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Abstract: The precise specification of software models is a major concern in the
model-driven design of object-oriented software. Models are commonly given as
graph-like diagrams so that graph grammars are a natural candidate for specifying
them. However, context-free graph grammars are not powerful enough to specify
all static properties of a model. Even the recently proposedadaptive star grammars
cannot capture all properties of object-oriented models. So we extend adaptive star
rules by positive and negative application conditions to overcome these deficiencies
without sacrificing parsing algorithms. It turns out that conditional adaptive star
grammars are powerful enough to generate program graphs, a software model with
rather complicated contextual properties.

Keywords: graph grammars; model definition; adaptive star grammar; application
condition

1 Introduction

Model-driven design of object-oriented software aims at describing static structure, dynamic be-
havior, and gradual evolution of systems in a comprehensiveway. Typically, a software model
is a collection of graph-like diagrams, which is commonly specified by a meta-model. For in-
stance, the static structure of a system is often defined by class diagrams of the UML . Since
graph grammars are another candidate for specifying graph-like structures, we investigate how
they can be used to define software models. Several kinds of graph grammars have been pro-
posed in the literature. Here we need a formalism that ispowerfulso that all properties of models
can be captured, andsimplein order to be practically useful, in particular forparsingmodels in
order to check whether a model is valid, or not. However, neither star grammars (equivalent
to the well-known hyperedge replacement grammars [Hab92, DHK97]), nor node replacement
grammars [ER97] are powerful enough for our purpose. Even the recently proposed adaptive
star grammars [DHJ+06, DHJM09] fail for certain some properties of program graphs. So we
defineconditional adaptive star grammarsin this paper. In these grammars, adaptive star rules
are extended by positive and negative application conditions. (Informally, application conditions
for adaptive star rules have already been considered in [Eet07, DHM08].) As a case study, we
consider a simple variant of program graphs, a language-independent model of object-oriented
programs that has been devised for specifying refactoring operations on programs [MEDJ05].
Conditional adaptive star grammars capture all structuralproperties of these graphs.
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The paper is structured as follows. InSection 2, we show how object-oriented programs can
abstractly be represented asprogram graphs. Then we recall star grammars inSection 3, show
how they defineprogram trees, a sub-structure of program graphs, and discuss why they cannot
define program graphs themselves. InSection 4, we therefore recall theadaptive star grammars
devised in [DHJ+06, DHJM09]. Close inspection reveals that even this formalism fails to capture
some properties of program graphs. So we extend adaptive star grammars further, by rules
with positive and negative application conditions, inSection 5. Theseconditional adaptive star
grammars, finally, allow program graphs to be defined completely. We conclude with some
remarks on related and future work inSection 6.

2 Graphs Representing Object-Oriented Software

In model-driven software development, software is represented by diagrams, e.g., of the UML .
Formally, such diagrams can be defined as many-sorted graphs.

Definition 1 (Graph) LetΣ = 〈Σ̇, Σ̄〉 be a pair of disjoint finite sets ofsorts.
A many-sorted directed graph overΣ (graph, for short) is a tupleG = 〈Ġ,Ḡ,s, t,σ〉 whereĠ

is a finite set ofnodes, Ḡ is a finite set ofedges, the functionss, t : Ḡ→ Ġ define thesourceand
targetnodes of edges, and the pairσ = 〈σ̇ , σ̄〉 of functionsσ̇ : Ġ→ Σ̇ andσ̄ : Ḡ→ Σ̄ labelnodes
and edges with sorts.

Given graphsGandH, a pairm= 〈ṁ,m̄〉 of functionsṁ: Ġ→ Ḣ andm̄: Ḡ→ H̄ is amorphism
if it preserves sources, targets and sorts. A morphismm is surjectiveor injectiveif both ṁandm̄
have the respective property. If the morphismm: G→ H is both injective and surjective, it is an
isomorphism, andG andH are calledisomorphic, writtenG∼= H.

In figures of graphs, different sorts of edges are represented by drawing arrows in different
styles, whereas nodes are distinguished by their shape, which may be a box or a circle, and by a
label inscribed to that shape.

Program graphs have been devised as a language-independentrepresentation of object-
oriented code that can be used for studying refactoring operations [MEDJ05]. They capture
concepts that are common to many object-oriented languages, like single inheritance and method
overriding, whereas properties particular to a few languages—like multiple inheritance—are left
out. Here we use a variant that is simplified wrt. [Eet07] in several ways:

1. In method bodies we just represent thedata flow: use and update of variables, and method
calls. The structure of statements and expressions is omitted.

2. We simplify thevisibility rules for features: all methods are assumed to have global visi-
bility (public in Java); variables are assumed to be visible in the declaring class and in its
subclasses (protectedin Java); parameters of a method are visible in its body.

3. We ignore thetypingof variables, parameters and return values of methods.

Even in this simplified form, program graphs are a good example for a software model. Their
admissible shape is given by precise syntactic and contextual rules of object-oriented program-
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class Cell is

var cts: Any;

method get() Any is
return cts;

method set(var n: Any) is
cts := n

subclass ReCell of Cell is

var backup: Any;

method restore() is
cts := backup;

override set(var n: Any) is
backup := cts;
super.set(n)

(a) A simple OO program

CAny

C
Cell

M B

V

B M C

get set ReCell

E E

V

B

V

M B
restore

cts

backupn
E E E E

E E E

(b) The graph representing the program inFigure 1a

Figure 1: A program graph

ming languages. This makes it easy to check whether a definition of program graphs captures all
properties of program graphs.

Example1 (A Program Graph) Figure 1ashows a simple object-oriented program from [AC96],
for which the program graph is depicted inFigure 1b. The nodes of a program graph, drawn as
circles, represent syntactic entities of a program: classes (C), variables (V), method signatures
(M), method bodies (B), and expressions (E). Edges establish relations between entities: a solid
arrow “ ” is pronounced “contains” , and a dashed arrow “” is pronounced “refers to”.

Nodes of sortC are called “class nodes” or just “classes”, and so for the other sorts of nodes.
The variables contained in a method signature are called itsparameters, and we say that a classc′

is a super-classof a classc if either c′ equalsc, of if some class contained inc′ is a super-class
of c. In a similar way, we define asub-expressionof a body or expression. If a method bodyb
refers to a method signaturem, we say that “b implementsm”. In expressions, only data flow
is represented: a reference to a method represents acall; a reference to a variable represents an
accessthat eitherusesits value, orassignsthe value of an expression to it.

Definition 2 (Program Graph) A graphG is aprogram graphif it has the following properties:

P1. Its nodesĠ are labeled with the sorts{C,V,M,B,E}, and its edges̄G are labeled with the
sorts{ , }.

P2. There is a morphism that mapsG to the incidence graph Ginc shown inFigure 2. In
addition, the following conditions hold:

(a) A body contains at least one expression, and it implements exactly one method sig-
nature.

(b) An expressione refers to exactly one node, and that node is either a method ora
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Ginc =

C

V M B

E

Figure 2: The incidence graph of program graphs

variable. Ife refers to a variablev, it contains at most one expression (the value of
which shall be assigned tov).

P3. The subgraph̄G induced by -edges ofG is a spanning tree ofG; the root ofḠ is a class.

P4. If an expression refers to a methodm, mmust be contained in some class of the graph.

P5. If an expressione accesses a variablev contained in a classc, e must be a sub-expression
of a bodyb that is contained in a sub-class ofc.

P6. If an expressione accesses a parameterp of a methodm, e must be a sub-expression of a
body that implementsm.

P7. If a method bodyb implements a method signaturem, b must be contained in a sub-class
of the classc containingm.

P8. For every method signaturem, every class contains at most one body implementingm.

P9. If an expressionecalls a methodm, the number ofm’s parameters must match the number
of expressions contained ine.

The class of program graphs is denoted byP.

The incidence graph inFigure 2plays the role that type graphs play in algebraic graph trans-
formation [EEPT06], and that graph schemata play in PROGRES[SWZ99]. PropertyP4 defines
the visibility of all methods aspublic, and PropertyP5 defines the visibility of all variables as
protected, in the terminology of JAVA .

The graph-theoretic structure of program graphs is as follows.

Definition 3 A rooted, connected, acyclic graph is called acollapsed tree.

Lemma 1 Program graphs are collapsed trees.

Proof Sketch.The only (minimal) cycles in the incidence graphGinc in Figure 2are the two
loops on the nodes labeledC andE, respectively. As there is a morphism fromG to that incidence
graph, this means that all cycles inG consist of containment edges. Hence, by PropertyP3, there
cannot be any cycles, because these cycles would occur inḠ. PropertyP3 implies connectedness;
The root class of the spanning tree is the root of the program graph as well, because the incidence
graphGinc forbids references to classes.
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Program graphs can be specified by models, e.g., by UML class diagrams with logical OCL
constraints. The incidence graphFigure 2corresponds to a simple UML class diagram without
subtyping. PropertiesP2 (a) and (b) can be expressed as cardinality constraints for that class
diagram. PropertyP3 can be specified by requiring that “contains”-arcs are compositions, plus
an additional OCL constraint assuring that the class hierarchy has a unique root. PropertiesP4-P9

can be specified by structural OCL constraints. For details,see [HM10].

3 Star Grammars

Star grammars are a special case of double pushout (DPO) graph transformation [EEPT06], and
equivalent to hyperedge replacement grammars [Hab92, DHK97], a well-understood context-
free kind of graph grammars. They are recalled just as a basisfor the extensions defined in
Section 4andSection 5.

Definition 4 (Star) From now on we assume that the node sorts containnonterminal sorts
Σ̇n ⊆ Σ̇ that define theterminal node sortsasΣ̇t = Σ̇\ Σ̇n.

Consider a star-like graphX, with one center nodecX of sort x ∈ Σ̇n, and with some border
nodes (of terminal sorts froṁΣt) so that every border node is adjacent tocX, and only tocX.
ThenX is called astar named x. A star isstraight if every border node is incident with exactly
one edge.

A graphG is a graph with starsif no nodes named with nonterminals are adjacent to each
other.1 Let X denote the class ofstars, G (X ) the class of graphs with stars, andG be the class
of graphs without stars (with node sorts fromΣ̇t).

Definition 5 (Star Replacement) Astar ruleis writtenL ::= R, where theleft-hand side L∈X

is a straight star and thereplacementis a graphR∈ G (X ) that contains the border nodes ofL.
A star Y in a graphG is a match for a star ruleL ::= R if there is a surjective morphism

m: L →Y wherem̄ is bijective. Then astar replacementyields the graph denoted asG[Y/mR],
which is constructed by adding the nodesṘ\ L̇ and edges̄Rdisjointly toG, and by replacing, for
every edge inR̄, every source or target nodev∈ L̇ by the node ˙m(v), and by removing the edges
Ȳ and the center nodecY.

Let R be a finite set of star rules. Then we writeG ⇒R H if H = G[Y/mR] for someL ::=
R∈ R, some starY in G, and some matchm, and denote the reflexive-transitive closure of this
relation by⇒∗

R
.

Example2 (Star Replacement)Figure 3ashows a star ruleL ::= R for an assignment expres-
sion. The center nodes of stars are drawn as boxes enclosing their name. We shall draw such
a star rule as inFigure 3b, by “blowing up” the box of the center node on its left-hand side,
and placing the new nodes and edges of the right-hand side inside this box. A star rule can be
represented as it is drawn, as a singlerule graphwherein one star is distinguished as the rule’s
left-hand side. This way, graph operations can be applied tostar rules as well.Figure 3cshows
a schematic star replacementG0 ⇒ass G1 using this rule.

1 Then all these nodes are centers of stars.
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(c) A schematic star replacement

Figure 3: Star replacement

Definition 6 (Star Grammar) Γ = 〈G (X ),X ,R,Z〉 is astar grammarwith astart star Z∈X .
Thelanguageof Γ is obtained by exhaustive star replacement with its rules, starting from the start
star:

L (Γ) = {G∈ G | Z ⇒∗
R G}

Example3 (Star Grammar for Program Trees)Figure 4shows star rules that generate program
trees. The rules define a star grammarPT according to the following convention: The left-hand
side of the first rule indicates the start star, a star namedPrg with a class as a border node in this
case. The sorts used in the rules define the sorts of the grammar.

In the rules, we use abbreviations for certain common constructions. Boxes drawn with dashed
lines and/or a shade around a subgraph of the right-hand sideindicate that a varying number of
these subgraphs can be generated: a solid box with a shade indicates that the subgraph may have
n > 1 instances, so rulebdy may generate an arbitrary non-empty set of expressions; a dashed
box with a shade indicates that the subgraph may haven > 0 instances, so rulehy may generate
an arbitrary, possibly empty, set of sub-classes (rulessig, impl, andcall show further examples);
finally, a dashed box without shade indicates an optional subgraph that may have1 or 0 instances,
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Figure 4: The rules of the star grammarPT generating program trees
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so rulemeth in Figure 6on page10may derive a method body, or not.
Note that generic subgraphs could be implemented by using auxiliary nonterminals and star

rules. In our examples, we just assume that we may userule instancesr i of a rule r whereini
instances of the respective subgraph have been made.

Green nodes designate nodes in the program tree that have to be identified with nodes repre-
senting their declarations in order to get a program graph according toDefinition 2: These are
the method signatures generated inimpl andcall, and the variables accessed inuse andass. (In
black-and-white printing, these nodes appear to be grey.)

Inspection of the rules inPT reveals the following.

Fact 1 L (PT) is a language of trees.

The language ofPT is closely related to program graphs.

Definition 7 (Unraveling) Consider a program graphG∈P and define, for every method node
m∈ Ġ (with σ̇G(m) = M), its signature tree MG(m) as the subgraph ofG induced bym and all
variable nodes contained inm.

TheunravelingĜ of G is then obtained by redirecting inG, for every reference edgee∈ Ḡ
(with σ̄G(e) = ), its target to a new variable node ifσ̇G(tG(e)) = V, and to a fresh copy of the
signature treeMG(tG(e)) if σ̇G(tG(e)) = M, respectively.

Let P̂ = {Ĝ | G∈ P} denote the unravelings of program graphs.

Lemma 2 P̂ ( L (PT).

Proof Sketch.(P̂ ⊆L (PT)). Consider some program graphG∈P. Then its unravelinĝG still
has PropertiesP1–P3 of program graphs: No new labels are added so thatĜ satisfies PropertyP1;
the redirection of edges does not change incidences so that Property P2 is preserved, and the
underlying spanning treēG is not changed in̂G. Moreover,Ĝ is a tree since unraveling redirects
all reference edges to unique new variable nodes and signature trees, respectively. Using these
properties, it can be shown by a straight-forward inductionover derivations withPT that Ĝ ∈
L (PT).

(P̂ 6= L (PT). Rules impl, use, ass, andcall allow to generate implementations and calls
of methods, or accesses to variables even if no declaration of a variable or method has been
generated in the tree by rulesvar or sig) Such a tree cannot be the unraveling of a program graph,
which must satisfy PropertiesP4–P9.

Star grammars are context-free in the sense of B. Courcelle [Cou87]. This suggests that their
generative power is limited. Indeed, we have the following

Theorem 1 There is no star grammarΓ with L (Γ) = P.

Proof Sketch.(By contradiction.) Consider program graphsGn containing only one class, one
method signature, and one body. The method signature contains n parameter nodesp1, . . . , pn,
and the body containsn expression nodese1, . . . ,en with n−1 sub-expressionsei1, . . . ,Ein−1 each.
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Now, consider the following additional requirements:

1. For everyei , the sub-expressionsei1, . . . ,ein−1 access pairwise distinct parameters in
{v1, . . . ,vn}, leaving out exactly one.

2. For everyvi , there is exactly oneej such thatvi is not accessed by any of its sub-
expressions, and for distinctej ,ek, these non-accessed parameters are distinct.

Let P2 = {Gn | n < 0} be the class of such program graphs. Clearly,P2 ⊆ P. A graphGn

hasn2 + n+ 3 nodes andn2 + n+ 2 edges. So the size of graphs inP2 grows quadratically.
By [DHJM10, Theorem 2.8], star grammars are equivalent to hyperedge replacement grammars
(HR grammars, for short). ThusP can also be generated by a HR grammar. Moreover, require-
ments (1) and (2) are easily expressible in first-order logic, and thus also in monadic second order
logic. Then, by [Cou90, Theorem 4.4(1)], a HR grammar generatingP can be restricted to a HR
grammar generatingP2. This, however, contradicts the linear growth theorem 2.6 in [Hab92]
which says that the size of graphs in a HR language grows only linearly.

4 Adaptive Star Grammars

We make the left-hand sides of star rulesadaptivewrt. the numbers of border nodes, as proposed
in [DHJ+06]. It has been shown in [DHJM09] that this extends the generative power of star
grammars. Formally, adaptation is defined by cloning.

Definition 8 (Singular and Multiple Nodes) We assume that the sortsΣ = 〈Σ̇, Σ̄〉 are given so
that the terminal node sortṡΣt contain a seẗΣt of multiplesorts so that every remainingsingular
sort s∈ Σ̇t \ Σ̈t has a unique multiple sort ¨s∈ Σ̈t, and vice versa.

From now on,X , G andG (X ) denote classes of graphs with singular sorts only, whereas
Ẍ , G̈ andG̈ (Ẍ ) denote classes ofadaptive graphsthat may contain multiple sorts as well.

A star ruleL ::= R is calledadaptiveif L ∈ Ẍ andR∈ G̈ (Ẍ ).

Definition 9 (Cloning) LetG be a graph inG̈ (Ẍ ). For a multiple nodev that is labeled with
ℓ̈∈ Σ̈t, and incident with the edgese1, . . . ,en (n> 0), Gv

k denotes the graph in whichv is replaced
by k > 0 singular nodesv1, . . . ,vk that are labeled withℓ, and every edgeei is replaced by copies
ei,1, . . . ,ei,k so thatsG′(ei, j ) = sG(ei), tG′(ei, j ) = tG(ei), andσG′(ei, j) = σG(ei) for 1 6 i 6 n and
1 6 j 6 k. A nodevi is called aclone of v, andGv

k is called aninstanceof G.
For a graphG∈ G̈ (Ẍ ), a functionµ : Ġ→ N is amultiplicity if it maps singular nodes to 1.

ThenGµ is the instance ofG wherein every multiple nodev hasµ(v) clones.

Example4 (Adaptive Star Cloning, and Label Specialization)The star ruleass in Figure 5ais
adaptive: its nodea is multiple, and shall match a set ofn > 0 singular nodes in the host graph
that are accessible in the expression. InFigure 5b, a schematic view of the rule instancesassa

n is
given, forn > 0.

The abstract sortF of nodesa andai is a placeholder for the concrete sub-sortsV andM. (F
stands forfeature.) Before applying the rule instanceassa

n, each of the labelsF is specialized
either toV or M. As with generic subgraphs, a star rule with abstract sorts is just an abbreviation
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(b) The star rules obtained by cloning

Figure 5: Cloning of adaptive rules

for a set of star rules wherein these abstract sorts are replaced with any combination of their
concrete sub-sorts.

Definition 10 (Adaptive Star Grammar) LetΓ = 〈G̈ (Ẍ ),Ẍ ,R,Z〉 be a star grammar over
adaptive stars and graphs. ThenΓ is calledadaptiveif Z ∈ X (i.e., has no multiple nodes).

Let R̈ denote the set of all possible instances of a setR of adaptive star rules. ThenΓ generates
the language

L̈ (Γ) = {G∈ G | Z ⇒∗
R̈

G}

The set of star rulesR̈ generated from a set of adaptive star rules is infinite if at least one of
the adaptive star rules contains a multiple node. It has beenshown in [DHJM09] that this gives
adaptive star grammars greater generative power than grammars based on hyperedge [Hab92] or
node replacement [ER97], but but they still admit a parsing algorithm [DHJ+06].

Example5 (Adaptive Star Grammar for Program Graphs)The adaptive star rules inFigure 6
define an adaptive star grammarPG that systematically extends the program tree grammarPT of
Figure 4.

As for star rules, we allow generic subgraphs in rules in order to abbreviate repetitions. The
adaptive star rulehy has instanceshyi with i instances of theHy-star, and each of them is source
of an instance of a multipleM-node. The instancehyi is then subject to cloning. Again, generic
subgraphs could be implemented by auxiliary nonterminals and auxiliary adaptive star rules.

With two exceptions, the rules ofPG just extend those ofPT. In PG, rule meth defines a
method declaration, which combines a signaturesig with an (optional) implementationimpl,
whereasovrd defines the overriding of a method in the subclass of the original method definition.

In Figure 7we show the general form of stars inPG and of the program subgraphs they
generate. (In derivations, the multiple nodesd, v, ando of X are cloned.) The sorts of edges
indicate the following roles of the border nodes. Noder is the root of the program subgraph
GX derived fromX; it is labeled by theroot sortRx of x. (RExp = E, RBdy = B, andRx = C for
x∈ {Prg,Hy,Cls,Fea}.) Clones ofd are the featuresdeclaredin GX. Clones ofv are the features
that arevisible in GX. Clones ofo are the methods that areoverridablein GX. Features may
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Figure 6: Rules of the adaptive star grammarPG defining program graphs

have several roles inX andGX: every feature declared byX is also visible inX, and overridable
methods are visible as well so that some clonesd andv, and some clones ofv ando in X may be
identified. On the left-hand side of rules, the clones ofd, v ando in a starX have to be distinct
(asX is required to be straight) so that they must be identified by matching. The graphGX is
directed and acyclic. Some of its visible border nodes may beisolated. The rest is a collapsed
tree with rootr.

The rules inFigure 6extend the rules ofFigure 4by adding border nodes to stars according to
the roles explained above. The rules forFea declare a variable or a method (or just override an
existing method). The rulecls declares its member variables and methods. A hierarchy declares
all methods of its top class and of its sub-hierarchies, makes the variables of the top class visible
in the class itself and in the sub-hierarchies, and makes themethods of the top class overridable
in the classes of its sub-hierarchies. The rulestart makes all methods declared by the program
hierarchy visible in it. All rules pass visible features down to the leaves of the program graph.
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Figure 7: Stars and derivations inPG
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Figure 8: Deriving the program graph ofFigure 1bwith PG

The rules forExp then select visible variables for being used or assigned to,and methods for
being called; ruleovrd selects an overridable method signature for overriding it with a new body.

Figure 8shows parts of a derivation of the program graph shown inFigure 1bwith PG. We
simplify the drawing of edges as follows: A pair of counter-parallel edges “ ” is drawn as
a single line “ ”, and a pair of parallel edges of the form “ ” is drawn as a single arrow
“ ”.

The class hierarchy is derived in the first row. ClassesCell andRecell will introduce three and
two features, resp.; the methods are visible in both classes, but the variables introduced are only
visible in the defining class and in its subclasses so that thevariablebackup in ReCell will not be
visible in Cell. The methods defined inCell are overridable inReCell.

The featuresget, backup, andrestore of the classCell are introduced in the second row, and
the features of the classReCell are derived in the third row: the variablebackup and the method
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restore are introduced, and the methodset of Cell is overridden. The last row shows a derivation
of the body overriding the methodset of classCell in ReCell.

The derivations in rows one to three can be combined to one bigderivation by embedding.
However, the start graph of the last rowcannotbe embedded into the final graph of the derivation
in the third row. This is because the ruleovrd does not make the parametern (drawn in green,
or grey, resp.) of the signature ofset visible in the overriding body. The parameter is needed to
derive the body, and it should be visible in it. This reveals one of two problems in the grammar,
which cannot be overcome with adaptive star grammars.

Theorem 2 Every graph G is inL (PG) satisfies PropertiesP1–P5, andP7.

Proof Sketch.Inspection of the rules (as done inExample 5andFigure 7above) shows that the
border nodes of stars do indeed play the roles given to them. Using these invariants, it can be
shown by induction over the structure of rules that everyG∈ L (PG) satisfies PropertiesP1–P5,
andP7.

A graphG∈ L (PG) need not satisfy the remaining properties of program graphs: a class in
G may contain several bodies that override the same method, contradicting PropertyP8, and a
method may be called with any number of actual parameters, contradicting PropertyP9. The
reverse of this theorem does not hold either. In particular,a program graphG ∈ P cannot be
derived byPG if it contains an overridden methodm that accesses its parameters. InG, all bodies
of m may access the parameters ofm (by PropertyP6), whereas in a graphG∈ L (PG), this is
not true for an overridden body ofm. For this reason, the last sub-derivation inFigure 8, which
overrides the methodset, cannot be embedded into a big derivation of the program graph in
Figure 1b.

Why is it so difficult to specify PropertyP6 with an adaptive star grammar?In rule ovrd, the
parameters of the methodmbeing overridden cannot be made visible in its body, as they are not
among the clones of theF -node in the rule.

We could pass around all parameters of all methods (not in therole “visible”, but in a new
role as “parameters”). Then, we had to select the parametersof m because only these should
be visible its body. We thus have to distinguish the parameters of m from those of other visible
methods. However, the number of visible methods is unbounded, whereas our supply of edge
sorts is finite. So this is not possible. Alternatively, we could generate copies of the parameters
for every overridden body. But then we must know how many parametersm has. Again, this
information cannot be made available.

These considerations lead to the following

Conjecture 1 There is no adaptive star grammarΓ with L (Γ) = P.

5 Conditional Adaptive Star Grammars

To overcome the deficiencies of adaptive star grammars, we extend adaptive star rules byappli-
cation conditions. This has already been discussed informally in [DHM08].
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Definition 11 (Conditional Adaptive Star Replacement) Letr = L ::= R be an adaptive star
rule.

A simple application condition Afor L can be constructed over a graphC ∈ G̈ (Ẍ ) if C is
disjoint toL up to some border nodes ofL, and if all multiple nodes ofC appear inL, with the
same sort. ThenA may take one of the following forms: (i) ifA = C, it is a positive condition;
(ii) if A = ¬C, it is a negative condition; or, (iii) if A = ∀x1,...,xn¬C (n > 0) wherex1, . . . ,xn are
multiple nodes inC, it is anegative instance condition.

If A1, . . . ,An are simple application conditions forL, c= A1∧·· ·∧An [] L ::= R is aconditional
adaptive star rule. (Forn = 0, the ruler is written without the symbol “[]”, like an unconditional
rule.)

Let Lµ be an instance of the starL an adaptive star ruler = L ::= R (for some multiplicity
µ). A matchm: Lµ → G satisfiesan application conditionA, written m� A, under one of the
conditions below:

• m� C if mcan be extended to a morphismLµ ∪Cµ → G;2

• m� ¬C if m cannot be extended toLµ ∪Cµ → G;2

• m� ∀x1,...,xn¬C if, for every tuple(y1, . . . ,yn) of instances of the multiple nodesx1, . . . ,xm,
m cannot be extended toLµ ∪C[x1/y1] . . . [xn/yn] → G, whereC[x/y] is the copy ofC
wherein the nodex (of sort σ̈ , say) is replaced by a singular nodey (of sortσ ).

If m� Ai for 16 i 6 n, the star replacementH = G[m(Lµ)/mRµ ] is aconditional star replacement,
and we writeG

c
=⇒c H.

Application conditions for general graph transformation rules have been devised in [EH85].
Our application conditions are not nested as those considered in [HP09]. Furthermore they are in
conjunctive normal form, and just allow to require the existence or non-existence of subgraphs.
This is sufficient for our purpose.3

When drawing conditional rules, as inFigure 9, we indicate shared nodes of application con-
ditions and left-hand sides of conditional rules by attaching the same letters to them.

Definition 12 (Conditional Adaptive Star Grammar) LetC be a finite set of conditional adap-
tive star rules. ThenΓ = 〈G̈ (Ẍ ),Ẍ ,C ,Z〉 is aconditional adaptive star grammarover adaptive
stars and graphs) ifZ ∈ X .

Let C̈ denote the set of all possible instances of a setC of conditional adaptive star rules.
ThenΓ generates the language

L̈ (Γ) = {G∈ G | Z
c

=⇒
∗

C̈ G}

Example6 (Conditional Adaptive Star Grammar for Program Graphs)Figure 9shows the rules
of the conditional adaptive star grammarPGc, which refines the adaptive star grammarPG of

2 We assume that the instances of multiple nodes inL andC are the same.
3 The reader may wonder why we consider only negative, all-quantified instance conditions. It is easy to see that
∀x1,...,xnC is equivalent to the conditionC. Existential conditions∃x1,...,xn [¬]C can be expressed by adding singular
clones for the multiple nodesx1, . . . ,xn to L, and requiring[¬]C just on these clones.
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Figure 9: Rules of the conditional adaptive star grammarPGc defining program graphs

Example 5as follows. All stars inPGc are attached to the border nodes used inPG, and may be
attached to two additional sets of nodes, seeFigure 10: Outgoing dashed edges represent the
parameterscontainedin stars namedHy, Cls, andFea, and ingoing dashed edges represent the
parametersknown in a star. The rules make that all parameters contained in thefeatures, classes
and hierarchies of the program are known to every star.

In rulecall, the positive condition on nodesmandp requires that the clones ofp are parameters
of m, and the negative instance condition on nodeo forbids every other parameter known in the
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Figure 10: Stars and derivations inPGc
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program to be a parameter ofm. Thus the clones ofp are all parameters ofm. The remaining
three conditions forbidm to be a declared node of any star namedHy, Cls, or Fea. This makes
sure that all parameters ofm have already been generated (in the rules forFea) before rulecall
can be applied. Rulecall generates a new nonterminalAct to which the parameters ofm are
connected by an edge• . In the rules forAct, these edges are used to “count” the number of
parameters while generating the corresponding actual arguments (byExp). Thus PropertyP9 is
respected.

In rule ovrd, the first five application conditions (which equal that ofcall) make sure that the
clones ofpare all parameters ofm. These parameters are not only become known (as parameters)
to the overriding body ofm, but also made visible to it so that they may be accessed as variables
in use andass. Thus PropertyP6 is respected. The sixth application condition makes sure that
no other method body contained in the current classc does override the same methodm; this
guarantees PropertyP8.

In Figure 11, we show some steps of a derivation withPGc that could eventually derive the
program graph inFigure 1b. The grey region contains nodes representing the declarations ofget,
n, backup, andrestore. A pair of counter-parallel edges “ ” is drawn as a single line “ ”.

Note that rulemeth, which generates the definition ofset in classCell makes the parametern
visible, as a parameter, to the entire program.

When the ruleovrd is applied to the methodset, n is made visible as a variable inside its body.
The other part of the applicability condition holds as well:ClassReCell does not contain another
body overridingset, and no star hasmas a declared border node (but just as a visible border node
of Bdy and an overridable border node ofFea). Note that in classReCell, the methodset cannot
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Figure 11: Deriving the program graph ofFigure 1bwith PGc
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be overridden by another body since this would violate the application condition ofovrd. Now
the derivation in the last row ofFigure 8can be inserted for the body ofset in ReCell becausen is
present. In that derivation, in the step using rulecall, the application condition ofPGc guarantees
that exactly one expression will be generated as an actual parameter (by the rules ofAct) since
methodset has one parameter.

Definition 13 (Complete Node) Consider a graphG∈ G (X ) and a conditional adaptive star
grammarΓ. An edge isterminal in Gif it is not part of a star.

A nodev ∈ Ġ is calledcomplete wrt. terminal edgesif for every derivationG
c

=⇒
∗

C̈ H, v is
incident to the same terminal edges (up to isomorphism) inH as it was inG.

Lemma 3 In graphs derived withPGc, M-nodes are complete wrt. terminal edges if they are
not declared border nodes of any stars namedHy, Cls, or Fea.

Proof Sketch.By inspection of the right-hand sides of the rules for these stars inPGc, it is clear
that structural edges are added only to declared nodes of these rules’ left-hand sides.

According to this fact, application conditions over structural edges can safely be checked as
soon as the relevant nodes are only visible or overridable border nodes of stars. This is the case
for the conditions concerning the parameters of methods.

Thus PGc generates the program graph inFigure 1b, and will not generate calls with mis-
matching parameters, nor with methods that are overridden twice in a class.

Theorem 3 L (PGc) = P.

Proof Sketch.The idea is similar to that ofTheorem 2.
“⊆”: Inspection of the rules (as done inExample 6andFigure 10above) shows that the border

nodes of stars do indeed play the roles given to them. Using these invariants, it can be shown by
induction over the structure of rules that everyG∈ L (PG) satisfies all Properties (P1–P9) of a
program graph.

“⊇”: Given a program graphG∈P, we can construct a derivation according to the underlying
structure (with edges of type) first, before we determine the clones for border nodes according
to the equations on the multiplicity variables. At last, it can be verified that the conditional rules
ovrd andcall satisfy their application conditions.

Given a matching of a rule, its application condition is decidable so that there is a chance
to combine application conditions with the existing parsing algorithm for adaptive star gram-
mars [DHJM10, Section 6]. In contrast to simple adaptive star rules, the matches of conditional
adaptive star rules in a graph may have critical overlaps. The application condition of one rule
may contradict the application condition of another rule. Consider, e.g., the nodeReCell in the
rightmost graph in the top row ofFigure 11. The ruleovrd matches everyFea node inReCell.
However, if the match includes the same method (get or set), then the application of the rule to
one feature would disable the other application, due to the sixth application condition concerning
unique implementation. The critical pair analysis for graph transformation rules applies to con-
ditional graph transformation rules; it might be used to analyze conflicts in conditional adaptive
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star rules if we can extend the analysis procedure to multiple nodes.

6 Conclusions

With this paper, we continue our search for a powerful, parseable, and readable kind of graph
grammars for object-oriented software models. We succeeded in defining the well-known class
of program graphs [MEDJ05] by conditional adaptive star grammars. This cannot be done
with star grammars (byTheorem 1), and seems to be impossible with adaptive star gram-
mars [DHJ+06, DHJM09].

A richer class of program graphs, featuring more general visibility rules, contextual rules
for abstract methods and classes, control flow in method bodies, and static typing of variables
and methods has earlier been specified in [Eet07]. Most of these properties can be specified
easily with conditional adaptive star grammars. The typingof features, represented by edges
from variables and methods to the class defining their type, may be more difficult. For, type
compatibility of method calls, for instance, requires to check whether the type of the actual
parameter is a subtype of the type of the actual parameter. This requires to check whether there
is a path of arbitrary length betwen these types. It is not clear whether this can be specified by
application conditions as they are.

Readers may ask themselves: Are there other representations of object-oriented programs as
graphs that would be easier to generate, by simpler kinds of grammars? Now, program graphs
are a rather straight-forward representation of programs:the hierarchical structure of the pro-
gram is represented by a spanning tree; different occurrences of entities like methods and vari-
ables are identified so that they are represented once. This resembles standard representations
of programs as abstract syntax trees and attributed trees that are known from compiler construc-
tion [ALSU07], and make it easy to access and modify all information associated with an entity.

There are too many kinds of graph grammars to relate conditional adaptive star grammars to all
of them. So we restrict our discussion to approaches that aimat a similar application. Context-
embedding rules [Min02] extend hyperedge-replacement grammars by rules that add asingle
edge to an arbitrary graph pattern. They are used to define andparse diagram languages and are
not powerful enough to define models like program graphs. Graph reduction grammars [BPR09]
have been proposed to define and check the shape of data structures with pointers. The form of
their rules is not restricted, but reductions with the inverse rules are required to be terminating
and confluent, providing a backtracking-free parsing algorithm. It is an open question whether
graph reduction grammars suffice to define program graphs.

A lot of work has to be done until we get a graph grammar mechanism that is useful for
defining software models. Yet another problem is to convincesoftware engineers that it is a
practical benefit for their daily work! This will only be possible if graph grammars have practical
advantages wrt. the conventional software models, like UML diagrams. For instance, can such a
model be derived from a grammar? Can at least parts of a model be obtained “automatically”?
There is some indication that a class diagram specifying PropertiesP1–P3 of program graphs
can be inferred from the rules of a (conditional) adaptive star grammar. A real advantage of
grammars, which are a constructive mechanism, is that they do not only allow to check the
validity of a model (by parsing), but also allow to generate sample instances of a model, e.g., for
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testing [EKT09].
Even if conditional adaptive star grammars are powerful enough, their rules tend to be rather

complicated, both to write and to read. So a more general challenge would be to come up with yet
another graph grammar formalism that is easier to use, but enjoys many of the formal properties
of (adaptive) star rules. It may turn out that contextual star grammars [HM10] are easier to
understand.

The proof of Conjecture1 poses the theoretical challenge to disprove membership in aclass
of graph languages. Whereas some results for star languages(e.g., the pumping lemma for
the equivalent hyperedge replacement languages [Hab92, DHK97]) helped to proveTheorem 1,
nothing is known for (conditional) adaptive star languages.
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