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Abstract: The decision of how to model patterns as elements of formal systems is
a yet sparsely covered research topic. The present article introduces an approach
which understands patterns as non-linguistic carriers of formal semantics in mod-
els. The notion of patterns is embedded into a theory which links spatial orientation
and navigation to the constitution of semantics in human understanding. Inside this
framework, the concept of patterns is treated conform to the notion of spatial axes
on a shared higher level of abstraction. A formal model is presented which ex-
presses the introduced notion of patterns in a practically applicable meta-modeling
language.
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1 Pattern-based semantics in models and scientific theories

In order to communicate and express knowledge, linguistic or non-linguistic devices of expres-
sion are used. Meaning – or, as a synonym, semantics –, is not an inherent feature belonging to
these means of expression, it does not have the status of an ontological entitity that is attached
to things [Put75]. Instead, meaning is a result of interactions carried out by cognitive beings in
the world [Noë04]. The “final interpretant” [Pei31] are the actions performed by participants
involved in language use.

In order to communicate semantics and constitute understanding, different kinds of means
can be consulted. Traditional reflections on the notion of semantics have primarily focused on
linguistic symbol systems, i.e., spoken and written languages in a narrow sense. Languages,
both formal and natural, are indeed suitable means for communicating and sharing meaning, and
a great extent of everyday communication and scientific reflection is carried out successfully in
spoken and written language.

However, the phenomenon of understanding is not limited to settings in which language-based
communication takes place. It is as well typical for human communication to transfer mean-
ing by non-linguistic carriers, e.g., pictorial symbols, diagrams, gestures, movements or just a
combination of colors and locations1. Subject-specific communication in different scientific dis-
ciplines is also not restricted to linguistic devices of expression. Almost any scientific branch
has developed means for expressing subject-related knowledge of the discipline in the form of
diagrams, tabular structures, symbolic markings etc. Using non-linguistic carriers of meaning
in addition to written and spoken language allows to exploit a much wider range of cognitive

1 An example of transferring meaning by a combination of colors and locations, together with other contextual
aspects, is, of course, the use of traffic lights.
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resources to create common understanding among participants in a communication setting and
to construct and describe complex systems. While language is bound to a linear structure and
words cannot easily be used to point out subtle differences between concepts [Goo68], a wide
range of techniques exist to express scientific knowledge in a non-logocentric way, in the first
place visualization techniques [Ber84, Tuf83].

A wider notion of semantics incorporates any spatial-temporal constellations and processes
in space and time as being capable of constituting meaning. Since the upcoming sections of
the present paper focus on scientific means of communication via diagrams, a light will be put
on static spatial constellations and non-moving visual appearances as carriers of meaning. The
proposed approach, however, could without frictions be extended by including movements and
temporal patterns accordingly.

The following Section 2 sketches the current state-of-the-art in semantic theory research. It
also lays out why traditional approaches have grown insufficient for methodical reflection on
sciences and the languages and models they use to communicate. Section 3 presents new philo-
sophical approaches conquering the desiderata resulting from the traditional view's deficiencies.
Based on these works, the requirements for incorporating pattern-based semantics into formal
modeling methods in computer science and other disciplines are outlined, and in Section 4, a
formal meta-model which fulfills the identified requirements is developed. The meta-model in-
cludes the formalization of the term “Pattern” as an abstract kind of spatial axis. The article
ends with Section 5 which summarizes the presented work and sketches possible future steps of
improvement.

2 In search of a semantic theory able to cope with patterns

Since non-linguistic carriers of meaning become increasingly important when large and complex
systems are described, the use of patterns as non-linguistic devices should be reflected when pro-
viding scientific support for formal system design. This task, however, has only been sparsely in-
vestigated yet. Only since about the 1980s years, philosophical and linguistic underpinnings have
been developed to capture a notion of semantics beyond a purely logocentric view. Conjoint re-
search of philosophers and cognitive scientists has resulted in conceptualizations which allow for
broadening the notion of semantics as constituted by pattern-like constituents of meaning. The
concepts of metaphorical constituents of meaning [JL80] and image schemata [Joh87, Gal05]
have provided the methodical tools for acquiring a notion of semantics which can explain phe-
nomena of human understanding and cognition on a level required for coping with patterns.

These approaches are commonly subsumed under the label “embodied cognition” [Wil02].
The main idea of the embodied cognition view is to explain cognition, understanding and the
use of symbols as emerging from cognitive processes bodily beings perform when physically
interacting in the world. Spatial orientation and navigation of the body are fundamental cognitive
operations of all bodily beings which bind cognition to a system of possibilities and limitiations
offered by the physical world. According to the embodied cognition view, they form the basis
for the development of high-level cognitive operations such as the use of languages and other
semantic means of expression.

The theoretical groundings developed by the embodied cognition view provide a thorough
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foundation for reconstructing means of expression in computer science and information systems
science. Capturing knowledge about highly interrelated systems is especially relevant in manag-
ing large-scale technological and socio-technical systems, e.g., in the field enterprise modeling
[Fra02]. However, the transfer of these results into formal modeling research has yet to be per-
formed. Modeling theories currently applied by computer science's research often merely refer to
an objectivist account of semantics, which is embedded into a narrow notion of models inspired
by graph theory. This notion cannot be sufficient for being applied in computer sciences and
information systems to describe complex technological and socio-technical systems [Gul08],
because it is blind towards expressing, e.g., non-linear, interrelated contextual semantics at a
glance.

3 Incorporating pattern-based semantics into formal modeling tech-
niques

The efficiency and effectiveness in using models for complex formal system design and man-
agement is expected to be raised when modeling languages are opened up to incorporate new
means of expressing semantics, e.g., by offering pattern-based visual language elements. A the-
oretically better supported notion of models and appropriate model visualizations than provided
by traditional approaches can be developed on the basis of semantic theories from the embodied
cognition approaches, introduced in the previous section.

One place to incorporate a wider notion of semantics is the concrete syntax of a modeling
language. A concrete syntax describes the visual appearance of modeling language constructs
in a diagrammatic representation. Traditionally, this includes, e.g., the element symbols on a
diagram plane, line-styles for connections, or variants of arrow-symbols at connection ends.

Aspects of pattern-based semantics are not taken into account by state-of-the-art concrete
syntax descriptions. They get flattened by traditional notation models, which treat positions
of graphical elements in a diagram simply as numerical coordinates. From this point of view,
a diagram is nothing more than a set of absolutely positioned elements combined with a set
of edges that describes relationships between the elements. This view on diagrams originates
from traditional graph theory and provides strong restrictions on current conceptualizations of
concrete model syntax.

To overcome this limitation, the responsibility for locating elements can be taken over by a
more precise semantic description of “what it means to be positioned somewhere”. This does
not mean to mix the traditional distinction between semantic language description and purely
syntactic graphical notation. It rather means to reclaim elements, which have traditionally been
treated as simple syntactic aspects in a notation model, back to a level of semantics.

To achieve this, the idea of what a model notation generally is needs to be reconsidered. This
is done in the following by defining a notation meta-model which expresses an alternative idea
of concrete syntax notation. The meta-model is completely developed from scratch and uses
concepts of structured space and spatial locations as means for visually expressing semantics.
It conceptualizes a mapping technique between the semantic concepts of a formal model on the
one hand, and its visual appearance on the other hand. Such a mapping associates the semantic
content of a model with specific ways of visualization, and separates the notion of knowledge
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captured by a model from the way a visualization is created to communicate this knowledge
and make it cognitively accessible. After performing this methodical division between semantic
model and mapping to visualization, it becomes possible to concentrate on generally describing
visualization techniques for models in an abstract way, independently from specific concepts
reflected by models.

A few approaches for conceptualizing mapping techniques for model-visualization have yet
been proposed (e.g., [BEL+07, ESK07]). For practical purposes, the Graphical Modeling Frame-
work (GMF, http://www.eclipse.org/modeling/gmf/) contains a widely used pragmatic mapping
approach in form of the gmfmap language.

The mapping technique developed here understands describing model-visualizations as con-
structing abstract spaces into which symbolic objects are placed according to specific matching
rules. This way, semantics is expressed by symbols occurring in spatial locations. Each spa-
tial occurrence of a symbolic object which expresses semantics is called an Allocation in the
proposed approach.

In such a spatial setting, traditional distinctions made on the meta-type level, such as the notion
of entities versus relationships, become expressable by multiple spatial alternatives. Entities may
straightforwardely be represented by symbols in space, allocated at locations related to axis-
intercepts that represent features of the entities. Relationships can be expressed in the same way,
if axis-intercepts represent other entities instead of feature values. Nesting view-spaces inside
each other (see Sect. 4.7) is another way for representing relationships. As a third option, a
relationship may be explicated by placing a symbol via an Allocation in space, if the Allocation
references at least two abstract axes with intercepts refering to entities. It is worth noting that
by reconsidering meta-types such as “Entity” or “Relationship” in spatial terms, the dichotomy
between both concepts blurs, since both become conceptually exchangeable in the way they are
handled and expressed by means of Allocations.

The idea of space in the model is kept as abstract as possible and is not restricted to Euclidian,
homogeneous, continuous 3D spaces. Instead, spaces are modeled to be spawned by an arbitrary
number of AbstractAxes. An AbstractAxis is any construct that maps the state of a given semantic
element (e.g., an attribute value or a combination of values of an object instance) onto axis-
intercepts, which in turn can be transformed to physical spatial coordinates in a view-space
(in German: Anschauungsraum). A view-space is a 1-dimensional to 3-dimensional Euclidian
space, addressable by real-number coordinate vectors in well-known Euclidian geometrics.

In the most simple case, a spatial mapping from semantic model elements to Euclidian coor-
dinates is performed by a NumericAxis which reads a numeric value from a semantic element's
attribute and, without further transformation, directly places this real number into one coordi-
nate component of a view-space's coordinate. Figure 1 gives an example of such a view-space
configuration in a notation model. Using 2 or 3 axes of this kind allows for simple, direct spatial
visualization of real-numbers provided by the semantic element.

Another simple case are symbolically ordered axes. A SymbolicAxis associates string values
from a semantic element with discrete axis intercepts in the conceptual space. It then can convert
these discrete symbolic values to real-number values by calculating coordinate-positions from
axis-intercepts of the symbolic values. An example of using a combination of a SymbolicAxis
together with NumericAxes in a model notation's view-space is shown in Fig. 2. When combined
with other types of axes as part of a CompositeAxis, the resulting view-space dimension can
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axis
1
: { coord

x
= obj.getXVal(); }
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2
: { coord

y
= obj.getYVal(); }

axis
3
: { coord

z
= obj.getZVal(); }
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4

obj:MyType1
float x=3f,y=4f,
z=1.5f; 
...
float getXVal();
float getYVal();
float getZVal();
...

5 6

Figure 1: Example of using NumericAxes in a spatial model-notation for direct coordinate map-
ping

provide additional structure, such as non-equally sized axis-intercepts according to additional
cirteria.

More complex situations are possible where one abstract axis influences more than one real-
number coordinate component in the view-space, or multiple interdependent abstract axes coop-
erate to commonly generate one view-space coordinate entry. The number of abstract axes in an
abstract space, and the number of Euclidian axes in a view-space, thus are not necessarily equal.
A more complex example of using conceptual axes is shown in Fig. 3. Here, one conceptual axis
which represents a CenterPeripheryPattern, maps onto 2 physical Dimensions in the view-space.
The CenterPeripheryPattern conceptually behaves as any AbstractAxis: it maps a semantic ele-
ment's state to a physical location in the view-space. In the conceptual space, thus patterns and
axes are treated equally. They only differ with respect to the way they are later visualized in a
view-space. Besides using values from the semantic element to calcluate the view-space coordi-
nate, the CenterPeripheryPattern may also apply internal rules for equally distributing symbols
inside the “center” area or the “periphery” area. Such an active behaviour of patterns is part of
their ability to invoke understanding through spatial constellations.

Figure 4 gives another example of the use of a pattern as AbstractAxis. The GroupPattern lo-
cates semantic element according to a set of distinguishable attribute values, and groups together
elements with identical values, while keeping those with distinct values apart from each other.

In order to utilize the results on conceptualizing model notations for novel kinds of modeling
languages and tools, the proposed concepts for expressing notations are now to be incorporated
into an overall formal notation meta-model. The notation meta-model prepares the development
of corresponding software modeling tools for pattern-based model visualizations.
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axis
1
: { coord

x
= obj.getXVal(); }

axis
2
: { coord

y
= obj.getYVal(); }
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3
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z
= axis.intercept( obj.getGroup() ); }
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accounting
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obj:MyType2
float x=3f,y=4f;
Str grp='sales';
...
float getXVal();
float getYVal();
Str getGroup();
...

1 2 3 4 5 6

Figure 2: Example of using a SymbolicAxis, combined with two NumericAxes

4 A formal meta-model for model visualizations based on spatial
concepts

Based on the previously elaborated concepts, an overall spatial notation meta-model has been
formalized. It consists of three main parts specifying Views, Axes and Allocations, which are
described in the following.

4.1 Views

Elements in the first group, Views, each specify entire model notations, e.g., to be displayed
inside one editor window of a software modeling tool. Each View consists of 1 to 3 physical
Dimensions which are the Euclidian axes of the view-space. Every location of this Euclidian
space is described with vectors of real number values as coordinate-vectors. By mapping con-
ceptual abstract axes onto the physical dimensions of the view-space, a structure is induced in
the view-space, into which symbols can be placed meaningfully. When the view is rendered, this
structure gets filled with Allocations derived from the concrete model instance displayed.

4.2 Axes

The declaration of axes happens in an independent Axes-section, which is the second main part
of the overall ViewMapping model. By separating the declaration of axes from the declaration
of AxisMappings, which are specific to individual Views, axes can be reused in multiple Views
throughout the whole ViewMapping model.

Conceptual axes metaphorically spawn a conceptual space inside which knowledge is repre-
sented by identifying locations based on semantic features, i.e., by specifying Allocations. To
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pattern
1
: { coord

x
= pattern.transformX( obj.isCenter() );

                 coord
z
= pattern.transformY( obj.isCenter() ); }

axis
2
: { coord

y
= obj.getYVal(); }

obj:MyType3
float y=2.5;
bool centr=true;

...
float getYVal();
bool isCenter();
...

1 2 3 4center

periphery

5 6

Figure 3: Example of using a CenterPeripheryPattern as conceptual axis, combined with one
NumericAxis

display elements from the conceptual space inside a physical view-space, AxisMappings are
specified. They bind conceptual AbstractAxes to physical Dimensions in a view-space. It is up
to the algorithmic implementation of an AbstractAxis' mapToViewBounds()-method how to
relate to physical Dimensions with real value coordinates. The relationship between a logical
AbstractAxis and Dimensions is to be understood as general as possible, which means that one
AbstractAxis may, if desired, be mapped onto more than one physical Dimension. The mapping
can also be specified in any possible way. This means, any AbstractAxis may in principle mod-
ify the real-value components of a view-space coordinate-vector in any aspect, no matter which
Dimensions are assigned to the AbstractAxis.

4.3 Atomic Axes

Multiple subtypes of AbstractAxis can be distinguished. An AbstractAxis can be an AtomicAxis,
which represents a semantic element's feature that is to be expressed in spatial terms. When
expressing semantics using Allocations, symbols are placed at locations relative to intercepts of
AtomicAxes. This is done through AllocationMappings, see below. Any AtomicAxis is either a
BasicAxis, which is an axis that can be mapped to exactly one physical Dimension, or a Pattern.
Patterns carry all conceptual features of an AtomicAxis, but potentially map onto any arbitrary
number of Dimensions.

Three concrete realizations of BasicAxes are proposed by the model, which are described in
the following.

Numeric Axis

A NumericAxis maps a numeric feature from a semantic element, or the result of an OCL state-
ment which returns a numeric value, onto a single Dimension of a view-space. It can either
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axis
1
: { coord

x
= obj.getCosts(); }

1

2

3

4

accounting

sales

production

management

obj:Department
float costs=3;
Str grp='sales';

...
float getCosts();
Str getGroup();
...

pattern
2
: { coord

y
= pattern.transformX( obj.getGroup() );

                 coord
z
= pattern.transformY( obj.getGroup() ); }

Figure 4: Example of using a GroupPattern as conceptual abstract axis, combined with one
NumericAxis

be configured to represent a continuous, real-value addressable, homogeneous 1-dimensional
number line, or a sequence of distinct intercepts representing integer values. When configured
to operate with real-values, the semantic notion of a NumericAxis in conceptual space matches
directly the notion of a Euclidian physical Dimension in the view-space.

Symbolic Axis

SymbolicAxes represent an ordered sequence of distinct intercepts which hold symbolic string
values. Coordinate values for each intercept are calculated via the mapToViewBounds()-
method by multiplying the visual intercept size with the index position of the intercept.

Entity Axis

An EntityAxis represents a set of entities with its intercept values. Any set of objects in a model,
e.g., any multi-value collection, can be chosen to be lined up as intercepts of an EntityAxis. The
set of values is specified using the interceptExpression attribute. Since the notion of a sequence
of intercepts may require to explicate a sorting order of elements, an EntityAxis can carry a
reference to a Comparator class, which may define the sorting order.

4.4 Composite Axes

CompositeAxes act as combinations of other axes. A CompositeAxis derives its intercept val-
ues, either numerical or symbolical intercepts, from other axes and combines them. Concrete
subtypes of CompositeAxis describe different combination strategies. Three concrete subtypes
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are initially suggested by the notation meta-model. This set of combination strategies can be
extended, if required.

The first kind of suggested CompositeAxis is the Concat axis. This combines an arbitrary
number of axes sequentially. Another axis composition is Join, which resembles the traditional
notion of a join in relation theory, i.e., represents a complete one-to-one pairing of each members
of the joined axes. A Mix composition treats all intercepts of combined axes as one flat set and
sorts them sequentially on a combined axis in the order specified by a Comparator description.

The combination of axes can be recursively applied, i.e., CompositeAxes themselves can again
be part of compositions of axes, which makes CompositeAxes a highly expressive concept for
describing the structure of conceptual spaces for model notations.

4.5 Patterns

Patterns in the proposed notation meta-model behave like axes in the sense that they locate
semantic elements in conceptual spaces, and are able to transform these conceptual locations
to physical real-number coordinates. Patterns constitute a conceptual space [Gär00] in which
meaning is expressed by orientation and navigation in the same sense as axes do. This is achieved
because patterns provide meaningful places. Spatial axes do the same, they unfold a space and
provide means of orientation and navigation by consisting of intercepts which are associated
with meaning through semantic Allocations.

In order to demonstrate the potential uses of the Pattern concept specified by the model, a set
of concrete subclasses of the Pattern class is suggested within the notation meta-model. They
are briefly explained in the following. This is a heuristic collection of initially chosen patterns
and not limited to the proposed examples. An elaboration of the list of patterns may draw upon
theoretical work from diagrammatic reasoning research (e.g., [CFO93]).

Group Pattern

One suggested pattern is the GroupPattern, which clusters semantic elements according to at-
tribute values. Elements with identical values are grouped together, while keeping a distance
between elements with different values. It is up to heuristics of the implementation how to
choose coordinates to display grouped symbols in a view-space and how to spread clusters of
symbols across the available space.

Spread Pattern

The SpreadPattern serves for equally distributing multiple elements in the view-space to make
them distinguishable. It does not map a specific attribute of a semantic element to a location
in space, but operates on all semantic elements that are mapped via an AllocationMapping onto
the SpreadPattern. Semantically, the SpreadPattern allows for expressing a general notion of
overview and distinctness, in opposition to notions of detail and a fine-grained perspective.
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Center-Periphery Pattern

Sometimes, the notion of a central place with a surrounding area helps to express unbalanced
oppositions such as major/minor dichotomies or whole/part relationships. The CenterPeriphery-
Pattern serves for placing elements according to a boolean condition into the notion of a “center”
place, or allocates them to a “periphery” area. The pattern may typically be mapped onto 2 phys-
ical dimensions to allow a circular representation of the center area and a surrounding periphery.
However, it can as well be mapped onto one single dimension, where a center part and two sur-
rounding periphery ranges are possible to displaye. The notions of center and periphery can also
be expressed in a 3-dimensional sphere-structure.

Sequence Pattern

By applying a SequencePattern, semantic elements are aligned into one direction at equidistant
positions in the view-space. The typical use-case is to bind this pattern to exactly 1 physical
dimension, however, the implementation of the pattern might also offer to visualize sequences
in 2 or 3 dimensional space, which would allow for bind the SequencePattern to any number of
possible view-space dimensions.

Repetition Pattern

A RepetitionPattern indicates a cyclic constellation in a model. This semantic device may be
realized by diverse graphical representations, e.g., by circular shapes.

Random Pattern

The RandomPattern places elements randomly in the view-space. The elements are spread across
the subspace spawned by those Dimensions onto which the RandomPattern is mapped. The
number of physical dimensions that can be mapped onto the pattern ranges from 1 to 3, since
naturally any number of dimensions can be chosen to be randomly set.

4.6 Allocations

The third main section in the notation meta-model is the Allocations branch. Allocations map the
state of semantic elements to locations in the conceptual space spawned by AbstractAxes, and
place a symbol or a nested view (see Sect. 4.7) at this location.

By relating the state of semantic elements’ features to abstract axis intercepts, Allocations
describe an abstract notion of locations in space without having to refer to numeric coordinate-
vectors. Locations in the conceptual space can be understood as spatial means for expressing
semantic elements' states, and thus are not limited to fulfilling structural features such as ho-
mogenicity or continuity, which are typically associated with the notion of a three-dimensional
Euclidian space.
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4.7 Nested Views

Allocations can optionally nest Views inside each other. They thus provide a way to recursively
apply the concept of mapping AbstractAxes to physical Dimensions via AxisMappings in a nested
subspace. If the innerView relationship is specified for an Allocation-instance in a notation
model, the Allocation will not directly map semantic elements to graphical symbols at the place
described by the Allocation, instead, it will place a nested inner View at this location.

Figure 5 shows the part of the notation meta-model which defines the discussed axes concepts.
The model has been created using the Ecore modeling language, which is part of the Eclipse
Modeling Framework (EMF, http://www.eclipse.org/modeling/emf/).

Figure 5: Partial notation meta-model suggested by the presented approach

5 Summary and future perspectives

This article has presented a formal language for describing visual model-notations, which incor-
porates the notion of patterns as language elements in formal visualization descriptions. This
research provides the basis for further elaborating a modeling method which uses spatial means
of semantic expression to model complex interdependent systems, as they are being dealt with in
computer science and information systems. Besides providing the notation model language and
a description of the process to be applied, the method should also be supplemented with proto-
typical software tool support. An implementation of the presented language, including an editor
for notation models and a visualization generator which operates on these models, is planned to
be developed on top of the Eclipse Modeling Framework.
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