–129. IEEE Computer Society Press, 2003.

[29] Rob J. van Glabbeek and Ursula Goltz. Equivalence notions for concurrent systems and
refinement of actions (extended abstract). In Antoni Kreczmar and Grazyna Mirkowska,
editors, Proceedings of Mathematical Foundations of Computer Science 1989 (MFCS’89),
Porabka-Kozubnik, Poland, volume 379 of LNCS, pages 237–248. Springer, 1989.

[30] Joost van Lier, Inneke Van Nieuwenhuyse, Liesje De Boeck, Ton Dohmen, Nico Vandaele,
and Marc Lambrecht. Benefits management and strategic alignment in an IT outsourcing
context. In Proceedings of the 40th Hawaii International International Conference on
Systems Science (HICSS-40 2007), Waikoloa, Big Island, HI, USA. IEEE Computer Society
Press, 2007.

[31] M. Weber. An embeddable virtual machine for state space generation. In D. Bosnacki and
S. Edelkamp, editors, Proceedings of the 14th International SPIN Workshop on Model
Checking Software (SPIN), Berlin, Germany, volume 4595 of LNCS, pages 168–186.
Springer, 2007.

[32] Mark Weiser. Program slicing. In Proceedings of the 5th International Conference on
Software Engineering (ICSE’81), San Diego, CA, USA, pages 439–449. IEEE Computer
Society Press, 1981.

17 / 17 Volume 23 (2009)

	Introduction
	Preliminaries
	Syntax and semantics of mCRL2
	Modal -calculus

	Modelling the systems behaviour
	Translation Scheme
	Processes
	Statements

	Industrial application
	Execute Tasks
	Switch Task

	Verification of framework properties
	Related work
	Concluding remarks

