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Abstract: Since the work of Brouwer, Kolmogorov, Goedel, Kleene and many
others we know that constructive proofs have computational meaning. In Computer
Science this idea is known as the ”proofs-as-programs paradigm” or ”Curry-Howard
correspondence”. We present examples from computable analysis showing that this
paradigm not only works in principle, but can be used to automatically synthesise
practically relevant certified programs.
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Besides the contributions to its intrinsic domains such as philosophy and the foundations of
mathematics there are many applications of logic in areas outside logic. They mainly come from
logical disciplines such as set theory, model theory, computability theory and modal logic and
include, for example, in mathematics, proofs of the existence of certain algebraic structures, and,
in computer science, methods for specifying and verifying computing systems and classifying
the complexity of algorithmic problems. These applications are widely known and form a well-
established part of theoretical and practical research, in particular in Computer Science.

Less known are extra-logical applications from proof theory, a branch of logic that has for-
mal proofs as its main object of study. Classic results here are bounding informations about
functions whose totality (i.e. termination) is proven in a certain formal system. For exam-
ple, in the case of Peano Arithmetic the growth of the function is bounded by a transfinite
extension of the Ackermann Function below the ordinal ε0 (the limit of towers of ω expo-
nentials) [Gen43, Wai72]. If one further restricts the induction scheme to purely existential
formulas, then the function is even primitive recursive [Par72, Göd58]. Still, this is of little
practical interest since primitive recursion goes far beyond feasible computability. The ex-
traction of (from a computer science point of view) more relevant information, for example
polynomial time or lower complexity, can be achieved by further restricting the proof system
[Bus86, CU93, Lei95, BNS00, OW05, ABHS04]. Other kinds of bounding information rele-
vant in Approximation Theory, Functional Analysis and similar areas have been obtained rather
recently on the basis of Kohlenbach’s monotone variant of Gödel’s Functional Interpretation
[Koh08].

A further large class of applications of proof theory in computer science can be summarised
under the so called “proofs-as-programs paradigm” a.k.a. “Curry-Howard correspondence” which
is the observation that –under certain conditions– formal proofs can be viewed and executed as
programs. This correspondence is most direct for intuitionistic natural deduction (or Hilbert-
style) systems that can immediately be viewed as dependently typed lambda-calculi (or combi-
natory logics) [HLS72, Tro73, vD80, GLT89] and hence as functional programming languages.
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Extensions of this correspondence to systems with classical logic have led to interesting tech-
niques such as programming with continuations and control operators [FF87] and extensions of
the lambda-calculus such as the lambda-mu-calculus [Par92].

In this note we want to draw the reader’s attention to a very direct (and some may say bold) ap-
plication of the proofs-as-program paradigm namely the extraction of practically useful programs
from formal proofs. Since proofs are often very long and consist to a large part of purely logical
information, it is necessary to remove these purely logical parts and retain only the computation-
ally relevant components. This is achieved by a proof-theoretic technique known as realisability
that goes back to Kleene and Kreisel [Kle59, Kre59]. The realisability interpretation not only
extracts an executable program, but also a specification of that program and a formal proof that
the specification is fulfilled.

It would be an exaggeration to claim that program extraction is already being applied in prac-
tice. However, some substantial case studies have been carried out indicating that the method is
feasible and has the potential to become a viable method for safe software engineering in the fu-
ture. We mention three such case studies: A fast higher-order algorithm for normalising simply
typed lambda-terms has been extracted from Tait’s normalisation proof [Tai67, Ber93]. The algo-
rithm is known as “normalisation-by-evaluation” and had been discovered earlier by Schwichten-
berg [BS91]. This case study was carried out independently in the proof assistants Coq, Isabelle
and Minlog [BBLS06]. The extracted program is unusual because it utilises higher types of
any level to perform a purely syntactic task. The second example is concerned with Dickson’s
Lemma a result in infinitary combinatorics that is used e.g. in Gröbner Base theory. Dickson’s
Lemma states that for fixed n the set of n-tuples of natural numbers is well-quasiordered (famous
generalisations of this are Higman’s Lemma, Kruskal’s Theorem and the Graph Minor Theo-
rem). The extracted program computes for every infinite sequence of n-tuples a pair of indices
i < j such that the i-th tuple is pointwise ≤ the j-th [BSS01]. The interesting aspect of this
example is that the program is extracted from the classical i.e. non-constructive proof by Nash-
Williams [NW63] using a version of Friedman’s A-translation [Fri78] that translates classical
into constructive proofs. Finally, we mention the extraction of programs from the Intermediate
Value Theorem and the Inverse Function Theorem for continuous real functions with a positive
lower bound on the slope [Sch06]. These are probable the first non-trivial examples of program
extraction in Computable Analysis.

The last of the three case studies above is concerned with problems in constructive analysis,
and it uses a constructive representation of real numbers by Cauchy sequences. Our recent
work in program extraction is situated in constructive analysis as well, but is based on a signed
digit representation [BH08, Ber09a, BL09]. More precisely, we use inductive and coinductive
definitions to characterise uniformly continuous functions in such a way that one can extract an
implementation of such functions by non-wellfounded trees that act as transformers of signed
digit streams. A suitable adaptation of realisability to this setting is described in [Ber09b]. We
have extracted from constructive proofs programs that compute high iterations of the logistic
map, integrals of continuous functions, the constant π , and functions defined power series.

The latter two examples make use of a more general setting where the set of signed digits
SD := {0,1,−1}, which is to be thought of as the set of representations of the contractions
avd(x) := (d + x)/2 (d ∈ SD), is replaced by an arbitrary set D of endomaps on a set X . Large
parts of our theory can be developed for arbitrary such structures (X ,D) which we call digit
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spaces. This greater generality not only leads to clearer proofs but also to new algorithms, the
last two case studies mentioned above being examples.

The programs in the latter case study have been extracted “by hand” from proofs in the theory
of digit spaces which are “nearly formal”. The implementation of the theory of digit spaces using
a suitable proof assistant (for example, Minlog or Coq) is a matter of future work.

The method of program extraction from proofs can be viewed as a consistent and rather
radical continuation of methods of program development, advocated by Dijkstra and others
[Dij97, Gri81, DJ78] where programs are correct “by construction”. Whether or not these meth-
ods will eventually be accepted and used in practice remains to be seen. The experimental results
obtained so far are encouraging, however.
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