
Electronic Communications of the EASST
Volume 23 (2009)

Proceedings of the
Ninth International Workshop on

Automated Verification of Critical Systems
(AVOCS 2009)

Mobile CSP‖B

Beeta Vajar, Steve Schneider and Helen Treharne

17 pages

Guest Editor: Markus Roggenbach
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Mobile CSP‖B

Beeta Vajar1, Steve Schneider2 and Helen Treharne3

1b.vajar@surrey.ac.uk
2s.schneider@surrey.ac.uk
3h.treharne@surrey.ac.uk

Department of Computing, University of Surrey, Guildford, Surrey, UK

Abstract: CSP‖B is a combination of CSP and B in which CSP processes are used
as control executives for B machines. This architecture enables a B machine and its
controller to interact and communicate with each other while working in parallel.
The architecture has focused on sequential CSP processes as dedicated controllers
for B machines. This paper introduces Mobile CSP‖B, a formal framework based
on CSP‖B which enables us to specify and verify concurrent systems with mobile
architecture instead of the previous static architecture. In Mobile CSP‖B, a parallel
combination of CSP processes act as the control executive for the B machines and
these B machines can be transferred between CSP processes during the system ex-
ecution. The paper introduces the foundations of the approach, and illustrates the
result with an example.

Keywords: CSP, B, mobility

1 Introduction

Numerous methods which combine state and event based models have been proposed: ZCCS
[GS97], CSP-OZ [Fis97], Circus [OCW07], CSP2B [But00], ProB [LB03] and CSP ‖ B [TS02,
ST05]. Their advantage is that complex systems can be described and their verification ensures
consistency of the models. Some integration, e.g., PIOZ [TDC04] and π | B [KST07], support
the description of mobility and dynamic patterns. This additional functionality is suitable for
modelling agent systems or peer-to-peer networks where consideration of mobility is important.
In this paper, we are interested in extending our CSP ‖ B approach to include mobility and we
have developed a formal framework so that we can compositionally verify the consistency of
CSP ‖ B specifications that include mobile aspects. This allows us to extend the range of speci-
fications that we can write in CSP ‖ B and retains our philosophy of not changing the underlying
CSP [Sch00, Hoa85] and classical B [Sch01, Abr96] semantics. The framework adopts similar
concepts to the architecture proposed in π | B. However, π | B was limited to systems without
inputs and outputs and was restricted to a framework to support divergence freedom verification.
In this paper, we can deal with specifications that contain inputs and outputs and in addition to
divergence freedom we can check for deadlock freedom. These two checks are the minimum
verification that should be carried out in order to ensure that a mobile CSP ‖ B specification is
consistent. We use the divergence freedom check to confirm that B operations are called within
their preconditions. In [Ros08] Roscoe introduces a new operator into a variant of CSP, introduc-
ing mobility in the way that the rights to use particular events are transferred between processes

1 / 17 Volume 23 (2009)

mailto:b.vajar@surrey.ac.uk
mailto:s.schneider@surrey.ac.uk
mailto:h.treharne@surrey.ac.uk

Mobile CSP‖B

along special rights channels. Our approach is similar, in that channels can be transferred be-
tween processes. However, our work is motivated by the desire to retain access to the supporting
CSP and B toolsets, and so we aim to minimise the extension required to enable the form of
mobility we aim to model.

1.1 The B-Method

The main unit of specification in the B-Method is an abstract machine. An abstract machine
describes the state of the system in terms of mathematical structures such as sets, relations, func-
tions and sequences. It also provides operations which change the state of the system. Each
operation has a precondition or a guard. For the purposes of this paper we will restrict ourselves
to preconditioned operations, as in classical B. Preconditioned operations have the form PRE
P THEN S END, where P is the precondition, and S is the body of the operation, written in
Abstract Machine Notation (AMN), a simple language that contains assignment, choice, con-
ditional, and precondition statements. A precondition expresses a predicate on the state of the
machine which must hold when the operation is invoked, in order to ensure that the operation
behaves as described by S; otherwise no guarantees can be given.

If S is an statement and Q is a predicate, the notation [S]Q (also wp(S,Q)) denotes the weakest
precondition which must be true when executing S to guarantee to reach a state in which Q is
true.

The B-Method is a formal method supported by many comprehensive tools such as: B-Toolkit
[BC02], ProB, and Atelier B [Cle09].

1.2 CSP

CSP is a theoretical notation or language for specifying and verifying concurrent systems, in
terms of the events that they can perform. CSP provides a framework for describing and analysing
interacting aspects of concurrent systems. Concurrent systems consist of interacting components
known as processes. Each process works independently and may interact with its environment
and other processes in the system. A process performs various events which describe its be-
haviour. CSP is an event-based formal language for designing and analysing a system behaviour
through the events happening in the system. Its operators include event prefixing, channel input
and output, choice, recursion, and parallel composition in which parallel components synchro-
nise on events that they have in common. The variant of CSP that we will use in this paper is
given in Section 3.

CSP has a variety of semantic models, based on observations. In this paper we are concerned
primarily with traces and with divergences, though also with a need to handle deadlocks (which
requires the failures model). A trace tr of a process P is a finite sequence of events which P is
able to perform. The set of all possible traces of process P is denoted by traces(P). A divergence
of a process P is a sequence of events tr during or after which P can diverge—no guarantees can
be made of its behaviour after divergence.

CSP is supported by highly efficient software tools such as ProBE [FSEL07b] and FDR
[FSEL07a], supporting state exploration, refinement, divergence, and deadlock checking.

Proc. AVOCS 2009 2 / 17

ECEASST

1.3 CSP‖B

CSP ‖ B is a parallel combination between CSP and B in which a CSP process is used as a
control executive for a B machine. For each B machine’s operation bb←− op(aa), there is a
channel op between the CSP controller and the B machine which carries data types the same as
the types of aa and bb. This provides the means for CSP controller and its controlled B machine
to synchronise and communicate with each other while working in parallel. A B machine and its
controller can send or receive values from each other through these channels. For instance, the
CSP controller sends the value of aa to the B machine and receives the B machine’s output, bb,
through channel op. This means that in addition to control the execution order of the B opera-
tions, CSP controller and B machine can communicate with each other and they can exchange
data and information through these channels while working in parallel in the system.

In [Mor90], Morgan introduces traces, failures and divergences semantics of CSP for action
systems by using weakest precondition formulae. Based on this achievement, CSP semantics of
traces, failures and divergences have been defined for B machines in [ST05]. Thus, a B machine
can be understood as a CSP process. This common semantic framework makes it possible to de-
fine the parallel combination of B machines and CSP processes. In this framework the invocation
of an operation outside its precondition corresponds to divergence.

According to the definitions in [Mor90], a trace of a B machine is a finite sequence of its
operations. Divergence happens in a B machine when a pre-conditioned operation is called
outside its precondition.

1.4 Introducing Mobility

In CSP ‖ B, each CSP process can be the control executive of only one B machine and each B
machine has only one CSP process as its controller. The architecture has focused on sequential
CSP processes as dedicated controllers for B machines. The objective of this paper is to gener-
alise CSP ‖ B architecture in designing a new framework, Mobile CSP ‖ B, which enables us to
describe and verify systems in which a parallel combination of CSP processes are collectively
the controllers of B machines, and each single B machine can be controlled by different CSP
processes during the execution. By introducing mobility, each CSP process can receive a (mo-
bile) machine or give it to another CSP process during the execution. An example of these kinds
of systems is peer-to-peer networks in which data (B machines) can be transfered between the
connected nodes (CSP controllers).

The following step is the consistency verification. We must ensure that B operations are al-
ways called within their preconditions, as they are passed between the controllers. We provide a
theorem to establish divergence freedom of the whole mobile combined communicating system
containing several CSP controllers each controlling several B machines, by establishing prop-
erties for each CSP controller separately. We also have the result that deadlock-freedom of the
controllers implies deadlock-freedom of the combined system.

3 / 17 Volume 23 (2009)

Mobile CSP‖B

2 Mobile CSP || B

In standard CSP‖B, a controlled component consists of a CSP controller P in parallel with a B
machine M. Operations op with inputs s and outputs t are declared in machines M as t←− op(s).
In the combination they are treated as channels op.s.t. Standard CSP‖B has a static architecture
in which one B machine works in parallel with only one CSP controller and each CSP controller
can be the controller of only one B machine. So, the behaviour of the parallel combination is
predictable as we have fixed controlled components during the system execution.

In Mobile CSP‖B, we intend to create a mobile architecture in which B machines are able to
be transferred from one controller to another controller and each controller can work with more
than one B machine at the same time. As controllers can exchange B machines between each
other, B machines can have different controllers during their execution.

To enable machines to be passed around the system, we introduce a unique machine channel
called machine references. CSP controllers use machine references as the link to interact with
B machines. A machine reference is the only channel through which a CSP controller and a B
machine can communicate with each other. As a result, a controller is only able to work with
a machine if it owns that machine’s reference. In other words, possession of a machine means
having that machine’s reference. In order for machines to be exchanged between controllers,
machine references must be passed around between controllers in the system. Therefore, when
a machine is going to be passed from one controller to another, the sender controller passes that
B machine’s reference to the other controller, as illustrated on the right in Figure 1. It shows
that B machine M1 is passed from CSP controller P1 to P2. The figure also shows the difference
between Static CSP‖B architecture and Mobile CSP‖B architecture.

B machine M with machine reference z is presented in the system as z : M. All operations
op in M are replaced with z.op. So, operation calls of the machine z : M correspond to the
communication z.op.s.t, and the machine reference z can itself be passed between controllers.

We introduce channels called control points between pairs of controllers on which machine
references are passed around. When a machine is passed from one controller to another, the
sender controller passes that B machine’s reference to the other controller through the control
point channel which exists between those two controllers.

We require that only one CSP controller is in possession of z at any one time, so that when z is
passed from P1 to P2 then P1 is no longer able to use z to call the operations of the machine. This
will be the cornerstone for reasoning about the action of controllers on a mobile machine: that a
controller has exclusive control over a machine it is using, and other controllers cannot interfere
with its use of the machine.

We introduce MR as the set of machine references, CP as the set of control points, and C as the
set of regular CSP channels. Each channel c in the set of regular channels C has a type denoted
type(c). The type of channels in CP is MR. Each machine reference in MR is associated with a
particular B machine. The type of a machine reference z is the set of operations (with inputs and
outputs) of the unique machine M that is associated with z.

Proc. AVOCS 2009 4 / 17

ECEASST

Figure 1: Static CSP‖B architecture and Mobile CSP‖B architecture

3 Mobile CSP Controllers

We will use the name LOOP to denote a mobile CSP controller. A process LOOP has a set
of static channels χ(LOOP), which contains its communication channels and control points.
Any particular control point in the alphabet of LOOP will be either incoming or outgoing with
respect to LOOP, and is not permitted to be both. We identify the incoming control points within
χ(LOOP) as χi(LOOP). The outgoing control points within χ(LOOP) are denoted χo(LOOP).
The alphabet associated with communication channels is denoted χc(LOOP). These three sets
are pairwise disjoint, and their union is χ(LOOP).

The syntax of mobile CSP controllers is defined by the following BNF:

P ::= SKIP | c?x→ P(x) | c!v→ P termination; communication
| cp1?w→ P(w) | cp2!z→ P (z 6∈ fv(P)) passing machine references
| z.op!s?t→ P(t) operation call
| P′ 2 P′′ | P′ u P′′ | if b then P′ else P′′ choice
| e→ P prefix
| N(E1, . . . ,En) recursive call

where b is a boolean expression, e is an atomic CSP event which is not a B operation, c ∈
χc(LOOP), cp1 ∈ χi(LOOP), cp2 ∈ χo(LOOP), v is a variable of type type(c), z and w are
variables of type MR, t←− op(s) is an operation of the B machine associated with z. fv(P) is
the set of free variables in P, including variables for machine references. In N(E1, . . . ,En), each
expression Ei either does not mention MR variables at all, or else is an MR variable; and no MR
variable in the list is repeated.

Sequential processes are then defined recursively as follows:

Ni(wi1, . . . ,win) =̂ Pi where fv(Pi)⊆ {wi1, . . . ,win}

LOOP is then defined as some Ni(mi1, . . . ,min) for values mi1, . . . ,min, where all instantiations of
MR variables are distinct.

5 / 17 Volume 23 (2009)

Mobile CSP‖B

The machine references that Ni knows initially will appear in the list mi1, . . . ,min. The set of
machine references, mr, owned by LOOP can be defined by mr(LOOP) = {mi1, . . . ,min}∩MR.

4 Parallel combination

A mobile combined communicating system including n controllers and m B machines is repre-
sented as

LOOP1 || LOOP2 || . . . || LOOPn || z1 : M1 || z2 : M2 || . . . || zm : Mm

where z1,z2, . . .zm are the machine references for B machines M1,M2, . . .Mm respectively, and
i 6= j⇒ zi 6= zj

Mutual recursive CSP processes can be composed in parallel, only if (1) they have no ma-
chine references in common: ∀1 6 i, j 6 n • mr(LOOPi)∩mr(LOOPj) = /0, (2) they differ on
their incoming control points and their outgoing control points: ∀1 6 j,k 6 n • χi(LOOPj)∩
χi(LOOPk) = /0, ∀16 j,k 6 n • χo(LOOPj)∩χo(LOOPk) = /0, and (3) each control point in the
system has both a sender and a receiver. In other words, any outgoing (or incoming) control
point in one controller is an incoming (or outgoing) control point of one of the other controllers

in the system:
n⋃

j=1
χi(LOOPj) =

n⋃
i=1

χo(LOOPi).

The free variables of the parallel combination of controllers is given as follows:

fv(LOOP1 || LOOP2 || . . . || LOOPn) =
n⋃

i=1
fv(LOOPi)

When a system is constructed, each machine reference must be given a different concrete value.
The alphabets for the parallel combination of controllers are given as follows:

χi(LOOP1 || LOOP2 || . . . || LOOPn) =
n⋃

j=1
χi(LOOPj)

χo(LOOP1 || LOOP2 || . . . || LOOPn) =
n⋃

i=1
χo(LOOPi)

χc(LOOP1 || LOOP2 || . . . || LOOPn) =
n⋃

i=1
χc(LOOPi)

The language of process terms and the rules for parallel combination of controllers have been
designed to ensure that at any point in the system execution, only one controller has possession
of any machine reference. Controllers do not share any machine references to begin with, and
when a machine reference is passed along a control point to another controller, it is not retained
by the sending controller.

In order to define the traces of parallel composition, it is necessary to keep track of the machine
references as they are used and passed between controllers. We can define the projection of a
trace onto a particular controller LOOP given the channels χi(LOOP), χo(LOOP), χc(LOOP),
provided we also know the set of machine references mr owned by the controller. This definition
is based on the corresponding definition from [VST07].

The projection of a trace tr onto χ(LOOP) and a set of machine references mr can be defined
inductively as shown in Figure 2 where tr � χ(LOOP),mr means the projection of tr onto alpha-
bet of controller LOOP who owns the set of machine references mr. This enables a definition of

Proc. AVOCS 2009 6 / 17

ECEASST

〈〉 � χ(LOOP),mr = 〈〉

(〈cp.z〉a tr) � χ(LOOP),mr =

〈cp.z〉a (tr � χ(LOOP),mr∪{z}) if cp ∈ χi(LOOP) ∧ z 6∈ mr
〈cp.z〉a (tr � χ(LOOP),mr−{z}) if cp ∈ χo(LOOP) ∧ z ∈ mr
tr � χ(LOOP),mr if cp 6∈ χi(LOOP)∪χo(LOOP) ∧ z 6∈ mr
undefined otherwise

(〈c〉a tr) � χ(LOOP),mr =

{
〈c〉a (tr � χ(LOOP),mr) if c ∈ χc(LOOP)
tr � χ(LOOP),mr if c 6∈ χc(LOOP)

(〈z.op〉a tr) � χ(LOOP),mr =

{
〈z.op〉a (tr � χ(LOOP),mr) if z ∈ mr
tr � χ(LOOP),mr if z 6∈ mr

Figure 2: Projection of a trace onto χ(LOOP),mr

Figure 3: Transfer of machine M through control point cp

the traces of the parallel combination of controllers to be given:

traces(LOOP1 || . . . || LOOPn) = {tr | ∀16 i6 n • tr � χ(LOOPi),mri ∈ traces(LOOPi)}

Whenever two controllers synchronise on cp, the machine reference is passed from one to the
other, thus passing control over the associated machine. This is illustrated in Figure 3.

5 Consistency verification

In this section we discuss how divergence freedom of a mobile combined communicating system
can be established. We also consider deadlock-freedom.

If the parallel combination of CSP controllers is not divergence free, then the whole system
will have divergence. Therefore, the first step is to establish that the CSP part of the system is
divergence free. FDR can be used to check divergence freedom of the CSP part of the system
by checking the divergence freedom of the parallel combination of controllers. If the CSP part is
divergence free, then any divergence in the system must arise from the B machines. Divergence

7 / 17 Volume 23 (2009)

Mobile CSP‖B

arises in a machine when its operations are called outside their precondition by the controllers
and we are essentially using the divergence freedom check to check this. Thus, the second step in
divergence freedom verification is to establish that the operations of all machines in the system
are always called inside their precondition by the controllers during the execution.

The key point is that we are allowing B machines to be passed from one controller to another.
A controller typically receives a machine from another controller without knowing its state in
advance, and so the divergence freedom between a machine and a controller needs to take the
combined behaviour of the controllers into account. In order to keep proofs manageable, we
need to check the state of the machines when passed from one controller to another, as the target
controller does not have any control over the state of the received machine. Therefore, we will
need to ensure that a machine is always transferred to another controller in a correct state where
its operations will be called appropriately. In order to achieve this, for each control point we
assign an assertion on the state of the machine whose reference is passed along that control
point. The intention is that whenever a machine reference is passed to a CSP controller along a
control point, it is guaranteed that the assertion is satisfied.

The notation assert(cpz) denotes the assertion of the control point cp for a machine whose
reference is z. For instance, assert(cpz) : z.n = 0 means that the variable n of the machine with
machine reference z must be zero when passing through cp. For each control point, one assertion
is assigned for all machines being passed through it. For a machine with machine reference w,
the assertion of cp is assert(cpz) with w substituted for z which is w.n = 0.

To verify that a controller LOOP handles the B machines correctly, we translate the body of
CSP processes Ni into AMN. We define a translation function, trans(Pi), to translate the body of
each process Ni into the corresponding AMN. Verifying [trans(P)]Q will show that the sequence
of operations expressed in P will establish the postcondition Q in the B machine, as used later in
Definition 2.

Definition 1 The translation of CSP expressions into AMN is defined as follows:
trans(SKIP) = SELECT false THEN skip END
trans(c?x→ P(x)) = ANY x WHERE x : type(c) THEN trans(P(x)) END
trans(c!v→ P) = PRE v : type(c) THEN skip END; trans(P)
trans(cp?z→ P(z)) = ANY z WHERE z : MR THEN

SELECT assert(cpz) THEN trans(P(z)) END
END

trans(cp!z→ P) = PRE assert(cpz) THEN skip END; trans(P)
trans(z.op!s?t→ P(t)) = t←− z.op(s); trans(P(t))
trans(P′ 2 P′′) = CHOICE trans(P′) OR trans(P′′) END
trans(P′uP′′) = CHOICE trans(P′) OR trans(P′′) END
trans(if b then P′ else P′′) = IF b THEN trans(P′) ELSE trans(P′′) END
trans(e→ P) = skip; trans(P)
trans(N(v1, . . . ,vn)) = rec := N(v1, . . . ,vn)

The last clause introduces a program counter rec to handle recursive calls. Observe that inputs
c?x and cp?z are translated to the ANY statement, which models an assumption that the value
being received is of the correct type. In the case of a machine reference, cp?z also contains a

Proc. AVOCS 2009 8 / 17

ECEASST

SELECT statement, which models an extra assumption that the machine is in a state satisfying
assert(cp). Outputs c!v and cp!z are translated to PRE statement rather than ANY and SELECT
statements. v and z are the parameters of the process so there are already some predicates on their
value before this stage. Therefore, there is no need to have ANY in their translation. Instead, we
use the PRE statement, which models a guarantee that the condition is met on output values. In
the case of a machine reference, there is also no SELECT statement in the translation of cp!z.
This is because we are going to use weakest precondition formulae in our consistency verification
strategy and the PRE statement is the suitable statement in order to detect when the assertion is
not ensured by the sender process, which corresponds to divergence in the system.

Supposing for a process Ni in LOOP we can find an invariant referring to all free variables in Ni

such that if this invariant is true then whenever Ni is called to be executed, it calls the operations
of all the machines it owns at the beginning of that recursive call through their precondition.
If we can establish that this invariant holds at every recursive call of Ni, and if the state of the
machines Ni receives always satisfy the related assertions, then Ni always calls the operations of
all the machines it works with through their precondition at all the time during the execution.

If we can establish the conditions above for each process Ni (1 6 i 6 n), then the parallel
combination between LOOP and any machine it works with during the execution is ensured to
be divergence free. As this invariant should be true at each recursive call, we call it Control Loop
Invariant, CLI.

We now present the definition below for LOOP which contains the conditions we explained
above:

Definition 2 LOOP is called CLI preserver if for each Ni (16 i6 n) in LOOP, a Control Loop
Invariant, CLIi, can be found such that :

1. [init1; init2; . . . ; initm; rec := N1](CLI1)

2. ∀16 i6 n • ((rec = Ni∧CLIi)⇒
[trans(Pi)](∀16 j6 n • (rec = Nj⇒ CLIj)))

where M1, . . . ,Mm are the machines that LOOP owns at the beginning of the execution and
init1, . . . , initm are the Initialisation clause of machines M1, . . . ,Mm respectively.

The theorem below makes use of this definition:

Theorem 1 Supposing LOOP1,LOOP2, . . . ,LOOPn are the CSP controllers and M1,M2, . . . ,Mm

are the B machines in a mobile combined communicating system. If the parallel combination
of controllers is divergence free and all controllers are CLI preserver, then the whole system,
LOOP1 ‖ LOOP2 ‖ ‖ LOOPn ‖ z1 : M1 ‖ z2 : M2 ‖ ... ‖ zm : Mm, is divergence free.

If each LOOP is a CLI preserver then this allows each LOOP to be separately checked for
divergence-freedom on machines it controls at some point during its execution. This theorem
allows all of these individual checks to be combined to an overall consistency result.

We can also establish deadlock-freedom of the overall system by checking deadlock-freedom
of the combination of controllers. The B machines do not contribute to any deadlocking be-
haviour. This is because preconditions do not block, and we are not allowing blocking within the

9 / 17 Volume 23 (2009)

Mobile CSP‖B

bodies of operations.

Theorem 2 Suppose LOOP1,LOOP2, . . . ,LOOPn are the CSP controllers and M1,M2, . . . ,Mm

are the B machines in a mobile combined communicating system and the system is divergence
free. If the parallel combination of controllers LOOP1 ‖ LOOP2 ‖ ‖ LOOPn is deadlock free,
then the whole system, LOOP1 ‖ LOOP2 ‖ ‖ LOOPn ‖ z1 : M1 ‖ z2 : M2 ‖ ... ‖ zm : Mm, is
deadlock free.

One important issue which has been considered in our work is to allow the refinements of the
components into our framework. The intention is to be able to substitute a component by its
refinement in such a way that the substitution does not have any effect on the system consistency
properties. In [Vaj09], it has been proved that if we have a mobile combined communicating
system and this system is divergence free and deadlock free, then if we use a refinement of B
machines or CSP controllers instead of them in the system, the system remains divergence free
and deadlock free. This enables us to use a refinement of a component instead of the component
in the system.

6 Case study: Flight tickets sale system

In this section, we present a case study within Mobile CSP ‖ B framework. The case study is a
flight tickets sale system which presents the usage of Mobile CSP ‖ B architecture in designing
and developing peer to peer networks. We first provide a Mobile CSP ‖ B model of a flight
tickets sale system and then we verify the consistency of our model by using theorems 1 and 2.
This is a simplified version of the case study to appear in [Vaj09]. It generalises the language
presented in Section 3 by introducing a parameter to track a set of machine references. However,
the important aspect is that when a machine reference is output then the controller does not retain
the machine reference.

This case study is designed as a flight tickets sale system in which tickets of different flights
are sold or cancelled. The system contains a Sell agency which sells tickets of different flights to
customers, and it contains one Return office which cancels customers’ tickets. The Sell agency
can only sell flight tickets and it is not able to cancel any tickets of the flights. The Return office
is only responsible for cancelling tickets and it is not able to sell any flight tickets.

If the Sell agency or the Return office want to sell or cancel a ticket of a flight, they should
have access to the information of that flight. Otherwise they are not able to sell or cancel any
tickets. This description of the system makes it clear what should be modeled as the B machines
and what should be modeled as the controllers in the system. The B machines in our system are
the individual flights. They manage all the booking information of the flights. So each machine
represents one of the flights in the system. The Sell agency and the Return office play the role of
the controllers in our system.

Each flight machine is given a unique machine reference which is the channel used by the
Sell agency and the Return office to contact and communicate with that flight machine. The Sell
agency or the Return Office can sell or cancel a ticket of a flight only if they own that machine’s
reference. If they want to sell or cancel a ticket of a flight but they do not have that machine’s
reference, they request the machine’s reference from each other.

Proc. AVOCS 2009 10 / 17

ECEASST

The Sell agency and the Return office behave in such a way so that they do not keep the
machines when they can not use them any more. A full machine can not be used any more by
the Sell agency as all the tickets have already been sold and there is no more ticket available to
be sold next. So, if a flight owned by a Sell agency is full after selling a ticket, the Sell agency
passes that full machine to the Return office. On the other hand, an empty machine can not be
used any more by the Return office as there is no sold ticket in the machine to be cancelled next.
So, if a flight owned by the Return office is empty after cancelling a ticket, the Return office
passes that empty machine to the Sell agency. In other words, the Sell agency does not keep full
machines with itself and the Return office does not keep empty machines with itself.

A set S is introduced for the Sell agency and for the Return office which contains all the
machine references owned by the process. As a result, SellAgency(S) represents the Sell agency
which currently owns the machine references in S, and ReturnOffice(S) represents the Return
office which currently owns the machine references in S.

For the purposes of our case study, we will use two flight machines: flight1 and flight2. We
also assume that at the beginning of the system execution, the Sell agency owns both flight
machines. Therefore, the whole system is as below:

ReturnOffice({}) || SellAgency({mr1,mr2}) || mr1 : flight1 || mr2 : flight2

where mr1 and mr2 are the machine references of machines flight1 and flight2 respectively.

6.1 Design and specification of B machines

Each B machine manages the information of one flight in the system. The structure of all flights
in our system are the same so the B machines have the same specification but with different
names.

Each B machine contains the information about that particular flight such as: the (positive)
number of seats of the flight, and the number of tickets which have already been sold. It also
contains some operations for state transitions in the flight such as selling or cancelling tickets
and some other operations for finding out the current state of the machine such as whether it is
empty or full. Initially, each flight is empty. In other words, no ticket has been sold to anybody
at the beginning of the execution. For reasons of space, only the operations of a flight machine
are presented here, in Figure 4.

After specifying the flight machines in AMN, we used ProB to verify the internal consistency
of our B machines and to explore the behaviour of their operations. As all B machines have the
same structure in our system, a single B machine specification was checked, analysed and ani-
mated in ProB. The B machine was proved to be internally consistent and it behaved as expected.

6.2 System design and specification in mobile CSP

In this section, we describe the CSP specification of our system according to our mobile architec-
ture. The Return office and the Sell agency are each specified as a CSP process which describes
their behaviour in the system. In addition, it is defined who is the controller of each machine at
the beginning of the execution.

11 / 17 Volume 23 (2009)

Mobile CSP‖B

response← sell(pp) =
PRE

pp : Passport &
sold 6= seats

THEN
IF pp : Passport− customer
THEN

customer := customer∪{pp} ||
sold := sold+1 ||
IF sold+1 = seats
THEN response := Full
ELSE response := Available
END

ELSE response := IncorrectInput
END

END

response← empty =
BEGIN

IF sold = 0
THEN response := YES
ELSE response := NO
END

END

response← cancel(pp) =
PRE

pp : Passport &
sold 6= 0

THEN
IF pp : customer
THEN

customer := customer−{pp} ||
sold := sold−1 ||
IF sold−1 = 0
THEN response := Empty
ELSE response := Available
END

ELSE response := IncorrectInput
END

END

response← full =
BEGIN

IF sold = seats
THEN response := YES
ELSE response := NO
END

END

Figure 4: Operations in a flight machine

A function ref is used to assign a unique machine reference for each machine in the system. By
mapping each machine to a machine reference, the flight machines are given a unique machine
reference which then can be used to communicate with the CSP processes. Two control points
dp and ep are introduced for passing the machines between the Sell agency and the Return office.
dp is a control point channel used to pass the flight machines from the Return office to the Sell
agency. ep is a control point channel used to pass the flight machines from the Sell agency to the
Return office.

The specification of the Sell agency and the Return office is shown in Figures 5 and 6 respec-
tively.

A CSP process, Controller, is introduced which is the parallel combination of the Sell agency
and the Return office. As we said before, we assume that at the beginning of the system ex-
ecution, the Sell agency owns both flight machines. As a result, Controller is specified as:
Controller = ReturnOffice({}) || SellAgency({mr1,mr2}).

The system can be coded for tool analysis into standard CSP, by treating the machine ref-
erences as data values rather than as channels, and declaring a global channel MC (machine
channel) which carries machine references as the first value, and then operation names and val-
ues as further values. In other words, any call of a machine operation z.op!s?t in the body of the
CSP controllers is modelled as MC.z.op!s?t in the standard CSP description of our system.

After coding the system in standard CSP, the behaviour of the Sell agency and the Return
office was checked individually by using ProBE. We then used ProBE to explore the execution of
Controller in order to check their behaviour while working in parallel in the system. In addition,

Proc. AVOCS 2009 12 / 17

ECEASST

SellAgency(S) = P1(S)

P1(S) = buy?flight?pn→ if ref (flight) ∈ S
then P2(S,flight,pn)
else P3(S,flight,pn)

2

ask?flight→ P4(S,flight)
2

dp?z→ P1(S∪{z})

P2(S, f ,pn) = ref (f).sell!pn?resp→ if resp = Full
then P5(S, f)
else P1(S)

P3(S, f ,pn) = (require!f → ((dp?w→ P2(S∪{w}, f ,pn))
2

(fullMachine→ P1(S))))
2

(ask?flight→ P7(S, f ,pn,flight))

2

(dp?w→ if w = ref (f)
then P2(S∪{w}, f ,pn)
else P3(S∪{w}, f ,pn))

P4(S, f) = ref (f).empty?resp→
if resp = YES
then (emptyMachine→ P1(S))
else (ep!ref (f)→ P1(S−{ref (f)}))

P5(S, f) = (ep!ref (f)→ P1(S−{ref (f)}))
2

(ask?flight→ if flight = f
then (ep!ref (f)→ P1(S−{ref (f)}))
else P6(S, f ,flight))

2

(dp?w→ P5(S∪{w}, f))

P6(S, f ,flight) = ref (flight).empty?resp→
if resp = YES
then (emptyMachine→ P5(S, f))
else (ep!ref (flight) → P5(S −

{ref (flight)}, f))

P7(S, f ,pn,flight) = ref (flight).empty?resp→
if resp = YES
then (emptyMachine→ P3(S, f ,pn))
else (ep!ref (flight) →

P3(S−{ref (flight)}, f ,pn))

Figure 5: Sell agency

Controller was proved to be divergence free and deadlock free by using FDR.

6.3 Verification of the system: divergence-freedom

Our Flight tickets sale system will have divergence if (1) the parallel combination of the Sell
agency and the Return office has divergence, or (2) a Sell agency calls the operation sell of a
full machine during the execution, or (3) the Return office calls operation cancel of an empty
machine during the execution.

In this section we verify the divergence freedom of our system by using Theorem 1. Controller
has already been proved to be divergence free by using FDR. The next step is to establish that
the Sell agency and the Return office are CLI preserver. In order to achieve this, we should
first assign assertions for control points in our system. Then, we should define Control Loop
Invariants for the processes in the Sell agency and in the Return office.

If a machine is passed from the Sell agency to the Return office, it should not be empty. On
the other hand, if a machine is passed from the Return office to the Sell agency, it should not be
already full. ep is the control point which passes the machines from the Sell agency to the Return
office. So, the assertion of ep should be assigned as assert(epz) : z.sold 6= 0. dp is the control
point which passes the machines from the Return office to the Sell agency. So, the assertion of
dp should be assigned as assert(dpz) : z.sold 6= z.seats

For the Sell agency and the Return office, we can introduce Control Loop Invariants, shown
in Figure 7 which establish that both Sell agency and the Return office are CLI preserver. Thus,

13 / 17 Volume 23 (2009)

Mobile CSP‖B

ReturnOffice(S) = R1(S)

R1(S) = return?flight?pn→ if ref (flight) ∈ S
then R2(S,flight,pn)
else R3(S,flight,pn)

2

require?flight→ R5(S,flight)
2

ep?z→ R1(S∪{z})

R2(S, f ,pn) = ref (f).cancel!pn?resp→ if resp = Empty
then R4(S, f)
else R1(S)

R3(S, f ,pn) = ask!f → (ep?w→ R2(S∪{w}, f ,pn)
2

emptyMachine→ R1(S))
2

require?flight→ R7(S, f ,pn,flight)
2

ep?w→ if w = ref (f)
then R2(S∪{w}, f ,pn)
else R3(S∪{w}, f ,pn)

R4(S, f) = dp!ref (f)→ R1(S−{ref (f)})
2

require?flight→ if flight = f
then dp!ref (f)→ R1(S−{ref (f)})
else R6(S, f ,flight)

2

ep?w→ R4(S∪{w}, f)

R5(S, f) = ref (f).full?resp→
if resp = YES
then fullMachine→ R1(S)
else dp!ref (f)→ R1(S−{ref (f)})

R6(S, f ,flight) = ref (flight).full?resp→
if resp = YES
then fullMachine→ R4(S, f)
else dp!ref (flight) → R4(S −

{ref (flight)}, f)

R7(S, f ,pn,flight) = ref (flight).full?resp→
if resp = YES
then fullMachine→ R3(S, f ,pn)
else dp!ref (flight) → R3(S −

{ref (flight)}, f ,pn)

Figure 6: Return office

according to Theorem 1 our system is divergence free.

6.4 Verification of the system: deadlock-freedom

By verifying deadlock freedom of our Flight tickets sale system, we establish that there will never
occur a situation in which the execution of our system is blocked. This is a natural condition
checked for concurrent systems.

The deadlock freedom of our system is verified by using Theorem 2. We have already proved
in previous section that the system is divergence free. Finally, Controller has already been proved
to be deadlock free by using FDR. All conditions in Theorem 2 are true. Thus, our system is
deadlock free.

7 Conclusion

In this paper, we introduced Mobile CSP ‖ B, a formal framework based on CSP ‖ B which
enables us to specify and verify concurrent systems with mobile architecture instead of the pre-
vious static architecture. In the previous static version of CSP ‖ B, for each operation in a B
machine, there is one channel between that machine and its controller. However in our work, a
machine’s reference is the only channel through which a CSP controller and that B machine can
interact with each other. In contrast to static CSP ‖ B in which each controller is dedicated for
one B machine, we designed our framework in such a way that controllers are able to work with

Proc. AVOCS 2009 14 / 17

ECEASST

CLIP1(S) : S⊆MR ∧ ∀k ∈ S • k.sold 6= k.seats

CLIP2(S,f ,pn) : CLIP1(S) ∧ ref (f) ∈ S ∧ pn ∈ Passport

CLIP3(S,f ,pn) : CLIP1(S) ∧ ref (f) ∈ (MR−S) ∧ pn ∈ Passport

CLIP4(s,f) : CLIP1(s) ∧ f ∈ Flights

CLIP5(S,f) : S⊆MR ∧ ∀k ∈ (S−{ref (f)}) • k.sold 6= k.seats∧
ref (f) ∈ S ∧ ref (f).sold 6= 0

CLIP6(S,f ,flight) : CLIP5(S,f) ∧ flight ∈ Flights ∧ f 6= flight

CLIP7(S,f ,pn,flight) : CLIP3(S,f ,pn) ∧ flight ∈ Flights

CLIR1(S) : S⊆MR ∧ ∀k ∈ S • k.sold 6= 0

CLIR2(S,f ,pn) : CLIR1(S) ∧ ref (f) ∈ S ∧ pn ∈ Passport

CLIR3(S,f ,pn) : CLIR1(S) ∧ ref (f) ∈ (MR− S) ∧ pn ∈
Passport

CLIR4(S,f) : S⊆MR ∧ ∀k ∈ (S−{ref (f)}) • k.sold 6= 0 ∧
ref (f) ∈ S ∧ ref (f).sold = 0

CLIR5(S,f) : CLIR1(S) ∧ f ∈ Flights

CLIR6(S,f ,flight) : CLIR4(S,f) ∧ flight ∈ Flights ∧ flight 6= f

CLIR7(S,f ,pn,flight) : CLIR3(S,f ,pn) ∧ flight ∈ Flights

Figure 7: Control Loop Invariants in the Sell agency and the Return office

different machines during the execution. Controllers exchange machines between each other by
exchanging the machine references. This results from two facts about our system architecture:

1. In Mobile CSP ‖ B, we have introduced mobile channels: machine references are mobile
channels and they can move around the system during the execution.

2. In Mobile CSP ‖ B, mobile channels (machine references) are allowed to be passed be-
tween processes through static channels (control points) in the system.

In addition, we defined and verified the conditions which guarantee the divergence freedom
and deadlock freedom consistency of the systems specified and designed in Mobile CSP ‖ B.

The case study demonstrates the applicability of our mobile CSP ‖ B framework in specifying
and verifying mobile communication systems. It shows that the theorems are sufficient to man-
age concurrent updates of state. It also demonstrates the ability of the CSP controllers to interact
with numerous machines at the same time.

Apart from formal method integrations, some other approaches have also been created in mod-
elling and verifying mobile systems one of which is Mobile UNITY. Mobile UNITY [MR96],
an extension of the parallel program design language UNITY [CM88], is a language and proof
logic for specifying and reasoning about concurrent mobile systems. In Mobile UNITY, compo-
nents can move around and execute at different locations and they can interact and communicate
with each other during the execution. In Mobile UNITY notation, mobility is modelled as the
change of the location of components. In other words, the change in the location of components
provides means to model movement in the system. It allows the description of location-sensitive
behaviour, e.g., interaction at the same place, or within a certain distance. Each component in
Mobile UNITY has a distinguished location variable. The location of each component is mod-
elled by assignment of a value to its location variable. The movement of a component is modelled
by the change of value of its location variable. Mobile UNITY proof logic is employed to verify
the safety and liveness properties of a system expressed in the Mobile UNITY notation. Mobile
UNITY has no notion of refinement.

15 / 17 Volume 23 (2009)

Mobile CSP‖B

We believe using CSP language in our approach makes flow of control more explicit in contrast
to approaches that use control variables. In addition, Mobile CSP ‖ B framework supports a
refinement approach: it enables the refinements of components to be a substitute of the original
components in the system while the system consistency is guaranteed to remain. Furthermore,
as our framework can be coded into the original constructs of CSP and B, we are able to use the
comprehensive and highly efficient software tools of CSP and the B-Method to analyse, animate
and check the behaviour and the consistency of the two parts of a mobile system separately. This
shows the advantage of using B-Method as our chosen state based formal method and CSP as
the process algebra in our framework.

Our approach uses syntactic restrictions on process terms to ensure that at most one con-
troller is in possession of a machine reference at any one time. This approach imposes certain
restrictions on the language to achieve the required result, for example to do with the careful han-
dling and restrictive use of machine references as process parameters; and avoidance of internal
parallelism within controllers. An alternative approach [Gol09] would be to use a ‘monitor-
ing process’ for a CSP controller process which tracks which machine references the process is
supposed to have, and checks that it does not make use of references it should not have. Such
monitoring processes can be used within FDR checks to ensure that controllers behave in the
required way.

The approach taken in π | B [KST07] also allows dynamic creation of machines and channels,
and reconfiguration of the network. In contrast, the approach taken in this paper provides a more
static network between the controllers, but developing the framework to enable reconfiguration,
and dynamic process and machine creation, would be an interesting avenue of future research.

Acknowledgements: We are grateful to Michael Goldsmith for comments and discussions on
various aspects of this paper that have improved our understanding. We are also grateful to the
anonymous reviewers for their comments.

Bibliography

[Abr96] J. R. Abrial. The B Book: Assigning Programs to Meaning. CUP, 1996.

[BC02] B-Core. B-Toolkit. 2002.
http://www.b-core.com/btoolkit.html

[But00] M. Butler. csp2B: A Practical Approach To Combining CSP and B. Formal Aspects
of Computing 12, 2000.

[Cle09] ClearSy. Atelier B 4.0. 2009.
http://www.atelierb.eu/index-en.php

[CM88] K. M. Chandy, J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,
1988.

[FSEL07a] Formal Systems (Europe) Ltd. FDR 2.83 Manual. 2007.
http://www.fsel.com

Proc. AVOCS 2009 16 / 17

http://www.b-core.com/btoolkit.html
http://www.atelierb.eu/index-en.php
http://www.fsel.com

ECEASST

[FSEL07b] Formal Systems (Europe) Ltd. ProBE. 2007.
http://www.fsel.com

[Fis97] C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In FMOODS ’97. 1997.

[Gol09] M. Goldsmith. Personal communication, 28th October. 2009.

[GS97] A. J. Galloway, W. J. Stoddart. An operational semantics for ZCCS. ICFEM ’97,
1997.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[KST07] D. Karkinsky, S. Schneider, H. Treharne. Combining mobility with state. IFM’07,
2007.

[LB03] M. Leuschel, M. Butler. ProB: A Model Checker for B. In FM 2003. 2003.
http://www.stups.uni-duesseldorf.de/ProB/overview.php

[Mor90] C. C. Morgan. Of wp and CSP. In W.H.J. Feijen, A. J. M. van Gesteren, D. Gries, and
J. Misra, editors, Beauty is our business: a birthday salute to Edsger W. Dijkstra.
Springer-Verlag, 1990.

[MR96] P. J. McCann, G. C. Roman. Mobile UNITY: A language and logic for concurrent
mobile systems. Technical Report WUCS-97-01, Department of Computer Science,
Washington University in St. Louis, 1996.

[OCW07] M. V. M. Oliveira, A. L. C. Cavalcanti, J. C. P. Woodcock. A UTP Semantics for
Circus. Formal Aspects of Computing 21, 2007.

[Ros08] A. Roscoe. On the expressiveness of CSP. 2008. Draft of October 23, 2008.

[Sch00] S. Schneider. Concurrent and Real-time Systems: the CSP approach. Wiley, 2000.

[Sch01] S. Schneider. The B-method: an introduction. Palgrave Macmillan, 2001.

[ST05] S. Schneider, H. Treharne. CSP Theorems for Communicating B machines. Formal
Aspects of Computing 17, 2005.

[TDC04] K. Taguchi, J. Dong, G. Ciobanu. Relating pi-calculus to Object-Z. ICECCS, 2004.

[TS02] H. Treharne, S. Schneider. Communicating B machines. ZB2002, 2002.

[Vaj09] B. Vajar. Mobile CSP‖B. PhD thesis, University of Surrey, in preparation, 2009.

[VST07] B. Vajar, S. Schneider, H. Treharne. Introducing Mobility into CSP‖B. In AVOCS
2007. 2007.

17 / 17 Volume 23 (2009)

http://www.fsel.com
http://www.stups.uni-duesseldorf.de/ProB/overview.php

	Introduction
	The B-Method
	CSP
	CSP"026B30D B
	Introducing Mobility

	Mobile CSP || B
	Mobile CSP Controllers
	Parallel combination
	Consistency verification
	Case study: Flight tickets sale system
	Design and specification of B machines
	System design and specification in mobile CSP
	Verification of the system: divergence-freedom
	Verification of the system: deadlock-freedom

	Conclusion

