
Electronic Communications of the EASST
Volume 25 (2010)

Proceedings of the Workshop
Visual Formalisms for Patterns

at VL/HCC 2009

Visualization of Business Process Modeling Anti Patterns

Ralf Laue and Ahmed Awad

12 pages

Guest Editors: Paolo Bottoni, Esther Guerra, Juan de Lara
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Visualization of Business Process Modeling Anti Patterns

Ralf Laue1 and Ahmed Awad2

1Chair of Applied Telematics / e-Business
Computer Science Faculty, University of Leipzig, Germany

laue@ebus.informatik.uni-leipzig.de

2Business Process Technology Group
Hasso Plattner Institute, University of Potsdam, Germany

ahmed.awad@hpi.uni-potsdam.de

Abstract:

The most common way to model business processes is to use a graphical modeling
language. The most widespread notation are business process diagrams modeled in
the language BPMN. In this paper, we formalize structural patterns that can lead to
control flow errors in such graphical models. For expressing such error patterns, we
use the visual query language BPMN-Q . By using a query processor, a business
process modeler is able to identify possible errors in business process diagrams.
Moreover, the erroneous parts of the business process diagram can be highlighted
when an instance of an error pattern is found. This way, the modeler gets an easy-
to-understand feedback in the visual modeling language he or she is familiar with.

Keywords: business process model, business process diagram, BPMN-Q, visual-
ization

1 Introduction

Patterns are used in software engineering to describe reusable solutions for common problems.
A prominent example are design patterns [GHJV95], reusable solutions in the field of software
design. Patterns have also been used to describe commonly occurring bad practices. These
patterns are also known as anti-patterns. In this article, we will formalize structural anti-patterns
in business process models (BPM).

BPM are advanced variants of flow charts. Different business process modeling languages
share a core set of modeling constructs. Within a BPM, activities can be arranged in sequential
order, and routing constructs can be used for modeling alternative and parallel threads.

In the last years, several approaches for detecting errors in the control flow of BPM (for exam-
ple deadlocks) have been published. Those approaches varied from structural analysis of BPM
to the examination of behavioral state space.

There are already several tools that detect problems in BPM. Examples can be found in [Esh02,
CK04, Wyn06] – this list is far from being complete. While the problem of detecting errors can
be regarded as being solved, many of the tools still fail to give a readable feedback on how to
correct the error.

1 / 12 Volume 25 (2010)

Visualization of Business Process Modeling Anti Patterns

In this paper, we address the presentation of errors a visual manner. We formalize several
error patterns as BPMN-Q queries [Awa07]. When a query is structurally matched by a BPM,
the matching part of the model is the part containing a problem.

2 Preliminaries

2.1 Business Process Modelling Notation

There are several visual languages for modeling business processes. The Business Process Mod-
eling Notation (BPMN) is the most widespread language, for this reason we use it for the exam-
ples in this paper. However, the techniques described in this paper can also be applied for other
languages, because most business process modeling languages share certain basic constructs. In
this section, we will shortly describe those basic constructs of the BPMN language. For more
details about BPMN, the reader is referred to www.bpmi.org.

Events (something that happens during the lifetime of a business process) are represented by
a circle. Although not formally required by the standard, every BPMN model should have at
least a start event (depicting the fact that the process is instantiated) and an end event (depicting
the fact that the process has been completed). Activities (tasks that have to be performed) are
represented by a rectangle with rounded corners. The flow of control (called sequence flow in
BPMN terminology) between the activities is depicted by arcs. The direction of such an arc
shows in which order the activities have to be performed. Gateways can be used for forking and
joining paths that have to be performed in parallel or (based on certain conditions) alternatively.
There are two kinds of gateways: Splits have more than one outgoing arc, and joins have more
than one incoming arc. Gateways are represented by a diamond shape.

When used as a split, an exclusive gateway splits the sequence flow to exactly one of its
outgoing branches. When used as a join, it awaits one incoming branch being completed before
triggering the outgoing flow. This kind of gateways (which we call XOR-gateways) is depicted
by a symbol.

When splitting, a parallel gateway activates all outgoing branches; the activities on these
branches are executed in parallel. When used as a join, a parallel gateway waits for all incoming
branches to complete before triggering the outgoing flow. Parallel gateways are depicted by a
symbol. We will refer to this kind of gateways as AND-gateways.

The inclusive gateway is something in-between the exclusive and the parallel gateway. When
used as a split, some of the outgoing branches (but at least one) are activated. When merging, an
inclusive gateway waits until all active incoming branches have been completed before triggering
the outgoing flow. Inclusive gateways (or OR-gateways) are depicted by a symbol.

Fig. 1 contains all mentioned kinds of gateways. The model shows a simplified business pro-
cess in a bank. When a customer applies for a real-estate credit, the customer’s credit rating, the
real estate construction documents and the land register record are checked. All these activities
are done in parallel, therefore an AND-gateway is used in the model. As the result of those
assessments, the application either will be rejected or the contract is to be prepared. The XOR-
gateway means that only one of the activities ”Reject Application” and ”Prepare Contract” can
take place. After the contract has been prepared, the process either can end or the bank might
offer additional products: a loan protection insurance and a residence insurance. Whether a loan

Proc. VFfP 2009 2 / 12

ECEASST

protection insurance, a residence insurance or both are offered, has to be decided case-by-case.
The OR-gateway shows that only one of the activities or both of them (in parallel) can take place.

2.2 BPMN-Q: A Visual Language for Querying Business Processes

BPMN-Q [Awa07, ADW08] is a visual language based on BPMN. It is used to query BPM by
matching a process model graph to a query graph.

A BPMN-Q query is represented as a business process diagram that might contain the follow-
ing additional elements (whose graphical representation is shown in shown in Fig. 2):
(a) Variable Node: refers to (unknown) activities in a query.
(b) Generic Node: refers to an unknown node in a process. It could evaluate to any node type.
(c) Generic Split / Generic Join: refers to any type of split / join gateways.
(d) Negative Sequence Flow: states that there is no arc from a node A to a node B.
(e) Path: states that there must be a path from a node A to a node B.
(f) Negative Path: states that there is no path from a node A to a node B.

The result of a graphical query is given by a sub-graph of the original BPM. An exemplary
query and its match are shown in Fig. 3. When matching the process graph in Fig. 3(a) to the
query in Fig. 3(b), the result of the query is the sub-graph that contains the nodes B and D and
all nodes on the path from B to D. (see Fig. 3(c)).

The query shown in Fig. 3 looks for all paths between B and D. It is also possible to exclude
some graph elements from a path search by assigning names to elements and adding an exclude
property to a Path edge: For instance, in the query in Fig. 5(a), the XOR-split is named ?s. By
adding the exclude property to the path search from ?nd1 to ?j, the search will be limited to paths
from ?nd1 to ?j which do not pass the XOR-split ?s.

To process a BPMN-Q query, a query graph is matched to the structure of the business process.
A BPMN business process diagram can be defined as a directed typed graph as follows:

Definition 1 A business process diagram (or process graph) is a tuple PG = (N,A,E,G,F)
where
• N is a finite set of nodes that is partitioned into the set of activities A, the set of events

E, and the set of gateways G. An event e ∈ E is called a start event if it does not have
incoming edges. It is called an end event if it has no outgoing edges. All nodes in a
process graph are attributed by unique IDs.
• F ⊆ N×N is the sequence flow relation between nodes.

C u s t o m e r a p p l i e s f o r
r ea l - es ta te c red i t

C h e c k
c red i t - r a t i ng

C h e c k r e a l - e s t a t e
c o n s t r u c t i o n
d o c u m e n t s

C h e c k l a n d
r e g i s t e r r e c o r d

R e j e c t
a p p l i c a t i o n

P r e p a r e
c o n t r a c t

O f f e r
l o a n - p r o t e c t i o n

i n s u r a n c e

O f f e r
r e s i d e n c e
i n s u r a n c e

Figure 1: BPMN Example Model

3 / 12 Volume 25 (2010)

Visualization of Business Process Modeling Anti Patterns

@Variable
//X X //* S J

(a) (b) (c) (d) (e) (f) (g)

Figure 2: BPMN-Q Elements.

B D//

(a) A process model

A B C D E

(b) a query with path element connecting nodes B, D

B C D

(c) a sub-graph from process in (a) matching the query in (b)

Figure 3: Example of a BPMN-Q query

The query language BPMN-Q provides additional types of edges between nodes:

Definition 2 A query graph is a tuple QG= (NQ, AQ, EQ,GQ, SQ, PQ,XQ) where
• NQ is a finite set of nodes that is partitioned into the set of activities AQ, the set of events

EQ, and the set of gateways GQ.
• SQ ⊆ NQ×NQ is the set of sequence flow edges.
• PQ ⊆ NQ×NQ is the set of path edges.
• XQ ⊆ NQ×NQ is the set of negative path edges.

Nodes of the query graph can be identified by assigning labels. Labels can be activity names
or special names either starting with ’@’ for variable activities or with ’?’ for other nodes and
path edges. Thus, a function l : NQ∪PQ → Σ∗ is a labeling function assigning labels (identifiers)
to nodes and path edges in the query, where Σ is an alphabet.

The labels of nodes can be used within the query in the exclude property of path edges. Thus,
exc : PQ → 2{l(n):n∈NQ∪PQ where l(n) is de f ined} is a function to evaluate the exclude property of a
given path edge.

With the start of query processing, the query processor tries to bind the nodes in the query
graph to the nodes in the process graph. For each node in the query graph, the set of nodes in the
process graph having the same type are identified. A bind is considered matching if it satisfies
all sequence flow edges, path edges, and negative path edges in the query graph. Otherwise, the
binding is dropped. For the query to find a match, each node in the query graph must have at least
one matching binding. More details about the processing of queries can be found in [Awa07].

3 BPMN Soundness Patterns

3.1 Soundness

The most important correctness criterion for BPM is the soundness property, originally intro-
duced by van der Aalst for workflow nets [van97].

Proc. VFfP 2009 4 / 12

ECEASST

For a business process model to be sound, three properties are required:
1. In every state that is reachable from a start state, there must be the possibility to reach a

final state (option to complete).
2. If a state has no subsequent state (according to the transition relation that defines the pre-

cise semantics), then only events without outgoing arcs (end events) must be marked as
being ”active” in this state (proper completion).

3. There is no element of the model that is never processed in any execution of the model (no
needless elements).

Violations of the soundness criterion usually indicate an error in the model.

3.2 Pattern Catalogs

To our knowledge, the first categorization of error patterns based on the structure of a BPM has
been compiled at the University of Osaka. In [OIKK99], five so called deadlock-patterns are
discussed. The basic concepts used in [OIKK99] are reachability (in a graph) and transferability
(the fact that the control flow will always reach some node in a model if another node has been
reached before). The authors of [OIKK99] claim that a model always has a deadlock if one of
the patterns can be detected. Unfortunately, this claim is wrong: Fig. 4 shows a sound model for
which [OIKK99] would report a deadlock between split node x AND-join node a. The reason
behind the wrong error report is that by using the concept of transferability, it is not possible to
realize that both incoming control flows at join a1 will always synchronize.

x

aa
1

Figure 4: [OIKK99] would wrongly report a deadlock for this model

In [LK05], Liu und Kumar analyzed how unstructured BPM can be mapped into structured
ones with the same behavior. For this purpose, they categorized entries into and exits from a
control structure between a split and a corresponding join. In particular, they named the combi-
nations that will lead to control-flow errors.

Koehler and Vanhatalo discuss ”typical modeling errors extracted from hundreds of actual
process models created in different tools” [KV07]. The anti-patterns discussed in [KV07] are
well-known cases for an incongruity between the type of a split and the type of a join.

Mendling [Men07] uses reduction rules for finding errors in Event Driven Process Chains.
These reduction rules include information about possible error cases in a model.

All mentioned pattern systems have in common that they include the typical errors that result
from a mismatch between the type of a split and the type of a join and from choosing a non-XOR
gateway as a loop entry or loop exit. In the next chapter, we will use BPMN-Q for expressing
these patterns.

5 / 12 Volume 25 (2010)

Visualization of Business Process Modeling Anti Patterns

4 Anti Patterns Expressed in BPMN-Q

In this section, we express the patterns mentioned in the previous section as BPMN-Q queries.
When a query finds a match, the result is the matching sub-graph of the process. This way, the
localization of the erroneous part of the BPM is given for free without a need to translate between
verification tools and the visual representation of the model.

4.1 (X)OR-split/AND-join Combination

*

*// exclude(?p1,?s,?j)

//exclude(?s,?j)

?nd1

?nd2

?p1

?s ?j

X //

(a) The Query

A

B

(b) A Process Matching the
Query

A

B

(c) A Process not Matching the Query

Figure 5: Query for an (X)OR-split/AND-join Combination

A deadlock can occur when an (X)OR-split opens alternative paths that are later joined by an
AND-join. The query in Fig. 5(a) captures the this situation between an XOR-split ?s and the
AND-join ? j. In order to find two paths from ?s to ? j whose only common nodes are ?s and
? j, we try to find a path from ?nd1 (the successor of ?s) to ? j. This path is given the name ?p1.
Similarly, we try to find another path from s to ?nd2. The exclude property of the latter path is
set to ?s,? j,?p1. Exclusion of ?p1 instructs the BPMN-Q query processor to evaluate path ?p1
first and then to search for other paths which do not share any node with p1. The exclusion of
?s,? j on both paths is necessary to prevent false alarms that can result from loops. Finally, the
negative path from ?nd1 to ?nd2 prevents false alarms in cases like the one shown in Fig. 9(c).

4.2 Entry Into a Parallel Control Block

*

*

// exclude(?p1,?s,?j)

//exclude(?s,?j)

?nd1

?nd2

?p1

?j

?e

// exclude(?p1,?s,?j)

//exclude(?s)

?s

//

?ev1 ?ev2

(a) The Query

A

B

(b) A Process Matching the Query

Figure 6: Query for an entry into a parallel control block

Proc. VFfP 2009 6 / 12

ECEASST

Usually, in a block that starts and ends with an AND-gateway, there is no chance for a dead-
lock, because all incoming branches of the AND-join have been activated before. However, if on
a path from the split to the join there is an (X)OR-join that can receive activations not originating
from the AND-split, a deadlock can occur. We call this (X)OR-join an entry into the AND block.
This situation is captured declaratively in Fig. 6. The use of two different start events, ?ev1,?ev2,
forces the query processor to find matches in BPMs having more than one start event.

4.3 AND-Join as an Entry Into a Loop

X //

//

*

*

?in1

?in2

?j

(a) The Query

A

B C

(b) A Process Matching the Query

Figure 7: Query for an AND-Join as an Entry Into a Loop

The query in Fig. 7 describes another situation where a BPM could suffer from a deadlock.
Whenever an AND-join is part of a loop where only a subset of its input points are activated, a
deadlock occurs. This is declaratively represented by a path edge from ? j to ?in1 and a negative
path edge from ? j to ?in2.

4.4 AND-Join After (X)OR-Split Does Not Synchronize

*

//

*X //

X //

//exclude(?s)

?s ?j

?nd1

?nd2

(a) The Query

A B C

(b) A Process Matching the Query

Figure 8: Query for an AND-join after (X)OR-split

A deadlock can occur if an AND-join awaits to be activated on all its incoming arcs, but an
(X)OR-split before this AND-join can lead the flow of control away in another direction. The
query in Fig. 8 describes this situation.

7 / 12 Volume 25 (2010)

Visualization of Business Process Modeling Anti Patterns

4.5 AND-split/XOR-join Combination

Lack of synchronization is a modeling error that occurs whenever an AND-split is combined
with an XOR-join. All outgoing branches from the AND-split will be activated. However, the
semantics of the XOR-join is to wait for the completion of exactly one of its incoming branches.
Due to space limitations, we do not provide a separate query for this type of errors. Rather, we
can reuse the query in Fig. 5(a) with modifications: We switch the roles of the XOR and the
AND in that query. Also, we drop the negative path between ?nd1 and ?nd2. The resulting query
captures the ”lack of synchronization errors”.

4.6 Infinite Loop

//exclude(?p)

//

?s

?p

(a) The Query

A

B

C

(b) A Process Matching the Query

A

B

(c) A Process not Matching the Query

Figure 9: Query for an Infinite Loop

Another modeling error occurs when a part of the process is activated infinitely often. This
can happen when a modeler mistakenly represent a loop exit with an AND-split rather than an
XOR. The query in Fig. 9(a) describes this situation: Path edge ?p from the AND Split ?s back
to itself represents the looping case. To prevent reporting false alarms, e.g., the case of a parallel
block nested in a loop, the query requires to have a totally distinct path from ?s to an end event.

5 Using the Patterns

As common BPM languages share the most basic modeling elements, the application of our
patterns is not restricted to the language BPMN. Previously, the patterns have been successfully
used for the language Event-Driven Process Chains [van99]. For this purpose, they have been
implemented into the modeling tool bflow1, using the openArchitectureWare Check language2

[KKGL08]. Another implementation, using a larger repository of 23 patterns, has been made
using logical reasoning with Prolog. In [GL09], it has been shown that a pattern-based heuristic
reasoning detects control-flow errors almost as accurate as model checkers which explore the
whole state space of a model. However, other than approaches using model checkers, it does not
suffer from the state-space explosion problem.

To test our approach based on graphical BPMN-Q queries, we searched for the patterns dis-
cussed in the previous section in 109 models taken from the public repository of the modeling

1 http://www.bflow.org
2 http://www.eclipse.org/gmt/oaw/

Proc. VFfP 2009 8 / 12

ECEASST

Figure 10: A process model with a false alarm

tool Oryx (www.oryx-editor.org). Table 1 shows how many models were detected that
contained instances of the patterns. It also shows the false alarms, i.e. the cases for which the
model does not suffer from the discussed problem despite matching the query. The query proces-
sor ran on a PC with 2GB RAM and an Intel dual core processor at 1.83 GHz under the operating
sytem Windows XP with Service Pack3 .

An observation that is worth mentioning is that all false alarms occurred because of other
errors that are located elsewhere in a model. An example is shown in Fig. 10. It matches the
BPMN-Q query AND-split/XOR-join Combination, because there are two distinct paths from the
AND-split to the XOR-join. However, at execution, this error would never occur because the
process would either terminate without problems or deadlock before reaching the XOR-join. Of
course, this possible deadlock will be detected by the pattern AND-Join After (X)OR-Split Does
Not Synchronize. In situations like this, our pattern-based approach delivers too many warnings
(which is better than missing a legitimate warning).

Anti-pattern Erroneous Models False Alarms Processing Time
(X)OR-split/AND-join Combination 4 0 208.735 sec
Entry Into a Parallel Control Block 0 0 237.515 sec
AND-Join as an Entry Into a Loop 1 0 219.453 sec
AND-Join After (X)OR-Split 7 0 221.250 sec
does not Synchronize
AND-split/XOR-join Combination 2 5 212.391 sec
Infinite Loop 0 0 229.578 sec

Table 1: Results of applying anti-pattern queries

9 / 12 Volume 25 (2010)

Visualization of Business Process Modeling Anti Patterns

6 Related Work

While soundness is necessary for the correctness of a BPM, it does not yet guarantee that the
model really conforms to the business rules. For this reason, several researchers applied model-
checking in order to verify statements like ”Each delivery must always be preceded by a pay-
ment”. These approaches make it necessary to specify the properties to validate as temporal
formulas. Usually, this is too difficult for the business people who work with the models.

As an alternative, several authors developed notations based on a process modeling language to
express the allowed executions of a BPM. Such approaches have been presented for Event-Driven
Process Chains [Rum99, SM06, FF08], BPML [Bra05], UML Activity Diagrams [FESS07] and
for BPEL specifications [WKH08, LMX07]. Quartel et al. [QDS05] use the Interaction Systems
Design Language for expressing dependencies among (distributed) business processes. Van der
Aalst and Pesic [vP06] suggested a new language DecSerFlow for specifying the properties of a
single service or service compositions. As a different stream of research, Barros et al. [BDG07]
and Rommelspacher [Rom08] suggested graphical languages for expressing complex events in
business processes.

The main difference between those graphical languages and BPMN-Q is that BPMN-Q is
used to formulate queries about the business process model itself (i.e. its graphical structure),
not about the state space of its executions. This makes it possible to use BPMN-Q for searching
for modeling problems without having to compute the state space of all possible executions.

Another query language that is working on the graphical structure of a model is BPMN VQL
[FT08]. Its main purpose is to find crosscutting concerns in BPM. Our language BPMN-Q is
more expressive than BPMN VQL. For instance, generic nodes, negative paths, and variable
names in BPMN-Q have no equivalent constructs in BPMN VQL.

7 Conclusion and Directions for Future Research

The approach presented in this paper can be used for detecting control flow errors in business
process models. By using BPMN-Q queries, it is possible to give a business process modeler a
feedback not only about the presence of errors but also about the part of the model that causes
the error. This information is given in the visual formalism the modeler is familiar with.

So far, more advanced BPMN constructs like exception handling have not yet been considered
in the graphical language. Inclusion of such constructs would enable us to express even more
complex patterns like the ones published in [GL07] and [RPH08].

Another direction of future research can be to reduce false warnings in cases like the one
shown in Fig. 10 where a model contains more than one instance of one of our error patterns.

Bibliography

[ADW08] A. Awad, G. Decker, M. Weske. Efficient Compliance Checking Using BPMN-Q
and Temporal Logic. In BPM ’08: Proceedings of the 6th International Conference
on Business Process Management. Pp. 326–341. 2008.

Proc. VFfP 2009 10 / 12

ECEASST

[Awa07] A. Awad. BPMN-Q: A Language to Query Business Processes. In Reichert et al.
(eds.), Proceedings of the 2nd International Workshop on Enterprise Modelling and
Information Systems Architectures (EMISA’07). LNI P-119, pp. 115–128. GI, 2007.

[BDG07] A. P. Barros, G. Decker, A. Großkopf. Complex Events in Business Processes. In
Abramowicz (ed.), Proceedings of the 10th International Conference on Business
Information Systems. LNCS 4439, pp. 29–40. Springer, 2007.

[Bra05] M. Brambilla. LTL formalization of BPML semantics and visual notation for linear
temporal logic. Technical report, Politecnico di Milano, 2005.

[CK04] N. Cuntz, E. Kindler. On the semantics of EPCs: Efficient calculation and simula-
tion. In EPK 2004: Geschäftsprozessmanagement mit Ereignisgesteuerten Prozess-
ketten, Proceedings. Pp. 7–26. 2004.

[Esh02] R. Eshuis. Semantics and Verification of UML Activity Diagrams for Workflow Mod-
elling. PhD thesis, University of Twente, Enschede, 2002.

[FESS07] A. Forster, G. Engels, T. Schattkowsky, R. V. D. Straeten. Verification of Business
Process Quality Constraints Based on Visual Process Patterns. In Symposium on
Theoretical Aspects of Software Engineering. Pp. 197–208. 2007.

[FF08] S. Feja, D. Fötsch. Model Checking with Graphical Validation Rules. Engineering of
Computer-Based Systems, IEEE International Conference on the 0:117–125, 2008.

[FT08] C. D. Francescomarino, P. Tonella. Crosscutting Concern Documentation by Visual
Query of Business Processes. In Proceedings of the International Workshop on Busi-
ness Process Design. 2008.

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Professional, 1995.

[GL07] V. Gruhn, R. Laue. Good and Bad Excuses for Unstructured Business Process Mod-
els. In Proceedings of 12th European Conference on Pattern Languages of Programs
(EuroPLoP 2007). 2007.

[GL09] V. Gruhn, R. Laue. A Heuristic Method for Business Process Model Evaluation. In
5th International Workshop on Enterprise and Organizational Modeling and Simu-
lation (EOMAS 2009). 2009.

[KKGL08] S. Kühne, H. Kern, V. Gruhn, R. Laue. Business Process Modelling with Continu-
ous Validation. In Pautasso and Koehler (eds.), MDE4BPM 2008 1st International
Workshop on Model-Driven Engineering for Business Process Management. 2008.

[KV07] J. Koehler, J. Vanhatalo. Process anti-patterns: How to avoid the common traps of
business process modeling, Part 1 - Modelling control flow. IBM WebSphere Devel-
oper Technical Journal 10.4., April 2007.

11 / 12 Volume 25 (2010)

Visualization of Business Process Modeling Anti Patterns

[LK05] R. Liu, A. Kumar. An Analysis and Taxonomy of Unstructured Workflows. In Aalst
et al. (eds.), Business Process Management. Volume 3649, pp. 268–284. 2005.

[LMX07] Y. Liu, S. Müller, K. Xu. A static compliance-checking framework for business
process models. IBM Systems Journal 46(2):335–361, 2007.

[Men07] J. Mendling. Detection and Prediction of Errors in EPC Business Process Models.
PhD thesis, Vienna University of Economics and Business Administration, 2007.

[OIKK99] S. Onoda, Y. Ikkai, T. Kobayashi, N. Komoda. Definition of Deadlock Patterns for
Business Processes Workflow Models. In Proceedings of the 32nd Annual Hawaii
International Conference on System Sciences. P. 5065. IEEE Computer Society,
1999.

[QDS05] D. Quartel, R. Dijkman, M. van Sinderen. An approach to relate business and appli-
cation services using ISDL. In EDOC ’05: Proceedings of the Ninth IEEE Interna-
tional EDOC Enterprise Computing Conference. Pp. 157–168. 2005.

[Rom08] J. Rommelspacher. Modelling Complex Events with Event-Driven Process Chains.
In Hesse and Oberweis (eds.), SIGSAND-EUROPE. LNI 129, pp. 79–82. GI, 2008.

[RPH08] T. Rozman, G. Polancic, R. V. Horvat. Analysis of Most Common Process Modeling
Mistakes in BPMN Process Models. In 2008 BPM and Workflow Handbook. 2008.

[Rum99] F. J. Rump. Geschäftsprozeßmanagement auf der Basis ereignisgesteuerter
Prozeßketten. B. G. Teubner Verlag Stuttgart Leipzig, 1999.

[SM06] C. Simon, J. Mendling. Verification of Forbidden Behavior in EPCs. In Mayr and
Breu (eds.), Modellierung. LNI 82, pp. 233–242. GI, 2006.

[van97] W. M. van der Aalst. Verification of Workflow Nets. In Azéma and Balbo (eds.),
Application and Theory of Petri Nets 1997, 18th International Conference, ICATPN
’97, Toulouse, France, June 23-27, 1997, Proceedings. Pp. 407–426. 1997.

[van99] W. M. van der Aalst. Formalization and verification of event-driven process chains.
Information & Software Technology 41(10):639–650, 1999.

[vP06] W. M. van der Aalst, M. Pesic. Specifying, discovering, and monitoring service
flows: Making web services process-aware. Technical report BPM-06-09, BPM
Center Report, BPMcenter.org, 2006.

[WKH08] R. Wörzberger, T. Kurpick, T. Heer. Checking Correctness and Compliance of In-
tegrated Process Models. In Proceedings of the 10th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2008). 2008.

[Wyn06] M. T. Wynn. Semantics, Verification, and Implementation of Workflows with Can-
cellation Regions and OR-joins. PhD thesis, Queensland University of Technology
Brisbane, Australia, 2006.

Proc. VFfP 2009 12 / 12

	Introduction
	Preliminaries
	Business Process Modelling Notation
	BPMN-Q: A Visual Language for Querying Business Processes

	BPMN Soundness Patterns
	Soundness
	Pattern Catalogs

	Anti Patterns Expressed in BPMN-Q
	(X)OR-split/AND-join Combination
	Entry Into a Parallel Control Block
	AND-Join as an Entry Into a Loop
	AND-Join After (X)OR-Split Does Not Synchronize
	AND-split/XOR-join Combination
	Infinite Loop

	Using the Patterns
	Related Work
	Conclusion and Directions for Future Research

