
Electronic Communications of the EASST
Volume 24 (2009)

Proceedings of the Workshop
The Pragmatics of OCL and Other Textual Specification

Languages
at MoDELS 2009

Checking Unsatisfiability for OCL Constraints

Manuel Clavel, Marina Egea and Miguel A. Garcı́a de Dios

13 pages

Guest Editors: J. Cabot, J. Chimiak-Opoka, F. Jouault, M. Gogolla, A. Knapp
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Checking Unsatisfiability for OCL Constraints

Manuel Clavel1, Marina Egea2 and Miguel A. Garcı́a de Dios3∗

1 manuel.clavel@imdea.org
3 miguelangel.garcia@imdea.org

IMDEA Software Institute, Madrid, Spain

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid, Spain

2 marinae@inf.ethz.ch
Information Security / ZISC

ETH Zürich, Switzerland

Abstract: In this paper we propose a mapping from a subset of OCL into first-
order logic (FOL) and use this mapping for checking the unsatisfiability of sets
of OCL constraints. Although still preliminary work, we argue in this paper that
our mapping is both simple, since the resulting FOL sentences closely mirror the
original OCL constraints, and practical, since we can use automated reasoning tools,
such as automated theorem provers and SMT solvers to automatically check the
unsatisfiability of non-trivial sets of OCL constraints.

Keywords: OCL, unsatisfiability, automated deduction, SMT solvers

1 Motivation

The lack of tool support for OCL was pointed out in [CBC05] as a main cause for the limited
adoption of the language in industry. Since then, many initiatives have been brought to fruition
and their outcomes are available to designers (see [Dem05]). Among the tool categories that
have received significant attention are:

• Parsers: to check the syntactical well-formedness of an expression: e.g., the Dresden OCL
2.0 parser [Kon05, Sof07].

• Evaluators: to obtain the value of an expression within a contextual model: e.g., USE
[Dat06], MDT OCL [Hus08], and EOS [CED08, DCE08].

• Translators: to map (for different purposes) an expression into a (logically equivalent)
expression in other languages and/or formalisms: e.g.,

– OCL2SQL [Hei06, Sof07] maps OCL constraints into SQL queries;

∗ Research partially supported by Spanish MEC projects TIN2006-15660-C02-01 and by Comunidad de Madrid
Program S-0505/TIC/0407.

1 / 13 Volume 24 (2009)

mailto:manuel.clavel@imdea.org
mailto:miguelangel.garcia@imdea.org
mailto:marinae@inf.ethz.ch

Checking Unsatisfiability for OCL Constraints

– UMLtoCSP [CCR07b, CCR07a] maps OCL constraints into constraint programming
expressions to support automated bounded verification of UML class diagrams an-
notated with OCL constraints;

– MOMENT [CRBG08] and ITP-OCL [CE08] map OCL into equational logic (al-
though using different approaches) to support automated evaluation of OCL expres-
sions using term-rewriting.

– KeY [BS07] includes a mapping of OCL into first-order logic to allow interactive
reasoning about UML diagrams with OCL constraints.

– HOL-OCL [Bru07, BW07] maps OCL into higher-order logic also to allow interac-
tive reasoning about UML diagrams with OCL constraints.

The work presented here belongs to the third category: it proposes a mapping from OCL to
first-order logic, which is defined with the purpose of supporting (unbounded) unsatisfiability
checks for OCL expressions using automated reasoning tools. In our view, being able to check
the unsatisfiability of (sets of) OCL expressions is a powerful tool, since it will allow modelers
to (among other tasks):

• Verify class invariants, by checking that they logically imply the expected constraints/prop-
erties;

• Verify method preconditions, by checking that the class invariants do not logically imply
their negations; and

• Verify method postconditions, by checking that they do not logically imply the negation
of (any of) the class invariants.

However, also in our view, what will make an unsatisfiability checker not only powerful, but
also practical, is being automated. Given the undecidable nature of the full OCL language, one
can only expect to have an automated unsatisfiability checker for a large class of OCL expres-
sions. In this paper we do not attempt to define how large and/or interesting is the class of
unsatisfiable OCL expressions that we are able to check automatically. Nevertheless, we will
argue that our mapping is both simple, since the resulting FOL sentences closely mirror the
original OCL constraints, and practical, since we can use existing automated theorem provers
(e.g., Prover9 [McC06]) and/or SMT solvers (e.g., Yices [DM08]) to automatically check the
unsatisfiability of non-trivial sets of OCL constraints.

Organization In Section 2 we define our notion of unsatisfiability for OCL constraints. Then,
in Section 3 we define our mapping from OCL to FOL. Next, in Section 4 we report on our expe-
rience using two different automated reasoning tools for checking the unsatisfiability of (sets of)
OCL constraints: namely, Prover9 [McC06] (an automated theorem prover) and Yices [DM08]
(an SMT solver). We conclude with a discussion on related and future work.

Proc. OCL 2009 2 / 13

ECEASST

! !

Figure 1: A simple Library-model.

2 Unsatisfiability of OCL constraints

In this section we introduce our notion of unsatisfiability for OCL constraints, as well as the ex-
amples that we will use in the following sections. The notion of unsatisfiability that we propose
emphasizes the logical meaning of OCL constraints; in fact, it basically translates to OCL the
standard notion of unsatisfiability for logic formulas. There are other notions of satisfiability/un-
satisfiability for OCL constraints in the literature, which we will briefly discuss at the end of this
section.

In what follows, we denote by OCL constraint any OCL expression of type Boolean. We do
not assume that instances of models always have a finite a number of elements.

Definition 1 Given a model (class diagram) M , and a set of OCL constraints Φ, we say that
Φ is M -unsatisfiable if and only if there does not exist an M -instance (object diagram) O on
which every constraint in Φ evaluates to true.

To illustrate this notion, we introduce the following example. Table 1 shows a list of OCL
constraints: they all refer to the simple class diagram Library shown in Figure 1. In this model,
libraries contains Books and books have Authors, pages, and an ISBN code.

According to Definition 1, the following subsets (among others) of the constraints shown in
Table 1 are Library-unsatisfiable: {1,2}, {1,8}, {1,10}, {2,3}, {2,4}, {2,5}, {2,6}, {7,8}, {11,
13}, {12}, {14}, and {15}.

Notice that the subset {9,10,11} is not Library-unsatisfiable: a library with just one book
will satisfy these constraints. On the other hand, the subset {9,10,11,16} is indeed Library-
unsatisfiable. Notice also that the subset {17} is not Library-unsatisfiable: a library with an
infinite number of books will satisfy this constraint. On the other hand, the subset {17, 18} is
indeed Library- unsatisfiable.

As mentioned before, other notions of satisfiability/unsatisfiability of UML models with OCL
constraints can be found in the literature. In particular, the notions used in [CCR07b, CT07] are
those of weak and strong satisfiability (and related notions are also introduced in [BW07]). Weak
satisfiability means that there exists a finite instance of the model in which at least one class is
populated with at least one element. Strong satisfiability means that there exists a finite instance
of the model in which all its classes are populated with at least one element. Notice that, if a set
of constraints is unsatisfiable (in our sense), then it can not be weak nor strong satisfiable. On
the other hand, if a set of constraints is not weak nor strong satisfiable, it does not imply that is
unsatisfiable (in our sense).

3 / 13 Volume 24 (2009)

Checking Unsatisfiability for OCL Constraints

1. Book.allInstances()−>isEmpty().

2. Book.allInstances()−>exists(x|x.pages > 300).

3. Book.allInstances()−>forAll(x|x.pages < 300).

4. Book.allInstances()−>select(x|x.pages > 300)−>isEmpty().

5. Book.allInstances()−>reject(x|x.pages <= 300)−>isEmpty().

6. Book.allInstances()−>collect(x|x.pages)−>asSet()−>forAll(i|i < 300).

7. Book.allInstances()−>forAll(x|x.author−>isEmpty()).

8. Author.allInstances()−>exists(a|a.books−>notEmpty()).

9. Book.allInstances()−>forAll(x,y|x<>y implies x.isbn<>y.isbn)).

10. Book.allInstances()−>exists(x|Book.allInstances()−>excluding(x)
−>forAll(y|y.isbn=x.isbn)).

11. Book.allInstances()−>notEmpty().

12. Book.allInstances()−>exists(x|Book.allInstances()−>excludes(x)).

13. Book.allInstances()−>forAll(x|Book.allInstances()−>excluding(x)−>includes(x)).

14. Book.allInstances()−>exists(x|Book.allInstances()−>excluding(x)−>includes(x)).

15. Book.allInstances()−>collect(x|x.author)−>asSet()−>exists(y|y.books
−>isEmpty())).

16. Book.allInstances()−>size() > 1.

17. Book.allInstances()−>forAll(b|Book.allInstances()−>exists(x|x.pages > b.pages)).

18. Book.allInstances()−>size() = 2.

Table 1: List of constraints

3 A mapping from OCL to FOL

In this section we define a mapping from a subset of OCL into first-order logic (FOL). Given a
set of OCL constraints, our mapping generates a set of FOL formulas such that, if the resulting
set is unsatisfiable, then the original set is also unsatisfiable. We will argue in Section 4 that our
mapping is both simple and practical. At this preliminary stage, we are not ready, however, to
provide a formal proof of the correctness of this mapping (with respect to a well-defined formal
semantics for OCL).

Proc. OCL 2009 4 / 13

ECEASST

OCL constraints specify properties that must be satisfied by a model. In order to do so in a
concise way, OCL provides different constructors to refer to specific collections of elements. In
a nutshell, our mapping is defined recursively over the structure of OCL expressions:

• Boolean-expressions are translated to formulas, which essentially mirror their logical struc-
ture; Integer-expressions are basically copied; at this point, we do not consider String-
expressions.

• Collection-expressions are translated to predicates, whose meaning is defined by additional
formulas generated by the mapping; at this point, we only consider Set-expressions.

• Association-ends are translated by predicates, which are also defined by formulas gener-
ated by the mapping; at this point, we do not consider qualified associations.

• Attributes are translated by functions, which are left undefined by the mapping.

The function map() below defines our mapping from OCL to FOL. We do not attempt to cover
here the full OCL language, but only a subset that is significantly enough so as to show the
potential of our proposal.

In what follows, given an iterator variable x, the expression x[denotes a fresh new logical
variable. Similarly, given Boolean-expressions BoolExpr, object expressions ObjExpr, and Set-
expressions SetExpr and SetExpr′, the expressions [collect, SetExpr, SetExpr’][, [select, SetExpr,
BoolExpr][, [reject, SetExpr, BoolExpr][, [including, SetExpr, ObjExpr][, and [excluding, SetExpr,
ObjExpr][denote fresh new predicate names.

The auxiliary function name(), used in the definition of map(), is the one in charge of providing
unique names for the FOL predicates that translate the different OCL Collection-expressions; it
also translates OCL literal values by the corresponding FOL terms.

Definition 2 The auxiliary function name() is defined by the following clauses:

name(Integer) = Integer.
name(−Integer) =−Integer.
name(Integer[+ | ∗]Integer′) = Integer[+ | ×]Integer′.
name(Var) = Var.
name(ClassId) = ClassId.
name(ObjExpr.Attr) = Attr(name(ObjExpr)).
name(ObjExpr.AssocEnd) = AssocEnd(name(ObjExpr)).
name(ClassExpr.allInstances()) = name(ClassExpr).
name(SetExpr−>collect(x|SetExpr′)) = [collect,SetExpr,SetExpr′][.
name(SetExpr−>select(x|BoolExpr)) = [select,SetExpr,BoolExpr][.
name(SetExpr−>reject(x|BoolExpr)) = [reject,SetExpr,BoolExpr][.
name(SetExpr−>excluding(x|ObjExpr)) = [excluding,SetExpr,ObjExpr][.
name(SetExpr−>including(x|ObjExpr)) = [including,SetExpr,ObjExpr][.

The auxiliary function in coll(), also used in the definition of map(), basically returns the
atomic formula that represents the application of a given predicate to a given number of argu-
ments.

5 / 13 Volume 24 (2009)

Checking Unsatisfiability for OCL Constraints

Definition 3 The auxiliary function in coll() is defined by the following clause:

in coll(Name,x) = Name(x).

Finally, the auxiliary function make conj returns the conjunction of a given set of formulas.

Definition 4 The auxiliary function make conj() is defined by the following clauses:

make conj(/0) =>.
make conj({φ}) = φ .
make conj({φ1, . . . ,φn+1}) = φ1∧·· ·∧φn+1.

We are now ready to define our mapping from OCL to FOL. First, the function map() gen-
erates, by default, the sentences defining the predicates that represent, in our mapping, the
association-ends specified in the given model.

Definition 5 Given an association between two classes Class1 and Class2, with association-
ends AssocEndClass1 and AssocEndClass2 , the function map() generates, by default, the following
sentences:

∀(x,y)(AssocEndClass1(x,y)⇒ Class1(y)).
∀(x,y)(AssocEndClass2(x,y)⇒ Class2(y)).
∀(x,y)(AssocEndClass1(x,y)⇔ AssocEndClass2(y,x)).

Next, we define the mapping from OCL Boolean-expressions to FOL formulas: essentially, we
mirror the logical structure of the OCL expressions in the resulting FOL formulas. In particular,
we map iterator variables into logical variables, which are existentially or universally quantified
depending on the iterator used.

Definition 6 The function map() on Boolean-expressions is defined by clauses shown in Fig-
ure 2.

Finally, we define the mapping from OCL Collection-expressions to FOL formulas. Recall
that collections are represented in our mapping by predicates. The function map() defines these
predicates by generating the appropriate FOL formulas. Recall also that the only Collection-
expressions currently covered by our mapping are the Set-expressions.

Definition 7 The function map() on Collection-expressions is defined by clauses shown in Fig-
ure 3.

4 Examples

In this section, we argue, using a set of examples, that our mapping is both simple and practical.

Proc. OCL 2009 6 / 13

ECEASST

map(true)
= {>}.

map(false)
= {⊥}.

map(IntExpr[> |< |>= |<= | = |<>]IntExpr′)
= {name(IntExpr)[>|>|>=|<=|=|<>]name(IntExpr′)}.

map(not BoolExpr)
= {¬(make conj(map(BoolExpr)))}.

map(BoolExpr and BoolExpr′)
= {make conj(map(BoolExpr))∧make conj(map(BoolExpr′))}.

map(BoolExpr or BoolExpr′)
= {make conj(map(BoolExpr))∨make conj(map(BoolExpr′))}.

map(BoolExpr implies BoolExpr′)
= {make conj(map(BoolExpr))⇒make conj(map(BoolExpr′))}.

map(SetExpr−>isEmpty())
= {∀(x[)(¬(in coll(name(SetExpr),x[)))} ∪ map(SetExpr).

map(SetExpr−>notEmpty())
= {∃(x[)(in coll(name(SetExpr),x[))} ∪ map(SetExpr).

map(SetExpr−>excludes(ObjExpr))
= {¬(in coll(name(SetExpr),name(ObjExpr)))} ∪ map(SetExpr).

map(SetExpr−>includes(ObjExpr))
= {in coll(name(SetExpr),name(ObjExpr))} ∪ map(SetExpr).

map(SetExpr−>exists(x|BoolExpr))
= {∃(x[)(in coll(name(SetExpr),x[) ∧ make conj(map(BoolExpr[x 7→ x[])))}
∪ map(SetExpr).

map(SetExpr−>forAll(x|BoolExpr))
= {∀(x[)(in coll(name(SetExpr),x[) ⇒make conj(map(BoolExpr[x 7→ x[])))}
∪ map(SetExpr).

Figure 2: Definition: map() on Boolean-expressions.

7 / 13 Volume 24 (2009)

Checking Unsatisfiability for OCL Constraints

map(ClassId.allInstances())
= /0.

map(SetExpr−>collect(x|SetExpr′)−>asSet())
= {∀(y[)(in coll(name(SetExpr−>collect(x|SetExpr′),y[)
⇔∃(w[)(in coll(name(SetExpr),w[)∧

in coll(name(SetExpr′[x 7→ w[]),y[))))}.
map(SetExpr−>collect(x|ObjExpr)−>asSet())

= {∀(y[)(in coll(name(SetExpr−>collect(x|ObjExpr)),y[)
⇔∃(w[)(in coll(name(SetExpr),w[)∧

y[= name(ObjExpr[x 7→ w[])))}.
map(SetExpr−>select(x|BoolExpr))

= {∀(y[)(in coll(name(SetExpr−>select(x|BoolExpr[x 7→ y[])),y[)
⇔ (in coll(name(SetExpr),y[)∧

make conj(map(BoolExpr[x 7→ y[]))))}.
map(SetExpr−>reject(x|BoolExpr))

= {∀(y[)(in coll(name(SetExpr−>reject(x|BoolExpr[x 7→ y[])),y[)
⇔ (in coll(name(SetExpr),y[)∧

¬(make conj(map(BoolExpr[x 7→ y[])))))}.
map(SetExpr−>excluding(ObjExpr))

= {∀(y[)(in coll(name(SetExpr−>excluding(ObjExpr)),y[)
⇔ (in coll(name(SetExpr),y[)∧ y[6= name(ObjExpr)))}.

map(SetExpr−>including(ObjExpr))
= {∀(y[)(in coll(name(SetExpr−>including(ObjExpr)),y[)
⇔ (in coll(name(SetExpr),y[)∨ y[= name(ObjExpr)))}.

Figure 3: Definition: map() on Collection-expressions.

.

Proc. OCL 2009 8 / 13

ECEASST

4.1 Mapping constraints

With respect to other mappings previously proposed, one advantage of our mapping is that, in
addition to be mechanizable, the resulting formulas are similar to the original OCL constraints,
both in their size and in their logical structure. In this sense, we claim that our mapping is simple.
To illustrate this claim, we show in Figure 4 the FOL formulas that the function map() generates
to define the predicates that represent, in our mapping, the two association-ends in the Library-
model. More interestingly, we show in Figure 5 the FOL formulas resulting from applying the
function map() to a representative subset of the constraints listed in Table 1.

∀(x,y)(books(x,y)⇒ Book(y))
∀(x,y)(author(x,y)⇒ Author(y))
∀(x,y)(books(x,y)⇔ author(y,x))

Figure 4: Example: Mapping association-ends.

4.2 Checking unsatisfiability

Another crucial advantage of our mapping is that the resulting formulas can be checked for
unsatisfiability using automated reasoning tools. To illustrate our point, we have tried to auto-
matically prove the unsatisfiability of different subsets of the constraints shown in Table 1 using
Prover9 [McC06] (an automated theorem prover) and Yices [DM08] (an SMT solver). The re-
sults are shown in Table 2. Both tools finished their tasks in less than a second, running on a
standard laptop computer. In our experiments, we used both tools with their default (command)
options.

Prover9 [McC06] is a resolution/paramodulation automated theorem prover for first-order and
equational logic. It uses two default limits which, although good in practice, can prevent proofs
from being found. Not surprisingly (since it does not support integer arithmetic), Prover9 could
not automatically prove the unsatisfiability of some of the subsets of constraints in our experi-
ment.

Yices [DM08] is a high-performance SMT solver that decides the satisfiability of proposi-
tional formulas that mix uninterpreted function symbols and equality with interpreted symbols
from various theories, in particular for linear real and integer arithmetic, but also for recursive
datatypes, tuples, records, lambda expressions and quantifiers among others. Although Yices
is not complete when quantifiers are used, it was able to automatically prove the unsatisfiabil-
ity of all the subsets of constraints in our experiment. This result is certainly encouraging for
our purposes; moreover, we expect to take advantage of its decision procedures for recursive
datatypes, tuples, and records, in order to prove the unsatisfiability of more complex subsets of
OCL constraints.

9 / 13 Volume 24 (2009)

Checking Unsatisfiability for OCL Constraints

(1) map(Book.allInstances()−>isEmpty())
= {∀(x)(¬Book(x))}.

(2) map(Book.allInstances()−>exists(x|x.pages > 300))
= {∃(x)(Book(x)∧ (pages(x) > 300))}.

(3) map(Book.allInstances()−>forAll(x | x.pages < 300))
= {∀(x)(Book(x)⇒ (pages(x) < 300))}.

(4) map(Book.allInstances()−>select(x|x.pages > 300)−>isEmpty())
= {∀(x)¬(select1(x)),
∀(x)(select1(x)⇔ (Book(x)∧ (pages(x) > 300)))}.

(7) map(Book.allInstances()−>forAll(x|x.author−>isEmpty()))
= {∀(x)(Book(x)⇒∀(y)(¬(author(x,y)}.

(8) map(Author.allInstances()−>exists(a|a.books−>notEmpty()))
= {∃(a)(Author(a)∧∃(x)(books(a,x)))}.

(9) map(Book.allInstances()−>forAll(x,y|x<>y implies x.isbn<>y.isbn))
= {∀(x)(Book(x)⇒∀(y)(Book(y)⇒ (x 6= y⇒ isbn(x) 6= isbn(y))))}.

(10) map(Book.allInstances()−>exists(x|Book.allInstances()−>excluding(x)
−>forAll(y|y.isbn=x.isbn)))

= {∃(x)(Book(x)∧ [∀(y)(excluding1(y)⇒ (isbn(x) = isbn(y)))
∧∀(z)(excluding1(z)⇔ (Book(z)∧ z 6= x))])}.

(11) map(Book.allInstances()−>notEmpty())
= {∃(x)(Book(x))}.

(12) map(Book.allInstances()−>exists(x|Book.allInstances()−>excludes(x)))
= {∃(x)(Book(x)∧¬(Book(x)))}.

(13) map(Book.allInstances()−>forAll(x|Book.allInstances()−>excluding(x)
−>includes(x)))

= {∀(x)((Book(x)⇒ excluding1(x))
∧∀(y)((Book(y)∧ y 6= x)⇔ excluding1(y)))}.

(14) map(Book.allInstances()−>exists(x|Book.allInstances()−>excluding(x)
−>includes(x)))

= {∃(x)(Book(x)∧ excluding1(x)
∧(∀(y)((Book(y)∧ y 6= x)⇔ excluding1(y))))}.

(15) map(Book.allInstances()−>collect(x|x.author)−>asSet()
−>exists(y|y.books−>isEmpty()))
= {∃(y)(collect1(y)∧∀(x)(¬(books(y,x))),
∀(z)(collect1(z)⇔∃(w)(Book(w)∧ author(w,z))))}.

Figure 5: Example: Mapping constraints.

5 Related work

As already mentioned, there are other mappings from OCL into different languages and/or for-
malisms, each one with its own purposes and target reasoning tool, which makes difficult to do
a general comparison. We discuss here only those proposals that support (in one way or an-
other) our same objectives, namely, checking unsatisfiability for OCL constraints. In a nutshell,
none of these mappings supports both unbounded and automated unsatisfiability checks for OCL
constraints, as our mapping does, for a significantly subset of the language.

Proc. OCL 2009 10 / 13

ECEASST

{1,2} {1,8} {1,10} {2,3} {2,4} {2,5} {2,6} {7,8} {11,13} {12} {14} {15}
Prover9

√ √ √
•

√
• •

√ √ √ √ √

Yices
√ √ √ √ √ √ √ √ √ √ √ √

Table 2: Case study: checking unsatisfiability

The KeY tool [BS07] is able to generate proof obligations from checking different properties of
UML models with OCL constraints (e.g., invariant preservation), using a translation of OCL into
first order predicate logic. To the best of our knowledge, the KeY tool translates OCL collection
expressions into first order terms, introducing additional axioms in order to constrain the inter-
pretation of the new function symbols which represent the OCL collections [BKS02].1 Users
can then interact with the KeY theorem prover to logically reason about their UML models. A
limited amount of automated reasoning is provided, which is far from what is currently offered
by modern SMT solvers.

HOL-OCL [BW07] is an interactive proof environment for OCL. It is implemented as a shal-
low embedding of OCL into higher-order logic (HOL) within the theorem prover Isabelle. The
resulting translations may be hard to understand by standard software engineers. Also, since the
amount of automated reasoning which is supported by HOL-OCL is limited, software engineers
may find hard to use this tool when reasoning about their UML models.

UMLtoCSP [CCR07b] provides bounded automatic verification of UML models annotated
with OCL constraints. The users must limit the search space by explicitly indicating the number
of objects in each class, the number of links of each association and the possible values of each
attribute. When the tool can not find a satisfying instance within the specified search space, this
does not means that the property does not hold: it can still hold for values outside the search
space (and the user may try to verify the property with wider intervals).

UML2Alloy [Ana, ABGR07] is a front-end that transforms UML diagrams annotated with
OCL constraints into the Alloy notation. It translates the model into a Boolean expression, which
is then analysed by the SAT solvers implemented within Alloy. As in the case of UMLtoCSP,
the domain must be bounded by the user before analysing the model.

6 Conclusions and future work

In this paper we have proposed a mapping from a significant subset of OCL into first-order logic
(FOL). Although this is still preliminary work, we have argued that our mapping is both simple,
since the resulting FOL sentences closely mirror the original OCL constraints, and practical,
since we can use automated theorem provers (e.g., Prover9) and/or SMT solvers (e.g., Yices) to
automatically check the unsatisfiability of non-trivial sets of OCL constraints.

In the near future, we plan to extend our mapping to deal with larger subsets of OCL. Since
this is preliminary work, the list of currently missing features is certainly large: we discuss here

1 Since the result is often lengthy and hard to read, it was suggested (via some examples) in [BKS02] to use, as an
alternative, a predicative translation to first order formulas. Again, to the best of our knowledge, this line of research
has not been followed up within the KeY community. Also the examples shown in [BKS02] do not provide enough
information so as to understand how this predicative translation will deal with other cases, like collect-expressions,
and including|excluding-expressions, or with nested-iterator expressions.

11 / 13 Volume 24 (2009)

Checking Unsatisfiability for OCL Constraints

only the most important ones. First, we should be able to deal with bags. Our idea here is to
translate Bag-expressions using predicates, as we do for Set-expressions, but with an additional
argument indicating the number of occurrences of a given element in the bag. Of course, the
proposed mapping for the different Collect-operations will have to be modified accordingly. Sec-
ond, we should be able to deal with generalizations. The idea here is to add, by default, the
expected sentences formalizing that every element in the subclass-collection also belongs to the
super-class collection. Third, we should be able to deal with size-expressions. Here, we do not
have yet a general solution: dealing with constraints like (16) and (18) in Table 1 and, in general,
with constraints that simply restrict the multiplicity of collections, is rather simple; defining a
mapping for arbitrary size-expressions appearing anywhere inside constraints requires further in-
vestigation. Finally, it would be interesting to define a mapping for general Collection-expressions
and for Tuple-expressions, and to explore the capabilities of SMT solvers to automatically check
the unsatisfiability of the resulting formulas. In the long term, we should prove, of course, the
correctness of our mapping with respect to a formal semantics of the OCL language.

Bibliography

[ABGR07] K. Anastasakis, B. Bordbar, G. Georg, I. Ray. UML2Alloy: A Challenging Model
Transformation. In ACM/IEEE 10th International Conference on Model Driven En-
gineering Languages and Systems (MoDELS 2007). LNCS 4735. 2007.

[Ana] K. Anastasakis. UML2Alloy. http://www.cs.bham.ac.uk/∼bxb/UML2Alloy.

[BKS02] B. Beckert, U. Keller, P. H. Schmitt. Translating the Object Constraint Language
into First-order Predicate Logic. In Proceedings, VERIFY, Workshop at Federated
Logic Conferences (FLoC), Copenhagen, Denmark. 2002.

[Bru07] A. D. Brucker. An Interactive Proof Environment for Object Oriented Specifications.
PhD thesis, ETH Zurich, 2007.

[BW07] A. D. Brucker, B. Wolff. The HOL-OCL tool. http://www.brucker.ch/, 2007. ETH
Zurich.

[BS07] B. Beckert, R. Hähnle, P. H. Schmitt (eds.). Verification of Object-Oriented Soft-
ware: The KeY Approach. LNCS 4334. Springer-Verlag, 2007.

[CBC05] D. Chiorean, M. Bortes, D. Corutiu. Proposals for a Widespread Use of OCL. In
Tool Support for OCL and Related Formalisms - Needs and Trends– MoDELS’05
Conference Workshop. Pp. 68–82. 2005.

[CCR07a] J. Cabot, R. Clarisó, D. Riera. A tool for the formal verification of UML/OCL mod-
els using Constraint Programming. 2007. http://gres.uoc.edu/UMLtoCSP/.

[CCR07b] J. Cabot, R. Clarisó, D. Riera. UMLtoCSP: a tool for the formal verification of
UML/OCL models using constraint programming. In ASE ’07: Proceedings of the
twenty-second IEEE/ACM International Conference on Automated Software Engi-
neering. ACM, New York, NY, USA, 2007.

Proc. OCL 2009 12 / 13

http://www.cs.bham.ac.uk/~bxb/UML2Alloy
http://www.brucker.ch/
http://gres.uoc.edu/UMLtoCSP/

ECEASST

[CE08] M. Clavel, M. Egea. The ITP/OCL tool. http://maude.sip.ucm.es/itp/ocl/, 2008.

[CED08] M. Clavel, M. Egea, M. A. G. de Dios. Building an Efficient Component for OCL
Evaluation. ECEASST 15, 2008.

[CRBG08] J. Carsı́, I. Ramos, A. Boronat, A. Gómez. The MOMENT: MOdel ManageMENT
Framework Project. http://moment.dsic.upv.es, 2008.

[CT07] J. Cabot, E. Teniente. Transformation techniques for OCL constraints. Science Com-
puter Programming 68(3):152–168, 2007.

[Dat06] Database Systems Group. The UML Specification Environment (USE) tool. 2006.
http://www.db.informatik.uni-bremen.de/projects/USE/.

[DCE08] M. A. G. de Dios, M. Clavel, M. Egea. The Eye OCL Software (EOS). 2008. http:
//maude.sip.ucm.es/eos.

[Dem05] B. Demuth. The OCL Portal. http://www-st.inf.tu-dresden.de/ocl/, 2005.

[DM08] B. Dutertre, L. Moura. Yices: An SMT Solver. http://yices.csl.sri.com/, 2008.

[Hei06] F. Heidenreich. OCL-Codegenerierung für Deklarative Sprachen. Master’s thesis,
University of Dresden, March 2006. http://dresden-ocl.sourceforge.net.

[Hus08] K. Hussey. MDT-OCL. http://www.eclipse.org, 2008.

[Kon05] A. Konermann. The Parser Subsystem of the Dresden OCL 2.0 Toolkit - Design and
Implementation. http://dresden-ocl.sourceforge.net/publications.html, 2005.

[McC06] W. McCune. Prover9. http://www.cs.unm.edu/∼mccune/prover9/manual/
June-2006C/, 2006.

[Sof07] Software Technology Group. The OCL 2.0 Dresden Toolkit. http://sourceforge.net,
2007.

13 / 13 Volume 24 (2009)

http://maude.sip.ucm.es/itp/ocl/
http://moment.dsic.upv.es
http://www.db.informatik.uni-bremen.de/projects/USE/
http://maude.sip.ucm.es/eos
http://maude.sip.ucm.es/eos
http://www-st.inf.tu-dresden.de/ocl/
http://yices.csl.sri.com/
http://dresden-ocl.sourceforge.net
http://www.eclipse.org
http://dresden-ocl.sourceforge.net/publications.html
http://www.cs.unm.edu/~mccune/prover9/manual/June-2006C/
http://www.cs.unm.edu/~mccune/prover9/manual/June-2006C/
http://sourceforge.net

	Motivation
	Unsatisfiability of OCL constraints
	A mapping from OCL to FOL
	Examples
	Mapping constraints
	Checking unsatisfiability

	Related work
	Conclusions and future work

