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A workbench for preprocessor design and evaluation:
toward benchmarks for parity games

Michael Huth, Nir Piterman, and Huaxin Wang

Department of Computing, Imperial College London

Abstract: We describe a prototype workbench for the study of parity games and
their solvers. This workbench is aimed at facilitating two activities: to aid in the
design, validation, and evaluation of preprocessors for parity game solvers; and to
aid in the generation of benchmark parity games that are meaningful for a wide
range of solvers. Our workbench allows for easy composition of preprocessors,
can populate databases with games and their meta-data, offers a query language for
generating games of interest, and has already found potentially hard games.
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1 Introduction

Parity games are determined 2-player games with memoryless winning strategies. These games
are of fundamental interest in formal verification. Their natural decision problem, whether a
particular node is won by a particular player, is equivalent to that of local model checking for the
modal mu-calculus (whether a state s in a Kripke structure satisfies formula φ ) [Sti95]. There-
fore, any algorithm for solving parity games (referred to as “solver” subsequently) can serve as a
model checker for the modal mu-calculus. Also, these decision problems therefore have the ex-
act same complexity – whose determination is a longstanding open problem with the best known
upper bound being UP∩ coUP [Jur98]. Parity games (often referred to simply as “games” sub-
sequently) have applications beyond model checking, e.g., in the synthesis of reactive systems
from specifications [PR89] and in the determinization of automata [MS95]. Thus the design and
evaluation of solvers is an important activity with impact beyond the area of model checking.

Formally, a parity game G is a pair ((VG,EG),χG) where (VG,EG) is a directed graph1 (the
game graph of G) such that VG is partioned by finite sets V G

0 and V G
1 of nodes owned by player 0

and 1, respectively; and χG : VG→{0,1, . . .} assigns colors χG(v) < ∞ to nodes.
We now explain how these games are played. A play in game G starts at some node v in VG.

The player who owns v then chooses some v′ with (v,v′) in EG as next node. The play continues
from v′ in the same manner and thus generates an infinite sequence of nodes (as our game graphs
have no deadlocks). Now consider the largest color k of those nodes that occur in that sequence
infinitely often. If k is even, player 0 wins that play, otherwise player 1 wins it. A strategy
for player σ is a partial function π from V G

σ into VG such that (v,π(v)) ∈ EG whenever π(v) is
defined. A play is consistent with strategy π if all choices made by player σ in that play are
made according to π . Strategy π is winning at node v (for player σ ) if all plays beginning in v

1 Without loss of generality, we assume that there is no v in VG with (v,v) ∈ EG (no self-loops), and that for all w in
VG there is some w′ with (w,w′) in EG (no deadlocks).
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Figure 1: An 8-node parity game with 9 edges, and its solution. Nodes have canonical names,
e.g. v0. Squared nodes are owned by player 1, circled ones are owned by player 0. Colors χG(v)
are written within square brackets in nodes. All nodes are won by player 1, and so the solution
consists only of her strategy, indicated by boldface edges.

and consistent with π are won by player σ . A central, well-known result is that each parity game
G has a partition W0 and W1 of VG and both players σ have strategies πσ winning for all nodes in
Wσ (see e.g. [Zie98]). Winning regions and winning strategies constitute a solution of that game.

Figure 1 shows a very simple parity game. Throughout the paper square nodes (set V G
1 ) are

owned by player 1, circled nodes (set V G
0 ) are owned by player 0. The color χG(v) is written

within node v in square brackets. Nodes have canonical names v0, v1, etc. Edges display EG.
Nodes colored green are won by player 0 (there are none in this game), nodes colored red are
won by player 1. Boldface edges incidate moves of winning strategies. The winning strategy for
player 1 moves to node v4 whenever it can. Otherwise, it moves to v7 or to v3, which it owns
and from which it can move to v7. This strategy is winning for all nodes since it traps player 0
into cycles through v4, all of which player 0 loses.

The parity game in Figure 6(B) shows a non-trivial partition into winning regions. Player 0
wins nodes v2, v4, and v7 whereas player 1 wins all other nodes.

Solvers partition, on input game G, set VG into nodes won by player 0 and 1, respectively; and
supply winning strategies for those winning regions. Existing solvers may be sub-exponential in
the number of nodes (e.g. [JPZ08]) but they either have exponential worst-case running times in
the index of the game G (the largest color in G plus 1: index(G) = 1 + maxv∈VG χG(v)) or it is
not known whether they have polynomial running time. Given two solvers, it is not at all clear
how to compare them. The worst-case input for one solver, e.g., may well be trivial as input
for the other solver. And comparing solvers on a set of games is only meaningful in as much as
these games can be claimed to be hard to solve for any solver. This situation is reminiscent to
that of SAT solvers, where one has a set of benchmarks (formulae of propositional logic) whose
satisfiability checks are known to be challenging for existing SAT solvers – e.g. a propositional
logic encoding of an elementary pigeon hole principle, that n pigeons cannot be placed into n−1
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pigeon holes without sharing.
Another motivation for this paper is subject to future work: while current research focuses

on complete algorithms (that decide the winners of all nodes), we want to consider incomplete
algorithms (that decide winners of only some nodes) that work well in practice.

An, at first sight unrelated, issue is the design and evaluation of preprocessors for parity games.
By a preprocessor we mean any tool that simplifies a parity game before it passes the simplified
game on to a parity-game solver. The nature and extend of these simplifications can vary from
trivial conversions to the solution of an “easy” part of the parity game.

One form of preprocessing is that one can transform the game G into one that is free of self-
loops (edges (v,v) ∈ EG from a node v to itself) and deadlocks (nodes v that don’t have outgoing
edges), without changing the solution of the original game. This form of preprocessing is so
basic, and unhelpful for the task of finding benchmarks, that we only consider games without
self-loops and deadlocks in this paper. At the other end of the spectrum we have solvers, which
are unhelpful for generating benchmarks that are meaningful for a whole class of solvers: a set
of games that is hard for one solver may not be hard at all for another solver.

Aim of work reported here. The idea of this paper is therefore to explore the middle of that
spectrum, algorithms that perform non-trivial simplifications of games and can be interpreted
both as preprocessors (since they don’t solve all games) and as solvers (since they may solve a
substantial portion of the game, leaving a computationally hard core behind).

The overall aim of this work is therefore to develop a workbench in which an entire spectrum
of such preprocessors (including solvers) can be expressed, implemented, and evaluated. This
workbench is meant to support the generation of a database of games and their meta-information,
so that users or automated search processes can submit queries that may return games of interest,
and may validate preprocessors and solvers as well as their optimizations.

Related work. It is widely recognized that no meaningful set of benchmarks for parity games
is presently available. Experimental work for solvers by and large focuses on the optimization of
the underlying algorithms and their data structures. Such optimizations improve performance but
make fair comparisons between solvers harder, even if good benchmarks were to be available.

The work in [ACH09] developed preprocessors A1, A2, A3, and PROBE[n](A) mentioned
in this paper. But that work provided no preprocessor algebra, no query language, and no imple-
mentation work. The aforementioned preprocessors and Zielonka’s solver [Zie98] were imple-
mented as a desktop application in [Wan07], where also first statistics were run on the prepro-
cessing of parity games.

In [FL09] the authors propose to use a generic solver that first does some preprocessing, then
uses optimized solvers on special residual games (e.g. one-player games and decomposition
into strongly connected components), and then only uses an input solver on residual games that
cannot be further optimized. Experimental results show that this approach can procude vast
speed-ups and that Zielonka’s recursive algorithm [Zie98] performs surprisingly well.

Outline of paper. In Section 2 we define an algebra for composing preprocessors for parity
games, impose requirements on terms from that algebra, and give some examples of preproces-
sors generated in that algebra. Syntax and semantics of a query language for a database of parity
games are provided in Section 3. A prototype of our workbench, implementing an instance of the
above algebra and the query language, is described in Section 4. Some implementation issues
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are discussed in Section 5. In Section 6 we illustrate how the workbench can be used to design,
validate or evaluate preprocessors – and how it can generate games of interest. Future work and
our conclusions are stated in Section 7.

2 Algebra of preprocessors

We now provide a simple specification language for preprocessors that abstracts away low-level
programming details and focuses on how to compose preprocessors out of more basic ones.

Algebra and its informal meaning. The preprocessors we consider are generated as regular
expressions

p ::= a | p; p | p+ | f (p) (1)

where a ranges over a set of atomic preprocessors (which can thus accommodate any externally
supplied preprocessors), p1; p2 denotes the sequential composition of preprocessors p1 and p2 in
that order, p+ denotes the iteration of the preprocessor p, and f (p) is the “lifting” of preprocessor
p by a function f . Atomicity and sequential composition are natural concepts for constructing
preprocessors. The meaning of the other clauses is best explained by means of examples, where
we write res(G, p) to denote the game output by preprocessor p on input game G, also called the
residual game of G under p.

Two color-simplifying atomic preprocessors. Let a1 be an atomic preprocessor that checks
on game G, only once for each node v with χG(v) ≥ 2, whether there is any cycle in the game
graph through v and through some node w with χG(w) = χG(v)−1. If there is no such cycle (in
particular, if there is no cycle through v at all), a1 updates χG(v) by subtracting 2 from it. In the
game in Figure 1, e.g., a1 could decrement color 5 at node v2 to 3, since there is no node with
color 4 in any cycles through v2. Then a1 could decrement color 2 at node v5 to 0, since v2
isn’t on any cycle, etc.

Preprocessor a2 similarly explores each node v with χG(v) > 0 once. If all cycles through v
have a node w with χG(v) < χG(w), then a2 updates χG(v) to 0. In the game in Figure 1, e.g.,
this could reset the color of node v6 from 2 to 0, since all cycles through v6 also go through v2
which has color 5.

Iteration. Preprocessor a1 is not idempotent: running it twice may get a simpler game than
running it once (e.g., the first run may change a 5 into a 3, which then allows a 6 that was
“blocked” by that 5 to change to 4). For input game G, preprocessor a+

1 keeps applying a1 until
reaching a fixed point. Preprocessor a+

1 preserves the initial game graph and terminates on all
games, as seen through the well-founded ordering G≺a1 G′ iff ∑v∈VG

χG(v) < ∑v∈V ′G
χG′(v).

For any preprocessor p, iteration p+ is well defined iff there is a well-founded ordering ≺p on
games such that for all games G with G 6= res(G, p) we have res(G, p)≺P G. A preprocessor p
is idempotent iff p; p and p have the same effect on all games G. Then p+ is well defined with
discrete well-founded ordering. Generally, all well defined p+ are idempotent preprocessors.

A preprocessor using index-3 abstraction. Atomic preprocessor a3 operates on game G as
follows. It generates a sequence of index-3 games that have the same game graph as G and
whose winning regions for one player σ are also won for that player in G. Any such winning
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regions are deleted from G (technically, closed up under σ -attractors), and a new such sequence
of index-3 games is generated on the resulting game until the game no longer simplifies. For
example, if G initially has index 5, one such index-3 abstraction turns color 4 into color 2, colors
3 and 5 into 1, and all other colors into 0. Any node v won by player 1 in this modified game,
can ensure that any path from v in G has either infinitely many colors 3 or 5, and only finitely
many colors 4. Any such node is thus certain to be won by player 1 in G.

The game in Figure 1, e.g., is solved completely by the composed preprocessor a1;a3.
A preprocessor transformation. The lifting clause f (p) has as intuition that f is a device that
lifts the effectiveness of preprocessor p. We give an example, lft, such that lft(a3) acts on G as
follows. It considers each node v of G with at least two outgoing edges in turn: for all pairs
of such outgoing edges, it creates two subgames (which implement only one of these edges and
remove all other outgoing edges of v), and runs a3 on these subgames. If a3 decides for some
node z in VG a different winner in each subgame, node v is won in G by the player who owns it
(since a3 correctly classifies winners of deleted nodes in input games and since nodes not won
by their owner cannot display such observable differences), and no further pairs of subgames for
v need to be considered. Thus lft(a3) also correctly classifies winners of nodes it deletes. The
residual game res(G, lft(a3)) is obtained from G by removing all nodes v (and their edges) whose
winners are decided in this manner.

By induction, this is also sound for higher-order lifts lftk(a3) with k ≥ 1, where f 1(p) is
defined as f (p) and f n+1(p) as f ( f n(p)). We note that f k(p) generally does not have the same
effect as the k-fold sequential composition of f (p) with itself.
Requirements on preprocessors. Although our algebra for preprocessors is very general, we
impose four requirements on all preprocessors implementable in our workbench:

1. the game graph of res(G, p) is a sub-graph of the game graph of G
2. the preprocessor p decides (correctly) the winners of all nodes of G that are no longer

nodes in res(G, p)
3. for each node v on the game graph of res(G, p), its winner is the same in both games G

and res(G, p) and
4. for each node of res(G, p), its color in res(G, p) is no larger than its color in G.

The first requirement limits the effect that preprocessors have on the game graph to the dele-
tion of nodes and edges. The only preprocessors that we know to violate this requirement are
those that eliminate self-loops and deadlocks (which we don’t consider). If one wishes, one can
actually drop this requirement without affecting the overall working of our framework.

The next two requirements require little explanation: it only makes sense to remove a node
from considerations when it has been decided which player wins it; and residual games have to
be consistent with the original game in terms of which player wins residual nodes.

The last requirement may also be relaxed but then the iteration of preprocessors may diverge.
We therefore adopt this requirement as a static constraint that, in conjunction with the other
requirements, ensures that iterations converge. Specifically, preprocessors p meeting these four
requirements have well defined p+: this is certainly true if p acts as the identity; otherwise, p has
a well founded order G ≺ G′, defined as rank(G) < rank(G′) for the rank function rank(G) =
|VG |+ |EG |+∑v∈VG

χG(v).
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As Michael Goldsmith pointed out at the workshop, one can define a choice operator p⊕q for
preprecessors that is implicitely dependent on a well founded order ≺. For a game G, residual
game res(G, p⊕q) equals res(G, p) if res(G, p)≺ res(G,q); otherwise, it equals res(G,q).

A composition pattern. We illustrate the utility of our algebra for composing preprocessors.
Let p1, . . . , pn be preprocessors for which p+

i is well defined, and π a permutation of {1, . . . ,n}.
Then 〈p1, . . . , pn〉π is defined to be (p+

π1; . . . ; p+
πn)

+. This is well defined since each pi has a
well-founded ordering ≺pi and so their lexicographical ordering is a well-founded ordering for
〈p1, . . . , pn〉π . For example, for n = 3, for pi being ai, and for π being (2,3,1) this yields the
preprocessor (a+

2 ;a+
3 ;a+

1 )+.

3 Database of games

We can leverage the algebra for preprocessors to a query language over a set of games.

Query language. The query language is a fragment of first-order logic where formulae are
closed and contain only a single and top-most quantification. The grammar for queries is given
by

q ::= ∀G : b | ∃G : b (2)

where G is a fixed variable that ranges over all games in a specified set of games D (a database),
and b is the yet unspecified body that can only mention variable G, which binds to games G.
The grammar for b is extensible. For now, we will freely use relational and functional symbols
within b in examples.

Figure 2 depicts examples of queries. Query (3) asks whether there is a game in the database
that is resilient to preprocessor p, since the equality G = res(G, p) means that p cannot simplify
anything in game G. If p happens to be a very powerful preprocessor, a witness game G for the
truth of this query may then be a good benchmark for solvers.

Query (4) asks whether preprocessors p and q have the same effect on all games of the
database. If so, this does of course not necessarily imply that they have the same effect in
general. This pattern has many uses, we mention two: Firstly, for q being p; p, e.g., we can test
whether p is idempotent on games from our database. Secondly, if q is an optimization of p,
we can test whether this optimization is correct for games in our database (a form of regression
testing).

For an example of the second kind, let p be a; lft(a) and q be lft(a). Query (4) then tests on
our database whether lft might be monotone in that it also does all the simplifications done by
its argument a. This is not generally true as lft(a) only uses a conditionally, to probe whether
certain nodes are won by certain players; it does not use a directly on the input game.

In query (5), Sol(G, p,0) denotes those nodes, if any, that preprocessor p classifies as being
won by player 0 in game G. If p is a solver or a preprocessor that does decide the winners
of some nodes, this query therefore checks whether p is correctly implemented (relative to the
trusted implementation of some solver).

Query semantics. We explain the semantics of query evaluation informally. A model is a
database D . Evaluating query ∃G : b on D either returns an empty list (saying that no game
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∃G : G = res(G, p) (3)

∀G : res(G, p) = res(G,q) (4)

∀G : Sol(G, p,0)⊆ Sol(G,TrustedSolver,0) (5)

Figure 2: Example query patterns, instantiable with preprocessors p and q.

satisfying b is in the database) or returns a game G from D satisfying b. Dually, the evaluation of
∀G : b either returns the empty list (saying that all games in the database satisfy b) or a game G
from D that does not satisfy b. Both of these evaluations require the evaluation of b on a game G
in D , returning a Boolean truth value. That evaluation uses the interpretations of relational and
functional symbols in b and the standard semantics of propositional logic to determine whether
G satisfies b. In particular, we interpret equality G1 = G2 between games as structural identity:
both games have the same game graph and colors of nodes.

Example 1 Let index(G) evaluate to the index of game G. A game G satisfies (index(G) >
5)∧¬(G = res(G,a+

1 )) iff G has index greater than 5 and is not resilient to the preprocessor
a+

1 . Similarly, query ∃G : (index(G) > 5)∧¬(G = res(G,a+
1 )) might return the game in Figure 1

from our database; its index is 6 and it can be simplified by a+
1 as already discussed.

Our implementation has explicit mechnisms for controlling the choice of database for the
evaluation of queries. We do not show these mechanisms in this paper for sake of brevity.

4 Implementation

Our prototype workbench is a fusion of a parity game solver component, a very scalable online
storage facility for parity games supporting simple interfaces, a client component which talks to
data servers, and a query component for analyzing results stored on the servers or derived from
further computations performed on games.

Software architecture. The distributed and highly extensible architecture of our platform for
query execution is shown in Figure 3. It is comprised of three parts:

• At its center, directly interfacing with users, the query server actively maintains registration
of game servers and query execution processes, manages parsing and interpreting user
queries at runtime, and merges computation results after query executions return from the
query execution group.
• On the right, we have a collection of game servers. Each game server stores a particular

class of parity games and other computed results related to each game instance. The game
server provides a uniform interface for access of generic information. By default, queries
will be directed to computations about games in all game servers. But users can specify
in the query to only look at results from a particular game server. Users can also easily
inspect data recorded in each server through a web browser.
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Figure 3: Overall architecture of the query engine for our workbench. And the typical sequence
of interactions between user and tool.

• The query execution group contains a collection of parallel processes responsible for pro-
cessing a submitted query. The query execution group, implemented using JGroup, is self
balanced. When a process node is shut down for whatever reason or when a new process
node becomes available in the group, the group will rebalance itself evenly throughout.
Therefore, process nodes in the group could, in principle, reside on different machines and
so facilitate parallelized query execution.

User session. Figure 4 shows a typical user session in our workbench. This session takes place
on the query server, by that time all the games are already loaded into the process nodes. The user
first enters a query as specified by the implemented query language, the server will then send the
interpreted query to all query process nodes for local processing. Local results will be merged
back at the query server. If the result is positive for a universally quantified query, the server will
just return true and no witness is provided; if a contradiction is found, the server will return
false and the associated witness. An existentially quantified query will return true and the
witness if a positive example is found, and returns only false otherwise. The witness will be
shown in both the dot description format and as a graph.

In this particular session the query asked whether, for all games, all nodes that are deleted by
A1;A2;A3; P(A1;A2;A3) are also deleted by A2;A3; P(A2;A3). This is not true, and
the witness produced is displayed. (The meaning of the lifting P will be explained below.)
Implemented algebra. The following preprocessors are implemented in our prototype work-
bench: A1 implements a+

1 , A2 implements a+
2 , and A3 implements a+

3 . Preprocessor composi-
tion p;q is implemented as first running p on G and then running q on res(G, p). The iteration
p+ is implemented as a repeat-statement that initially runs p on G and then keeps executing p on
the resulting game until a fixed point is reached.

Two types of functions are currently implemented. Function L is a more complex version of
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Figure 4: A typical user session on the query server, (1) the user enters a query; (2) the database
of games is searched for a witness; (3) the interface then displays a game that refutes a universally
quantified query or verifies an existentially quantified query (if applicable).

function lft described already on page 5 (we refrain from sketching the details here). Function
P is a similar, less efficient transformation of predecessors that is based on our existing work
in [ACH09, Wan07]. In the sequel, we write PROBE[n](a) for the preprocessor that initially
runs a, then runs P(a), etc., and stops after it has run the n-th nesting of P on a. For example,
PROBE[2](A1;A2;A3) expands in this manner to the term

((A1;A2;A3;P(A1;A2;A3);P(P(A1;A2;A3))

Implemented query language. The query language we currently support is seen in Figure 5.
There are three groups in the query language. The first group specifies that formulae have a
single quantification and a body built from an adequate set of propositional connectives: NOT,
AND, OR. The second group lists supported predicates, that allow reasoning about the game for
its solutions, nodes, edges, strategies, and colors. For example, SOLUTION(G, A, X) returns
those nodes of the game that preprocessor A decides to be won by player X – our keyboard
encoding for player 0; player 1 is encoded by Y. The third group specifies preprocessors and
their functions, here L and P. Apart from the three aforementioned preprocessors, this supports
EXP which implements a solver based on Zielonka’s algorithm [Zie98]. We give two further
examples of how to write queries in this language:
ALL G : (NODES(RESIDUAL(G, L(A1;A2;A3))) SUBSET NODES(RESIDUAL(G, L(A2;A3))))

stipulates that all nodes, in all games, that are solved by L with preprocessor A1;A2 are also
solved by the same lifting function with preprocessor A1;A2;A3. Query
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QueryLanguage := QueryType GVar : Constraints
QueryType := ALL | SOME
Constraints := (Constraint) | (NOT Constraints) |

(Constraints AND Constraints) | (Constraints OR Constraints}

Constraint := Fragment == Fragment | Number >= Number | Number <= Number |
Number > Number | Number < Number | Nodes SUBSET Nodes |
Edges SUBSET Edges | Colors SUBSET Colors

Fragment := Game | Nodes | Edges | Number | Colors
Game := GVar | RESIDUAL(Game, Prep)
Nodes := SOLUTION(Game, Prep, Player) | NODES(Game)
Edges := EDGES(Game)
Number := COUNT(Nodes) | COUNT(Edges) | COUNT(Colors)
Colors := COLORS(Game)
Player := X | Y

Prep := Atom | Prep; Prep | L(Prep) | P(Prep)
Atom := A1 | A2 | A3 | EXP

Figure 5: Implemented query language of our prototype workbench.

ALL G : (NODES(RESIDUAL(G, C(L(L(A2;A3))))) SUBSET NODES(RESIDUAL(G, EXP)))

states that all games are fully solved by iterating two nestings of L when applied to preprocessor
A2;A3. This is so since res(G,EXP) is the “empty” game for any complete solver EXP.

5 Discussion

We discuss some implementation issues that have relevance to the overall aims of the workbench.
Data model. An essential type of object on the game server is a scratchpad, given in the form
of key/value pair. Resources, another essential object of our implementation, may be associated
with multiple scratchpads. For example, for a scratchpad associated with a game a key may be
the name of the game and the value the description of the game. Games may also have associated
scratchpads that record solutions, solver statistics, etc. The system is agnostic of how scratchpads
are being manipulated. Information submitted and accessed through a registered user account on
the system is therefore interpreted by users or agents at the client side. This data model allows
our workbench to be smoothly extended to work with other types of games, e.g. stochastic parity
games [CJH04], with similar work flow requirements.
Populating databases. At present, we populate databases with randomly generated games and
precompute and store the effects of many basic compositions of preprocessors. Although the
reliance on random games does have inherent limitations, our workbench supports the specifi-
cation and storage of any kind of game, e.g. known worst-case examples for specific solvers.
Non-random games need to be entered manually and so we can expect to only support a limited
database of such games.

At present, the generation of random parity game data takes place outside of the workbench,
via a command line Java executable. After a game is generated, it is automatically populated
to the specified server. Several other processes, also invoked from the command line, pick up
games from the game server and prepare and attach solutions on to the game servers.
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We now describe how we generate random games. For a game G with |G | = n, the index of
VG can be at most n, and |EG | ranges from n to n · (n−1) – since we have no self-loops and no
deadlocks. For each possible value i of |EG | in that range, we generate (i · n)2 different games
at random. A random seed is selected. For each possible value of i, the owners of the n nodes
as well as their colors are decided based on random sequences generated from that random seed.
Such a sequence is also used to decide which edges should be present, ingoring self-loops and
avoiding deadlocks until i edges are found. In this manner, we generated 100,352 random games
with 8 nodes each.

Comparing preprocessors or solvers. Probably the most involved analyses are performance
comparisons between solvers, as head-to-head comparisons on implemented solvers. Such com-
parisons may be tainted by implementations that optimize data structures for specific solvers.
Therefore, the solver package offered in this platform decouples the data structure and the al-
gorithms, by having the latter work on an abstract parity-game interface. Researchers can build
their solver algorithm for this interface and use the default parity game data structure imple-
mentation provided to compare against other implemented algorithms running on the same data
structure. Alternatively, different data structures can be used to implement the same interface
and one target algorithm can be tested for performance when applied to different data structures.

A more straightforward analysis is a scalability analysis where the interest is merely in finding
out how an algorithm implemented in another language and context performs over a very large
data set or on very large games. This is achieved by using the connector client to download
the parity game data from the data servers in batches and to solve the games locally. Run-time
statistics can then be compared to results from other solvers that ran on the same platform.

Parser and query optimization. The query parser and processor are rapid prototypes written
in Java. There are many issues with this choice.

• It currently does not share common sub-expressions and so the meaning of such shared
expressions is re-computed for each game.
• It is difficult to define pattern matching rules and query optimization paths in Java. This

could be easily implemented in Prolog.
• Prolog would also allow us to guide search, so that less expensive sub-expressions get

evaluated first and so expensive sub-expressions may not have to be evaluated, as in a
conjunction EXPENSIVE AND CHEAP.
• The current version of the query language only supports a very limited set of operations

because they are cumbersome to implement correctly in Java. For example, we may want
to query for a game with a node having n outgoing edges to nodes owned by its opponent.
Prolog would make it much easier to build such queries.
• A potential problem with migrating parsing and executing queries from Java to Prolog is

the need of call-backs from the Prolog to the Java process. We are currently evaluating the
performance impact of such a need.

Memory footprint. Because all data about all parity games are loaded into the memory in
uncompressed format, the combined required memory for all process nodes can be huge. As-
suming each game only occupies 10KB in memory, a dataset of 10 million games requires around
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100GB of memory footprint. The ability to distribute process nodes over machines will help, but
won’t achieve scalability in and of itself. Two additional solutions suggest themselves. Firstly,
we might store Boolean matrices that record values of atomic query expressions for games. The
complete witness information could then be recomputed for the chosen witness. Secondly, we
might generate games on a hierarchy of game server arrays that would act like a sieve so that
games pass through to higher level servers only if they “survive” specified queries. Initial exper-
iments suggest that this can eliminate at least 95 percent of randomly generated games.

6 Using the workbench

We now illustrate how one can use the current workbench prototype to evaluate and validate pre-
processors and solvers. In doing so, we also generate some games that may serve as a first gen-
eration of benchmarks for solvers. Figure 6 shows four interesting games, found on a database
populated with more than 100,000 random 8-node games.

Witness (A) is fully solved by PROBE[0](A2;A3) but not by PROBE[2](A3). That is to
say, the game is fully solved by A2;A3 but not by A3; P(A3); P(P(A3)). This is perhaps
surprising since the latter incrementally nests a lifting function whereas the former does not lift at
all. But the latter uses a slightly weaker preprocessor and this weakness is not being compensated
for in this witness game.

Witness (B) is solved by A2;A3 but not by A1;A2;A3. This seems counter-intuitive since
the initial application of a color reduction preprocessor appears to harm the effectiveness of
subsequent preprocessing. But A1 may close some “color gaps” in the game and those very gaps
may enable A2 to reduce some color to 0.

Witness (C) is solved by A2;A3 or by L(A2;A3) but not by L(L(A2;A3)). This means
that the non-idempotent lifting function L is not always more powerful than its previous nesting
version. Witness (C) can in fact not be solved by any further nestings of L applied to A2;A3 (we
refrain from sketching the argument here). Applying the iteration operator C to each function
call of L would make higher nestings more powerful than lower ones.

Finally, witness (D) shows an 8-node game that is resilient to PROBE[3](A3), i.e. the pre-
processor leaves the game unchanged.

We also experimented with generating datasets for 64-node and 128-node games. Fig. 7 shows
a 64-node, 320-edge game whose subgame of grey nodes is resilient to PROBE[5](A2;A3).
This residual game is therefore resilient to the application of P to A2;A3, for any nesting up to
level 5, suggesting it is reasonably complex to solve in general.

7 Future work and conclusions

In future work, we mean to address the identified implementation issues and extend the query
language with some features that our use of the tool revealed as being desired. The identification
of further preprocessors and their implementation are also planned. In the medium term, we
mean to implement plain-vanilla versions of the most prominent solvers so that we can begin
with evaluating them on generated benchmarks. Hopefully this will allow us to assess the utility
of specific preprocessors for generating benchmarks. We also mean to create a database that
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Figure 6: Specific 8-node games found using the query server. Witness (A) is solved by
PROBE[0](A2;A3) but not by PROBE[2](A3); witness (B) is solved by A2;A3 but not
by A1;A2;A3; witness (C) is solved by A2;A3 or by L(A;2A3) but not by L(L(A2;A3));
witness (D) is resilient to PROBE[3](A3).
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Figure 7: A 64-node game with 320 edges. Its sub-game of grey nodes is resilient to
PROBE[5](A2;A3).

Proc. AVOCS 2009 14 / 15



ECEASST

stores known worst-case games for specific solvers. We also mean to determine whether the
workbench can be used to design and immediately test novel solvers. Our workbench currently
represents games explicitly. We mean to investigate how symbolic representations of games can
be incorporated so that symbolic algorithms can be supported as well.

At the more theoretical end, we mean to investigate whether our query language is presentable
in a logic for which the synthesis problem is known to be decidable (this may not be straight-
forward due to the presence of counting primitives). The hardness of games under specific pre-
processors may also be related to the descriptive complexities of such games. Such connections
between the expressiveness of fixed-point logics and descriptive set theory have been identified,
e.g. in [Bra03].

We summarize. In this paper we argued the utility of a workbench that can generate and
store parity games with two ends in mind: to aid in the design, validation, and evaluation of
preprocessors for parity game solvers; and to aid in the generation of benchmark parity games
that are meaningful for a wide range of solvers. We sketched a framework that supports easy
composition of preprocessors, offers a query language on a database of games for generating
games of interest, and supports scalable query evaluation. A prototype implementation of this
framework has been described and example interactions with that workbench were provided to
demonstrate its potential in relation to the aforementioned two ends.
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