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Abstract: Motivated by the promotion of rewriting techniques and their use in
major industrial applications, we have designed Tom: a pattern matching layer on
top of conventional programming languages. The main originality is to support pat-
tern matching against native data-structures like objects or records. While crucial
to the efficient implementation of functional languages as well as rewrite rule based
languages, in our case, this combination of algebraic constructs with arbitrary na-
tive data-structures makes the pattern matching algorithm more difficult to compile.
In particular, well-known many-to-one automaton-based techniques cannot be used.
We present a two-stages approach which first compiles pattern matching constructs
in a naive way, and then optimize the resulting code by program transformation us-
ing rewriting. As a benefit, the compilation algorithm is simpler, easier to extend,
and the resulting pattern matching code is almost as efficient as best known imple-
mentations.

Keywords: Pattern matching, Optimization, Program transformation

1 Introduction to Tom

Pattern matching is an elegant high-level construct which appears in many programming lan-
guages. Similarly to method dispatching in object oriented languages, it is essential in functional
languages like Caml, Haskell, or SML. It is part of the main execution mechanism in rewrite rule
based languages like ASF+SDF, ELAN, Maude, or Stratego.

In this paper, we present Tom1 whose goal, similarly to Prop [Leu96] or Pizza [OW97], is to
integrate the notion of pattern matching into classical languages such as C and Java. Following
the first ideas presented in [MRV03], illustrated in Figure 1, a Tom program is a program written
in a host language and extended by some new instructions like the %match construct. Therefore,
a program can be seen as a list of Tom constructs interleaved with some sequences of characters.
During the compilation process, all Tom constructs are dissolved and replaced by instructions of
the host-language, as it is usually done by a preprocessor.

In order to understand the choices we have made when designing the pattern matching algo-
rithm, it is important to consider Tom as a generic and partial compiler (like a pre-processor)
which does not have any information about the host-language. In [BKM06], Tom programs are

1 http://tom.loria.fr
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Definition of the data-structure

public class PeanoExample {
...

Term plus(Term t1, Term t2) {
%match(t1, t2) {

x,zero -> { return x; }
x,suc(y) -> { return suc(plus(x,y)); }

}
}
void run() {

System.out.println("plus(1,2) = " +

plus(suc(zero),suc(suc(zero))));

}
}

Parser Backend Output Program

Compiler Optimizer

Tom Compiler

PIL

PIL

Input Program

Figure 1: General architecture of Tom: the compiler generates an intermediate PIL program
which is optimized before being pretty-printed by the back-end into the host-language.

described as islands anchored in host programs and the link between the two languages is for-
mally defined in a generalized framework. In particular, the data-structure, against which the
pattern matching is performed, is not fixed. In some sense, the data-structure is a parameter of
the pattern matching, see [KMR05] for more details. In practice, this means that a description
of the data-structure (a mapping) has to be given to explain Tom how to access subterms for
example.

In this paper, we present how the introduced pattern matching construct is compiled, using a
program transformation approach. There exists several methods [Car84, Aug85, Grä91, FM01]
to efficiently compile pattern matching. The simplest ones, called one-to-one, inspect and com-
pile each pattern independently. A more efficient approach consists in considering the system
globally and building a discrimination network. These methods are called many-to-one, and they
usually consist of three phases: constructing an automaton, optimizing it, and finally generating
the implementation code. There are two main approaches to construct a matching automaton:
one based on decision trees [Car84, Grä91] and the other on backtracking automata [Aug85].
These two approaches emphasize the unavoidable compromise between speed and memory
space [SRR95].

In our case, we cannot assume that a function symbol (i.e. a node of a tree) is represented by
an integer, like it is commonly done in other implementations of pattern matching. Therefore,
the classical switch/case instruction can no longer be used to perform the discrimination.
Since Tom supports several languages, it is also not possible to use an exception mechanism or a
jump statement, like it can be done in ML compilers [Jon87].

The approach chosen in Tom is to keep the optimization phase separated from the one-to-one
compilation phase. This allows us to design algorithms which are generic, simpler to implement,
easier to extend and maintain, and that can be formally certified [KMR05]. In addition, this
work allows to generate efficient implementations. In Section 2, we present the compilation
algorithm and its intermediate language PIL. In Section 3, we introduce a set of rules which
describes the optimizer and a strategy to efficiently apply them. In Section 4 we show that the
optimizations are correct and improve the program in execution and size. Finally, in Section 5,
some experimental results are given for several revealing examples. This paper assumes some
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familiarity with term rewriting notations introduced in [BM05].

2 Compilation

To be data-structure independent and support several host-languages, Tom instructions, like
%match, are compiled into an intermediate language code, called PIL, before being translated
into the selected host-language. To compile the %match construct, we consider each rule inde-
pendently.

Contrary to many-to-one algorithms which construct decision trees or pattern automata, given
a pattern, it is traversed top-down and left-to-right. Nested if-then-else constructs are generated
to ensure that constructors of the pattern effectively occur in the subject at a correct position. This
technique is inefficient because, for a set of rules, identical tests may be repeatedly performed.
The worst-case complexity is thus the product of the number of rules and the size of the subject.

The nested if-then-else are expressed in an intermediate language called PIL, whose syntax
is given in Figure 2. Note that PIL has both functional and imperative flavors: the assignment
instruction let(variable,〈term〉,〈instr〉) defines a scoped unmodifiable variable, whereas the
sequence instruction 〈instr〉 ; 〈instr〉 comes from imperative languages. A last particularity
of PIL comes from the hostcode(. . .) instruction which is used to abstract part of code written
in the underlying host-language. This instruction is parameterized by a list of PIL-variables
which are used in this part of host-code.

PIL ::= 〈instr〉
symbol ::= f ∈F
variable ::= x ∈X
〈term〉 ::= t ∈T (F ,X )

| subterm f (〈term〉,n)
( f ∈F ∧n ∈ N)

〈expr〉 ::= true | false
| eq(〈term〉,〈term〉)
| is fsym(〈term〉,symbol)

〈instr〉 ::= let(variable,〈term〉,〈instr〉)
| if(〈expr〉,〈instr〉,〈instr〉)
| 〈instr〉;〈instr〉
| hostcode(variable∗)
| nop

Figure 2: PIL syntax

Similarly to functional programming languages, given a signature F and a set of variables X ,
the considered PIL language can directly handle terms, boolean values (true,false), and per-
form operations like checking that a given term t is rooted by a symbol f (is fsym(t, f )), ac-
cessing to the n-th child of a term t (subterm f (t,n)), or comparing two terms (eq(t1, t2)). The
implementation of subterm f , eq and is fsym is given by the mapping which describes data-
structures. To support the intuition, examples of Tom and PIL code are given in Figure 3.

We define PIL semantics as in [KMR05] by a big-step semantics à la Kahn. To represent a
substitution, we model an environment by a stack of assignments of terms to variables. The set
of environments is noted E nv. The reduction relation of the big-step semantics is expressed on
tuples 〈ε,δ , i〉 where ε is an environment, δ is a list of pairs (environment, host-code), and i is an
instruction. Thanks to δ , we can keep track of the executed host-code blocks within their environ-
ment: the environment associated to each host-code construct gives the instances of all variables
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Tom code:

. . . Java code . . .

. . .
%match(Term t) {

f(a) ⇒ { print(. . . ); }
g(x)⇒ { print(. . . x. . . ); }
f(b)⇒ { print(. . . ); }

}
. . .
. . . Java code . . .

Generated PIL code:

hostcode(. . .) ;
if(is fsym (t,f),let(t1,subtermf(t,1),

if(is fsym(t1,a),hostcode(),nop)),
nop) ;

if(is fsym (t,g),let(t1,subtermg(t,1),
let(x,t1,hostcode(x)))
nop) ;

if(is fsym (t,f),let(t1,subtermf(t,1),
if(is fsym(t1,b),hostcode(),nop)),
nop) ;

hostcode(. . .) ;

Figure 3: The left column shows a Tom program which contains three patterns: f (a),g(x), and
f (b), where x is a variable. As an example, when the second pattern matches t, this means that t
is rooted by the symbol g, and the variable x is instantiated by its immediate subterm. The right
column shows the corresponding PIL code generated by Tom. We can notice that this code is not
optimal, but will hopefully be optimized by transformation rules afterwards.

which appear in the block. A complete definition of the semantics can be found in [BM05].

〈ε,δ , i〉 7→bs δ
′, with ε ∈ E nv,δ ,δ ′ ∈ [E nv,〈instr〉]∗, and i ∈ 〈instr〉

As PIL programs are predominantly constituted of if-then-else statements, the optimization
rules will depend of the evaluation of expressions e ∈ 〈expr〉. In the following we introduce the
notions of equivalence and incompatibility for expressions, and we consider two functions eval
and Φ. eval is a function which given an environment ε and an expression e evaluates e in ε

to obtain a value (i.e true for true or false for false). Given an environment ε and a host-code
list δ , the evaluation of a program π ∈ PIL results in a host-code list: 〈ε,δ ,π〉 7→bs δ ′. During
this evaluation, expressions e, subterm of π , are evaluated in environments ε ′. We call Φ the
function that associates such an environment ε ′ to a sub-expression e of π: ε ′ = Φ(π,e,ε,δ ).
More formal definitions can be found in [BM05].

Definition 1 Given a program π , two expressions e1 and e2 are said π-equivalent, and noted
e1 ∼π e2, if for all starting environment ε , δ , eval(ε1,e1)=eval(ε2,e2) where ε1 = Φ(π,e1,ε,δ )
and ε2 = Φ(π,e2,ε,δ ).

Definition 2 Given a program π , two expressions e1 and e2 are said π-incompatible, and
noted e1 ⊥π e2, if for all starting environment ε , δ , eval(ε1,e1) 6= eval(ε4,e2) where ε1 =
Φ(π,e1,ε,δ ) and ε2 = Φ(π,e2,ε,δ ).

We can now define two conditions which are sufficient to determine whether two expressions
are π-equivalent or π-incompatible. Propositions 1 and 2 are interesting because the problem
is generally undecidable [RKS99], but here, conditions can be easily used in practice. In-
deed cond1 which ensures that the two expressions are evaluated in the same environment is
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easy to be checked because of PIL language restrictions and cond2 is a purely syntactic condi-
tion. Proofs of these propositions are in [BM05].

Proposition 1 Given a program π and two expressions e1,e2 ∈ 〈expr〉 at different positions in,
we have e1 ∼π e2 if: ∀ε,δ , Φ(π,e1,ε,δ ) = Φ(π,e2,ε,δ ) (cond1) and e1 = e2 (cond2).

The equality = correspond to syntactic equality and the two considered expressions are in a
different position in the program so the two environments of evaluation are not trivially equal.

Proposition 2 Given a program π and two expressions e1,e2 ∈ 〈expr〉, we have e1 ⊥π e2 if:
∀ε,δ , Φ(π,e1,ε,δ )= Φ(π,e2,ε,δ ) (cond1) and incompatible(e1,e2) (cond2), where incompatible
is defined as follows:

incompatible(e1,e2) = match e1,e2 with
| false,true → >
| true,false → >
| is fsym(t, f1),is fsym(t, f2) → > if f1 6= f2
| , → ⊥

3 Optimization

An optimization is a transformation which reduces the size of code (space optimization) or the
execution time (time optimization). In the case of PIL, the presented optimizations reduce the
number of assignments (let) and tests (if) that are executed at run time. When manipulating
abstract syntax trees, an optimization can easily be described by a rewriting system. Its applica-
tion consists in rewriting an instruction into an equivalent one, using a conditional rewrite rule
of the form i1 → i2 IF c.

Definition 3 An optimization rule i1 → i2 IF c rewrites a program π into a program π ′ if
there exists a position ω and a substitution σ such that σ(i1) = π|ω , π ′ = π[σ(i2)]ω and σ(c) is
verified. If c = e1 ∼ e2 (resp. c = e1 ⊥ e2), we say that σ(c) is verified when σ(e1) ∼π|ω σ(e2)
(resp. σ(e1)⊥π|ω σ(e2)).

3.1 Reducing the number of assignments

This kind of optimization is standard, but useful to eliminate useless assignments. In the context
of pattern matching, this improves the construction of substitutions, when a variable from the
left-hand side is not used in the right-hand side for example.

3.1.1 Constant propagation.

This first optimization removes the assignment of a variable defined as a constant. Since no side-
effect can occur in a PIL program, it is possible to replace all occurrences of the variable by the
constant (written i[v/t]).

ConstProp: let(v, t, i) → i[v/t] IF t ∈T (F )
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3.1.2 Dead variable elimination and Inlining.

Using a simple static analysis, these optimizations eliminate useless assignments:

DeadVarElim: let(v, t, i) → i IF use(v, i) = 0
Inlining: let(v, t, i) → i[v/t] IF use(v, i) = 1

where use(v, i) is a function that computes an upper bound on the number of occurences of a
variable v in an instruction i.

3.1.3 Fusion.

The following rule merges two successive let which assign the same value to two different
variables. This kind of optimization rarely applies on human written code, but in the context of
pattern matching compilation (see Figure 3), this case often occurs. By merging the bodies, this
allows to recursively perform some optimizations on subterms.

LetFusion: let(v1, t1, i1);let(v2, t2, i2) → let(v1, t2, i1; i2[v2/v1]) IF t1 ∼ t2

Note that the terms t1 and t2 must be compatible to ensure that values of v1 and v2 are the same
at run time. We also suppose that use(v1, i2) = 0. Otherwise, it would require to replace v1 by a
fresh variable in i2.

3.2 Reducing the number of tests

The key technique to optimize pattern matching consists in merging branches, and thus tests
that correspond to patterns with identical prefix. Usually, the discrimination between branches
is performed by a switch/case instruction. In Tom, since the data-structure is not fixed,
we cannot assume that a symbol is represented by an integer, and thus, contrary to standard
approaches, we have to use an if statement instead. This restriction prevents us from selecting
a branch in constant time. The two following rules define the fusion and the interleaving of
conditional blocks.

3.2.1 Fusion.

The fusion of two conditional adjacent blocks reduces the number of tests. This fusion is possible
only when the two conditions are π-equivalent. Remind that the notion of π-equivalence means
that the evaluation of the two conditions in a given program are the same (see Definition 1):

IfFusion: if(c1, i1, i′1);if(c2, i2, i′2)→ if(c1, i1; i2, i′1; i′2) IF c1 ∼ c2

To evaluate c1 ∼ c2 (i.e. c1 ∼π c2 with π the redex of the rule), we use Proposition 1. The
condition Φ(π,ε,δ ,e1) = Φ(π,ε,δ ,e2) (cond1) is trivially verified because the semantics of
the sequence instruction preserves the environment (∀δ ,ε, Φ(π,ε,δ , i1; i2) = Φ(π,ε,δ , i1) =
Φ(π,ε,δ , i2)) and then ∀δ ,ε, Φ(π,ε,δ ,σ(c1)) = Φ(π,ε,δ ,σ(c2)). We just have to verify that
e1 = e2 (cond2), which is easy.
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3.2.2 Interleaving.

As matching code consists of a sequence of conditional blocks, we would like to optimize blocks
with π-incompatible conditions (see Definition 2). Some parts of the code cannot be both ex-
ecuted in a given environment, so swapping statically their order does not change the program
behavior.

As we want to keep only one of the conditional block, we determine what instructions must
be executed in case of success or failure of the condition and we obtain the two following trans-
formation rules:

if(c1, i1, i′1);if(c2, i2, i′2)→ if(c1, i1; i′2, i
′
1;if(c2, i2, i′2)) IF c1 ⊥ c2

if(c1, i1, i′1);if(c2, i2, i′2)→ if(c2, i′1; i2,if(c1, i1, i′1); i′2) IF c1 ⊥ c2

As for the equivalence in the IfFusion rule, to evaluate c1 ⊥ c2, we just have to verify that e1
and e2 are incompatible (cond2). Note that the two presented rules are not right-linear, therefore
some code is duplicated (i′2 in the first rule, and i′1 in the second one). As we want to maintain
linear the size of the code, we consider specialized instances of these rules with respectively i′2
and i′1 equal to nop.

IfInterleaving: if(c1, i1, i′1);if(c2, i2,nop)→ if(c1, i1, i′1;if(c2, i2,nop)) IF c1 ⊥ c2

if(c1, i1,nop);if(c2, i2, i′2)→ if(c2, i2,if(c1, i1,nop); i′2) IF c1 ⊥ c2

These two rules reduce the number of tests at run time because one of the tests is moved into
the “else” branch of the other. In practice, we only use the first one labelled by IfInterleaving.
The second rule can be instantiated and used to swap blocks. When i′1 and i′2 are reduced to the
instruction nop, the second rule can be simplified into:

if(c1, i1,nop);if(c2, i2,nop)→ if(c2, i2,if(c1, i1,nop)) IF c1 ⊥ c2

As c1 and c2 are π-incompatible, we have the following equivalence:

if(c2, i2,if(c1, i1,nop)) ≡ if(c2, i2,nop);if(c1, i1,nop)

After all, we obtain the following rule corresponding to the swapping of two conditional adja-
cent blocks. This rule does not optimize the number of tests but is useful to bring closer blocks
subject to be merged thanks to the strategy presented in the next section.

IfSwapping: if(c1, i1,nop);if(c2, i2,nop)→ if(c2, i2,nop);if(c1, i1,nop) IF c1 ⊥ c2

3.3 Application strategy

From the rules presented in Section 3.1 and 3.2, we define a rewrite system. Without strategy,
this system is clearly not confluent and not terminating. For example, the IfSwapping rule
can be applied indefinitely because of the symmetry of incompatibility. The confluence of the
system is not necessary as long as the programs obtained are semantically equivalent to the
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source program but the termination is an essential criterion. Moreover, the strategy should apply
the rules to obtain a program as efficient as possible. Let us consider again the program given
in Figure 3, and let us suppose that we interleave the last two patterns. This would result in the
following sub-optimal program:

if(is fsym(t, f ), let(t1,subtermf(t,1),if(is fsym(t1,a),hostcode(),nop)),nop) ;
if(is fsym(t,g), let(t1,subtermg(t,1),let(x,t1,hostcode(x)))

if(is fsym(t, f ),let(t1,subtermf(t,1),if(is fsym(t1,b),hostcode(),nop)),nop)

The IfSwapping and IfFusion rules can no longer be applied to share the is fsym(t, f )
tests. This order of application is not optimal. As we want to grant IfFusion, the interleaving
rule must be applied afterward, when no more optimization is possible.

The second matter is to ensure termination. The IfSwapping rule is the only rule that does
not decrease the size or the number of assignments of a program. To limit its application to
interesting cases, we define a condition which ensures that a swapping is performed only if it
enables a fusion. This condition can be implemented in two ways, either in using a context, or
in defining a total order on conditions noted < (a lexicographic order for example). The second
approach is more efficient: similarly to a swap-sort algorithm it ensures the termination of the
algorithm. In this way, we obtain a new IfSwapping rule:

if(c1, i1,nop);if(c2, i2,nop)→ if(c2, i2,nop);if(c1, i1,nop) IF c1 ⊥ c2 ∧ c1 < c2

Using basic strategy operators such as Innermost(s) (which applies s as many times as pos-
sible, starting from the leaves), s1 | s2 (which applies s1 or s2 indifferently), repeat(s) (which
applies s as many times as possible, returning the last unfailing result), and s1 ; s2 (which applies
s1, and then s2 if s1 did not fail), we can define a strategy which describes how the considered
rewrite system should be applied to normalize a PIL program:

Innermost(
repeat(ConstProp | DeadVarElim | Inlining | LetFusion | IfFusion | IfSwapping) ;
repeat(IfInterleaving)

)

Starting from the program given in Figure 3, we can apply the rule IfSwapping, followed
by a step of IfFusion, and we obtain:

if(is fsym(t, f ), let(t1,subtermf(t,1),if(is fsym(t1,a),hostcode(),nop))
; let(t1,subtermf(t,1),if(is fsym(t1,b),hostcode(),nop)),nop) ;

if(is fsym(t,g), let(t1,subtermg(t,1),let(x,t1,hostcode(x))),nop)

Then, we can apply a step of Inlining to remove the second instance of t1, a step of
LetFusion, and a step of Interleaving (is fsym(t1,a) and is fsym(t1,b) are π-incompatible).
This results in the following program:

if(is fsym(t, f ), let(t1,subtermf(t,1),
if(is fsym(t1,a),hostcode(),if(is fsym(t1,b),hostcode(),nop))),nop) ;

if(is fsym(t,g), let(x,subtermg(t,1),hostcode(x)),nop)
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Since is fsym(t, f ) and is fsym(t,g) are π-incompatible, we can apply a step of IfInterleaving,
and get the irreducible following program:

if(is fsym(t, f ),
let(t1,subtermf(t,1),if(is fsym(t1,a),hostcode(),if(is fsym(t1,b),hostcode(),nop))),
if(is fsym(t,g),let(x,subtermg(t,1),hostcode(x)),nop)

4 Properties

When performing optimization by program transformation, it is important to ensure that the
generated code has some expected properties. The use of formal methods to describe our opti-
mization algorithm allows us to give proofs. In this section we show that each transformation
rule is correct, in the sense that the the optimized program has the same observational behavior
as the original. We also show that the optimized code is both more efficient, and smaller than the
initial program.

4.1 Correction

Definition 4 Given π1 and π2 two well-formed PIL programs, they are semantically equivalent,
noted π1 ∼ π2, when:

∀ε,δ ,∃δ
′ s.t. 〈ε,δ ,π1〉 7→bs δ

′ and 〈ε,δ ,π2〉 7→bs δ
′

Definition 5 A transformation rule r is correct if for all well-formed program π , r rewrites π

in π ′ (Definition 3) implies that π ∼ π ′ (Definition 4).

From this definition, we prove that every rule given in Section 3 is correct. For that, two
conditions have to be verified:

1. π ′ is well-formed,

2. ∀ε,δ , the derivations of π and π ′ lead to the same result δ ′.

The first condition is quite easy to verify. The second one is more interesting: we consider a
program π , a rule l → r IF c, a position ω , and a substitution σ such that σ(l) = π|ω . We have
π ′ = π[σ(r)]ω . We have to compare the derivations of π and π ′ in the context ε,δ .

• when ω is the empty position (which corresponds to the root), we have to compare the
derivation tree of π = σ(l) and π ′ = σ(r),

• otherwise, we consider the derivation of π (resp. π ′): there is a step which needs in premise
the derivation of π|ω (resp. π[σ(r)]ω ). This is the only difference between the two trees.

In both cases, we have to verify that π|ω = σ(l) and σ(r) have the same derivation in a given
context:
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• equal to ε,δ when ω is the empty position,

• otherwise, we have to consider the instruction i which immediately contains σ(l) (resp.
σ(r)). The context is defined by the context in which i is evaluated in the derivation tree
of π (resp. π ′).

In the following, we give one representative proof of correction: IfSwapping2. To simplify
the proof we consider l,r and c instead of σ(l),σ(r) and σ(c). In this rule, l = if(c1, i1,nop);if(c2, i2,nop)
and r = if(c2, i2,nop);if(c1, i1,nop). To prove that π ∼ π ′, we have to verify that for a given
ε,δ , l and r have the same derivation. Since c1 and c2 are π-incompatible, three cases have to be
studied:

Case 1: eval(ε,c1) = true and eval(ε,c2) = false

〈ε,δ , i1〉 7→bs δ ′ eval(ε,c1) = true

〈ε,δ ,if(c1, i1,nop)〉 7→bs δ ′
〈ε,δ ′,nop〉 7→bs δ ′ eval(ε,c2) = false

〈ε,δ ′,if(c2, i2,nop)〉 7→bs δ ′

〈ε,δ ,if(c1, i1,nop);if(c2, i2,nop)〉 7→bs δ ′

We now consider the program if(c2, i2,nop);if(c1, i1,nop).
Starting from the same environment ε and δ , we show that the derivation leads to the same

state δ ′, and thus prove that if(c1, i1,nop);if(c2, i2,nop) and if(c2,s2,nop);if(c1,s1,nop) are
equivalent:

〈ε,δ ,nop〉 7→bs δ eval(ε,c2) = false

〈ε,δ ,if(c2, i2,nop)〉 7→bs δ

〈ε,δ , i1〉 7→bs δ ′ eval(ε,c1) = true

〈ε,δ ,if(c1, i1,nop)〉 7→bs δ ′

〈ε,δ ,if(c2, i2,nop);if(c1, i1,nop)〉 7→bs δ ′

Since π and π ′ are well-formed, their derivation in a given context are unique (see [BM05]).
〈ε,δ , i1〉 7→bs δ ′ is part of these derivation trees, so it is unique, and δ ′ is identical in both deriva-
tions.

Case 2: eval(ε,c1) = false and eval(ε,c2) = true, the proof is similar.

Case 3: eval(ε,c1) = false and eval(ε,c2)false, the proof is similar.

4.2 Time and space reduction

To show that the optimized code is both more efficient, and smaller than the initial program, we
consider two measures:

• the size of a program π is the number of instructions which constitute the program,

2 The other proofs can be found in [BM05]
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• the efficiency of a program π is determined by the number of tests and assignments which
are performed at run time.

It is quite easy to verify that each transformation rule does not increase the size of the pro-
gram: DeadVarElim, ConstProp, Inlining, and LetFusion decrease the size of a
program, whereas IfFusion, IfInterleaving and IfSwapping maintain the size of the
transformed program.

It is also clear that no transformation can reduce the efficiency of a given program:

• each application of DeadVarElim, ConstProp, and Inlining reduces by one the
number of assignment that can be performed at run time,

• IfFusion reduces by one the number of tests,

• IfInterleaving also decreases the number of tests when the first alternative is chosen.
Otherwise, there is no optimization,

• IfSwapping does not modify the efficiency of a program.

The program transformation presented in Section 3 is an optimization which improves the
efficiency of a given program, without increasing its size. Similarly to [FM01], this result is
interesting since it allows to generate efficient pattern matching implementations whose size is
linear in the number and size of patterns.

5 Experimental Results

The Tom compiler is written in Tom and Java. Therefore, the presented algorithm described
using rules and strategies, has been implemented in Tom. As illustrated Figure 1, the optimizer
is just an extra phase of the compiler, which is now integrated into the main distribution using
the strategy given in Section 3.3. In order to illustrate the efficiency of the compiler we have
selected several representative programs and measured the effect of optimization in practice:

Fibonnacci Eratosthene Langton Gomoku Nspk Structure

Tom Java 21.3 s 174.0 s 15.7 s 70.0 s 1.7 s 12.3 s
Tom Java Optimized 20.0 s 2.8 s 1.4 s 30.4 s 1.2 s 11.3 s

- Fibonacci computes 500 times the 18th Fibonacci number, using a Peano representation.
On this example, the optimizer has a small impact because the time spent in matching is smaller
than the time spent in allocating successors and managing the memory.
- Eratosthene computes prime numbers up to 1000, using associative list matching. The
improvement comes from the Inlining rules which avoids computing a substitution unless
the rule applies (i.e. the conditions are verified).
- Langton is a program which computes the 1000th iteration of a cellular automaton, using
pattern matching to implement the transition function. This example is interesting because it
contains more than 100 (ground) patterns. Starting from a simple one-to-one pattern matching
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algorithm, the optimizer performs program transformations such that a pair (position,symbol)
is never tested more than once. This interesting property, which characterizes deterministic
automata based approaches, can unfortunately not be generalized to any program.
- Gomoku looks for five pawn on a go board, using list matching. This example contains more
than 40 patterns and illustrates the interest of test-sharing.
- Nspk implements the verification of the Needham-Schroeder Public-Key Protocol.
- Structure is a prover for the Calculus of Structures where the inference is performed by
pattern matching and rewriting.

The following table gives some comparisons with other well known implementations.

Fibonnacci Eratosthene Langton

Tom Java Optimized 20.0 s 2.8 s 1.4 s

Tom C Optimized 0.95 s 0.36 s 0.84 s
OCaml 0.44 s 0.7 s 1.36 s
ELAN 0.77 s 0.8 s 1.26 s

All these examples are available on the Tom web page. The measures have been done on a
PowerMac 2 GHz, using Java 1.4.2, gcc 4.0, and Ocaml 3.09. They show that the proposed
approach is effective in practice and allows Tom to become competitive with state of the art im-
plementations such as OCaml. We should remind that Tom is not dedicated to a unique language.
In particular, the fact that data-structure can be user-defined contrary to functional languages
prevents us from using exception, goto, and switch constructs and thus optimizations like
those presented in [FM01].

6 Conclusion

In this paper, we have presented a new approach to compile pattern matching. This method is
based on well-attested program optimization methods. Separating compilation and optimiza-
tion in order to keep modularity, and to facilitate extensions is long-established in the compiler
construction community. Using a program transformation and a formal method approach is an
elegant way to describe, implement, and certify the proposed optimizations. This work is closed
to Sestoft approach [Ses96] which compiles naively ML-style pattern matches and by partial eval-
uation removes redundant cases instead of constructing directly the decision tree. Moreover, this
two-stage pattern compilation is directly implemented in Tom and shows how Tom language is
well-adapted for program analysis-transformation.

We have only be interested in optimizing syntactic matching and thus considered a subset of
PIL language. As Tom already manages associativity, a future work will consist in develop-
ing new transformation rules adapted to this theory, without having to change the rules relative
to syntactic one. However, note that the presented rules remain correct when considering an
extension of PIL.

This paper shows that using program transformation rules to optimize pattern matching is an
efficient solution, with respect to algorithms based on automata. The implementation of this
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work combined with the formal validation of pattern matching [KMR05] is another step towards
the construction of certified/certifying optimizing compilers.
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[Grä91] A. Gräf. Left-to-Right Tree Pattern Matching. In Proceedings of the 4th interna-
tional conference on Rewriting Techniques and Applications. LNCS 488, pp. 323–
334. Springer-Verlag, 1991.

[Jon87] S. L. P. Jones. The Implementation of Functional Programming Languages (Prentice-
Hall International Series in Computer Science). Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1987.

[KMR05] C. Kirchner, P.-E. Moreau, A. Reilles. Formal Validation of Pattern Matching Code.
In Barahone and Felty (eds.), Proceedings of the 7th international conference on Prin-
ciples and Practice of Declarative Programming. Pp. 187–197. ACM, July 2005.

[Leu96] A. Leung. C++-based Pattern Matching Language. 1996.
citeseer.ist.psu.edu/leung96cbased.html

[MRV03] P.-E. Moreau, C. Ringeissen, M. Vittek. A Pattern Matching Compiler for Multi-
ple Target Languages. In Hedin (ed.), 12th Conference on Compiler Construction.
LNCS 2622, pp. 61–76. Springer-Verlag, May 2003.

[OW97] M. Odersky, P. Wadler. Pizza into Java: Translating Theory into Practice. In Pro-
ceedings of the 24th ACM Symposium on Principles of Programming Languages.
Pp. 146–159. ACM Press, USA, 1997.

13 / 14 Volume 3 (2006)

http://hal.inria.fr/inria-00000763
http://dx.doi.org/http://doi.acm.org/10.1145/507635.507641
citeseer.ist.psu.edu/leung96cbased.html


Optimizing Pattern Matching Compilation

By Program Transformation
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