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1 Fachhochschule für die Wirtschaft (FHDW), Hannover
Freundallee 15, 30173 Hannover, Deutschland

Abstract: Refactoring of information systems is hard, for two reasons. On the
one hand, large databases exist which have to be adjusted. On the other hand,
many programs access that data. These programs all have to be migrated in a
consistent manner such that their semantics does not change. It cannot be relied upon,
however, that no running processes exist during such a migration. Consequently,
a refactoring of an information system needs to take care of the migration of data,
programs, and processes. This paper extends the model described in [SLK10] by
operations, messages, and methods, which allows to model complete object-oriented
systems.1 Methods are expressed by special double-pushout graph transformations.
Homomorphisms are used for the typing of the instance level as well as for the
description of refactorings which specify the addition, folding, and unfolding of
schema elements. Finally, a categorical framework is presented which allows to
derive instance migrations from schema transformations in such a way that programs
and processes to the old schema are correctly migrated into programs and processes
to the new schema.

Keywords: Refactoring, Evolution, Transformation, Migration, Software

1 Introduction

During the engineering and use of information systems, data and software undergo many modifi-
cations. These modifications can be divided into two categories. The first category contains all
modifications that have a direct and externally visible impact on the functionality of the software
or on the information content of the database. The second category consists of modifications
which only prepare modifications of the first category and which, by themselves, do not lead
to changes in the behaviour of the software or in the meaning of the data under transformation.
Modifications of the second category are called “refactorings” [Fow99]. They provide a major
method to quickly adapt software to constantly changing requirements.

Refactorings are expected to be applied multiple times in different but similar situations.
This is comparable to design patterns in software engineering which have emerged in the last
twenty years [GHJV95, Fow02]. Consequently, a suitably general specification of a refactoring
is necessary. This, however, requires a certain level of abstraction for the software and the data
to be transformed. Such an abstraction is often called schema or model and describes important
structural aspects of the data and software, which are instances of, or typed in, this schema. Today,

1We call an object-oriented system complete if it consists of data, programs, and processes.
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Figure 1: Refactoring “Introduce a new superclass”
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Figure 2: Refactoring “Move the origin of an association from a subclass to a superclass”

the “object-oriented view of life” dominates the field of software engineering. Therefore, models
are typically object-oriented and try to capture the structure by grouping similar objects into
classes and describing relations between them by various types of associations.

Two typical object-oriented refactorings are “Introduce a new superclass” (Fig. 1) and “Move
the origin of an association from a subclass to a superclass”, as shown in Fig. 2. A combined
application of these two refactorings on the schema in Fig. 3a could be used to prepare the model
for an extension by an additional subclass of Customer, e. g. CorporateCustomer (Fig. 3b and
3c).2

It is important to consider the consequences of a refactoring. Obviously, the more general the
structures are which are about to be transformed, the more instances are likely to be affected.
Changing a data schema may not only require the data typed in this schema to be adjusted, but
may also affect the software which uses the schema structures to access and manipulate the data.
Changing a software model may have no consequences on the data but will probably influence
programs (which can be considered implementations of the software model) and processes (which
are programs under execution). We call the instance changes that follow from a model refactoring
the migration induced by that refactoring. For the time being, little has been written about how
refactoring data models results in migrations of dependent programs, and even less has been
written about refactoring and induced migration of whole systems, which we define to consist of
data, programs, and processes, all typed in the same schema.3

This paper contributes to this topic by providing a graph-like mathematical model which allows
to specify object-oriented systems as well as schema refactorings. To describe data together
with their schema, graph structures conforming to the model are used. Nodes of such graph
structures represent classes (schema) or objects (instance), edges represent associations (schema)
or links (instance). Homomorphisms between such graph structures express typings, (parts of)

2All class diagrams are specified in the UML [FS03].
3See [MT04] and especially the bibliography contained therein for a general overview on software refactoring.
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Figure 3: Refactoring an exemplary object-oriented model

refactorings, and migrations. This data model is described in more detail in [SLK10].
These graph structures can be used to describe software models and processes, as well: An

operation is simply a special node within the graph structure representing the schema, and edges
originating from an operation constitute parameters. Analogously, at the instance level, messages
and arguments are special nodes and edges, which are typed in operations and parameters at the
schema level by an appropriate homomorphism. In the mathematical description of the model,
the data and software constructs are separated through the use of special predicates.

Programs are somewhat different, as they do not specify a single state but rather a state transition
which is performed when the program is executed. In this paper, programs are considered to
consist of a (possibly large) set of methods, where each method describes a single state transition.
Each such transition speficies how a message of a certain type is processed when all necessary
preconditions are met; examples are assignments, method calls, or evaluation of expressions. As
program states are described by (parts of) graph structures at the instance level, it follows that
state transitions can be adequately specified by the use of graph structure transformations. This
paper chooses the DPO approach for describing and applying graph structure transformations4.
Consequently, a method is represented by a span of homomorphisms, and applying a method to a
given program state is computed by two pushout diagrams.

Results of category theory are used to compute induced migrations from schema refactorings. It
will be shown, however, that certain restrictions must be obeyed in order to guarantee reasonable
results. Fortunately, these restrictions are met by the practical examples.

The paper is organized as follows. Section 3 introduces a graph structure specification MP
with positive Horn formulas which constitutes the foundation of the mathematical description of
data and software. The category Alg(MP) of all MP-systems and MP-homomorphisms, as well
as the (sub-)categories Alg(MP)↓S and Sys(S) with a fixed schema S, represent the universe of
discourse for the following sections. Section 4 explains how methods are represented as DPO
rules and introduces requirements that are necessary to use DPO graph structure transformations

4DPO stands for “Double Pushout”; the approach is presented in e. g. [EEPT06].
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successfully in the categories mentioned above. Section 5 addresses the migration of data and
processes. Section 6 discusses the migration of programs and contains the main result of this
paper, namely that the migration of methods preserves their semantics for new processes as well as
for old processes reviewed under the transformed schema. Section 7 outlines three main directions
for future research.

2 Related Work

There exist approaches for modelling programs as algebraic graph transformation rules [CDFR04,
KKR06a, KKR06b].5 However, they fail in various ways to be suitable for our purposes. The
approach in [CDFR04] does not support inheritance. Furthermore, program execution is “de-
structive”, i. e., repetitive control flow constructs as loops cannot be modelled directly but have
to be simulated through recursion, a work-around which is not necessary in our approach as
the control flow structures are not modified by program execution. The approach presented in
[KKR06a, KKR06b] does not have a notion of a schema in which programs and processes are
typed. This missing link makes it hard if not impossible to compute induced migrations for
programs and processes when the data schema is changed. Finally, both approaches consider
objects to be opaque, whereas in our approach, each object is decomposed into parts called
“particles” which reflect the class hierarchy. This rich object structure makes it possible to type the
instance level in a schema without resorting to special typing morphisms or type graph flattening
as proposed in [BEL+03, EEPT06, LBE+07]. Finally, our approach is unique in the respect that
it combines a program and process model with a model for schema transformations and induced
migrations.

3 Models and Instances

The schema and the instance level of object-oriented systems are modelled by systems wrt. an
extended specification.6 An extended specification Spec = (Σ,H(X)) is an extended signature
together with a set of positive Horn formulas H(X) over a set of variables X, called axioms. An
extended signature Σ = (S,OP,P) consists of a set of sorts S, a family of operation symbols
OP = (OPw,s)w∈S∗,s∈S, and a family of predicates P = (Pw)w∈S∗ such that =s ∈ Ps s for each
sort s ∈ S. A system A wrt. an extended signature Σ = (S,OP,P), short Σ-system, consists of
a family of carrier sets (As)s∈S, a family of operations (opA : Aw→ As)w∈S∗,s∈S,op∈OPw,s , and a
family of relations (pA ⊆ Aw)w∈S∗,p∈Pw such that =A

s ⊆ As×As is the diagonal relation for each
sort s.7 A system A wrt. an extended specification Spec = (Σ,H(X)) is a Σ-system such that all
axioms in H(X) are valid in A. A Σ-homomorphism h : A→ B between two Σ-systems A and B
wrt. an extended signature Σ = (S,OP,P) is a family of mappings (hs : As→ Bs)s∈S, such that
the mappings are compatible with the operations and relations, i. e., hs ◦opA = opB ◦hw for all
operation symbols op : w→ s and hw(pA) ⊆ pB for all predicates p : w where w = s1s2 . . .sn ∈

5[KKR06b] is the technical report [KKR06a] is based on and goes into much more detail about the presented
programming language TAAL .

6See [Mal73] for the special case when signatures consist of one sort only.
7Given w = s1s2 . . .sn, Aw is a short-hand notation for the product set As1 ×As2 ×·· ·×Asn .
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Figure 4: Example of a schema together with a typed instance

S∗.8 Each Σ-homomorphism h : A→ B between two Spec-systems A and B wrt. an extended
specification Spec = (Σ,H(X)) is called a Spec-homomorphism.

In the following we shortly summarise the underlying model for classes and associated data
as described in [SLK10]. We use a graph-like signature enriched by axioms to describe both
schemas and schema instances. Classes are represented as graph nodes of the sort N. Associations
and links are represented as graph edges of the sort E. Class inheritance is modelled by a binary
predicate under: If, in a system S, a class A is “under” a class B, i. e., if it is a subclass of B, then
the relation underS contains the pair (A,B).9 The binary predicate rel represents the equivalence
closure of under. On the instance level, the predicates under and rel are used to model objects as
collections of related particles. Each particle is represented by a node of the sort N and is typed in
a specific class in the schema. The advantage of this approach is that the structure of an object is
made visible and resembles the object’s type hierarchy at the schema level allowing proper typing
of links.10 Figure 4 shows an exemplary schema together with one possible typed instance.11

This model is capable of representing object-oriented data typed in a schema. However, we
need software constructs, namely operations, parameters, messages, arguments, and methods,
as well. In order to model operations and messages, the specification is extended by a unary
predicate called software which distinguishes between class nodes and operation nodes in schemas
and between object nodes and message nodes in instances. The distinction between association
edges and parameter edges on the one hand and between link edges and argument edges on
the other hand is deduced from the context: If an edge starts at a class/object it is considered
an association/link, otherwise it constitutes a parameter/argument.12 This yields the following
specification:

MP =
sorts

N (nodes)
E (edges)

8Given w = s1s2 . . .sn, hw(x1,x2, . . . ,xn) is a short-hand notation for the tuple (hs1(x1),hs2(x2), . . . ,hsn(xn)).
9It follows from the properties of subclassing that the predicate under is a partial order.

10For the purpose of typing, simple homomorphisms are sufficient; there is no need to introduce homomorphisms
“up to inheritance”.

11Note that the instance graphs do not constitute proper UML diagrams: Instead we use the schema inheritance
notion to depict explicit object decompositions into particles.

12The model allows parameters to point to operations; this is reasonable as it enables to model basic statements like
if-then-else as operations.
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Figure 5: Software constructs

opns
s : E→ N (source node of an edge)
t : E→ N (target node of an edge)

prds
under : N N (subnode of)
rel : N N (related to)
software : N (software part vs. data part)

axms
inheritance

x ∈ N : under(x,x) (reflexivity) (MP.1)

x,y ∈ N : under(x,y)∧under(y,x)⇒ x = y (antisymmetry) (MP.2)

x,y,z ∈ N : under(x,y)∧under(y,z)⇒ under(x,z) (transitivity) (MP.3)

components

x,y ∈ N : rel(x,y)⇒ rel(y,x) (symmetry) (MP.4)

x,y,z ∈ N : rel(x,y)∧ rel(y,z)⇒ rel(x,z) (transitivity) (MP.5)

x,y ∈ N : under(x,y)⇒ rel(x,y) (components) (MP.6)

An example of an operation is displayed in Fig. 5a, a message for this operation is shown in
Fig. 5b. The modelling of methods builds upon the mapping of messages and arguments into the
model and is described in the next section.

In [SLK10], the model is further extended by two constraints. First, for each object there can
only exist at most one particle of a given type. Second, associations are many-to-one, such that
we are able to deterministically access links by methods (see next section). As these constraints
depend on both the instance and the schema, we have to combine these two parts in order to be able
to formulate the constraints as implications. For this, we internalise the typing homomorphism
type:

Definition 1 (Specification M) The specification M consists of

• two copies of MP, one for the schema part where the sorts, operation symbols, and
predicates are suffixed by “S”, and one for the instance part, where the sorts, operation
symbols, and predicates are suffixed by “I”;

Festschrift H.-J. Kreowski 6 / 21



ECEASST

• two operation symbols typeN and typeE representing the typing;

• the typing axioms modelling unique particles within objects and many-to-one associations;
and

• the homomorphism axioms ensuring that (typeN, typeE) behave like a homomorphism in
every M-system.

M =
sorts

NS (schema nodes)
NI (instance nodes)
ES (schema edges)
EI (instance edges)

opns
typeN : NI→ NS (node typing)
typeE : EI→ ES (edge typing)
sS : ES→ NS (source node of a schema edge)
sI : EI→ NI (source node of an instance edge)
tS : ES→ NS (target node of a schema edge)
tI : EI→ NI (target node of an instance edge)

prds
underS : NS NS (subclass of)
underI : NI NI (subparticle of)
relS : NS NS (in class hierarchy of)
rel : NI NI (in object of)
softwareS : NS (class vs. operation)
softwareI : NI (object vs. message)

axms

homomorphism axioms

x ∈ EI : typeN(sI(x)) = sS(typeE(x)) (M.1)

x ∈ EI : typeN(tI(x)) = tS(typeE(x)) (M.2)

x,y ∈ NI : underI(x,y)⇒ underS(typeN(x), typeN(y)) (M.3)

x,y ∈ NI : relI(x,y)⇒ relS(typeN(x), typeN(y)) (M.4)

x ∈ NI : softwareI(x)⇒ softwareS(typeN(x)) (M.5)

inheritance axioms

x ∈ NS : underS(x,x) (reflexivity) (M.6)

x,y ∈ NS : underS(x,y)∧underS(y,x)⇒ x = y (antisymmetry) (M.7)
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x,y,z ∈ NS : underS(x,y)∧underS(y,z)⇒ underS(x,z) (transitivity) (M.8)

x ∈ NI : underI(x,x) (reflexivity) (M.9)

x,y ∈ NI : underI(x,y)∧underI(y,x)⇒ x = y (antisymmetry) (M.10)

x,y,z ∈ NI : underI(x,y)∧underI(y,z)⇒ under(x,z) (transitivity) (M.11)

component axioms

x,y ∈ NS : relS(x,y)⇒ relS(y,x) (symmetry) (M.12)

x,y,z ∈ NS : relS(x,y)∧ relS(y,z)⇒ rel(x,z) (transitivity) (M.13)

x,y ∈ NS : underS(x,y)⇒ relS(x,y) (components) (M.14)

x,y ∈ NI : relI(x,y)⇒ relI(y,x) (symmetry) (M.15)

x,y,z ∈ NI : relI(x,y)∧ relI(y,z)⇒ rel(x,z) (transitivity) (M.16)

x,y ∈ NI : underI(x,y)⇒ relI(x,y) (components) (M.17)

typing axioms

x,y ∈ NI : rel(x,y)∧ typeN(x) = typeN(y)⇒ x = y (unique particles) (M.18)

x,y ∈ EI : sI(x) = sI(y)∧ typeE(x) = typeE(y)⇒ x = y (at most one target) (M.19)

We use the following notation: Alg(MP) denotes the category of all MP-systems and MP-
homomorphisms; equivalently, Alg(M) denotes the category of all M-systems and M-homomor-
phisms. The objects of the arrow category Alg(MP)2 are Alg(MP)-arrows I

typeI−−→ S, which
do not necessarily fulfil the typing requirements (M.18) and (M.19).13 The full subcategory
Sys⊆Alg(MP)2 restricts the arrow category to those arrows conforming to these requirements.14

Given a fixed schema system S, the slice category Alg(MP)↓S expresses the category of all
Alg(MP)-arrows into the system S, and the category Sys(S) denotes the full subcategory of
Alg(MP)↓S whose objects fulfil (M.18) and (M.19).15

We are now able to express properly typed instances in two ways, either as an M-system or as
an Alg(MP)-arrow in Sys. Formally, these categories are isomorphic. In order to prove that, we
first show that Alg(MP)2 is isomorphic to Alg(M’) where M’ is defined as below.

Definition 2 (Specification M’) The specification M’ is M without the typing axioms (M.18)
and (M.19).

Lemma 1 Alg(M’) and Alg(MP)2 are isomorphic.

13Let S be the MP-model A � ,2B // C . Then typing the MP-model 1 :A � ,22 :B 3 :A�lr in S contradicts
requirement (M.18), and typing the MP-model 2 :C 1 :Boo // 3 :C in S contradicts requirement (M.19).

14A subcategory D⊆ C is full if for each pair (A,B) of D-objects, the sets of morphisms between A and B in D and
C are identical.

15Obviously, Sys(S) is also a subcategory of Sys.
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Proof. See [SLK10, Lemma 4].

Lemma 2 Alg(M) and Sys are isomorphic.

Proof. This follows directly from Lemma 1.

For Horn clause specifications Spec = (Σ,HΣ(X)) where the signature only contains sorts
and operation symbols, it is a well-known fact in universal algebra that the resulting category
Alg(Spec) is closed under the formation of products and extremal subobjects (see e. g. [Wec92,
Theorem 14] for the single-sorted case).16 This result has been extended to signatures including
predicates in [Sch09a]. From [AHS04, Theorem 16.8], it follows that Alg(M) is a full and
isomorphism-closed epireflective subcategory of Alg(M’).17 “Reflective” means that for each
Alg(M’)-object A, there exists an M’-morphism u : A→FA into an Alg(M)-object FA which
constitutes some sort of a “best approximation” of A in Alg(M), i. e., A is changed as little as
possible in order to conform to the axioms in M. This is important as we do not want to change a
system more than necessary in order to make it conformant to a set of axioms. (In fact, deleting
all but one element from each set (and adjusting the mappings accordingly) always results in a
conformant system with regard to any specification with positive Horn formulas, but is surely
not desirable in our context.) The morphism u is called an Alg(M)-reflection of A and is an
epimorphism if the subcategory is epireflective (as in our case). This reflection property can be
extended to a functor, called (epi)reflector for (epi)reflective subcategories.18 So we obtain the
following proposition:

Proposition 1 (Epireflector F ) There exists an epireflector F : Alg(MP)2→ Sys.

Proof. This follows immediately from Lemma 1 and Lemma 2.

Summarising our results so far, an object-oriented schema is modelled as an MP-system S. An
instance of this schema consists of an MP-system I and a typing MP-homomorphism type : I→ S
such that I

type−−→ S is an object of the category Sys(S). Every schema instance type : I → S in
Alg(MP)↓S can uniquely be transformed into an object of the category Sys by the epireflector
F .

4 Methods

A method is part of a program and specifies how the program reacts on a message for a certain
operation. It constitutes an implementation of an operation. Here, the set of operations consists
not only of “user-defined” operations but also of operations for evaluating expressions and for

16Given a Horn clause specification Spec and two models A, B ∈ Alg(Spec), A is an extremal subobject of B if it
is a subobject of B and if every predicate over elements in the A-part of B that is true in B is also true in A. In other
words, an extremal subobject is “as true as possible”.

17A subcategory D⊆ C is isomorphism-closed if for each A ∈ ObD and each C-isomorphism i : A→ A′, it follows
that A′ ∈ ObD.

18See [AHS04, pp. 52] fore more information about reflective subcategories and reflectors.
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representing statements.19 In other words, for each construct which influences the behaviour of a
process, there exists a corresponding operation. A program is then a collection of methods such
that all operations for which messages exist are implemented.

Each method is implemented by a single DPO rule [EEPT06] which is properly typed in the
schema S. A typed DPO rule is a span L l←− K r−→ R together with the typings L

typeL−−−→ S, K
typeK−−−→ S,

and R
typeR−−−→ S, where L, K, R, and S are graphs and l and r are injective graph morphisms such

that typeL ◦ l = typeK = typeR ◦ r. The left part of the rule describes the required process state
necessary for executing this method and contains at least a message typed in the operation this
method implements. The remainder of the rule consists of the gluing part and the right part and
specifies how this state is changed by method execution. Generally, the gluing part is the common
subgraph of both the left and the right part of the rule. Note that a method’s DPO rule represents
the change in program state when calling the method, which does not include the computation of
the method’s result and side effects. Those are coded by separate messages which are executed
later on (see the description of next edges below). Only very simple methods consisting of one
statement or expression only can be encoded into a single DPO rule.

In order to be able to determine which message is ready to be processed, a special “marker”
object called processor is used. A message referenced by a processor through a special current
link is called active. Methods are formulated such that their left part requires an active message.
Additionally, each method moves the processor object to the next message according to the flow of
control. This next message is determined by a special argument called next.20 Multiple processor
objects can be used to model multi-threaded processing. Figure 6 displays the DPO rule for a
method changing the target of a link. Note that analogously to classes, operations can also be
specialised, and like objects, messages also possess a particle structure. This allows processor
objects to refer to any message as well as to connect arbitrary messages via next.

A method is executed by applying the underlying DPO rule along a match to the graph structure
describing the instance world, i. e., objects, links, messages, and arguments. According to the
DPO model, in the first step a pushout complement has to be computed to complete the left
side [EEPT06]. In the second step, the right side is built by a pushout. However we cannot
do this in our category Sys(S) as neither do pushout complements exist nor are pushouts along
monomorphisms van-Kampen squares [EEPT06] in all cases. Therefore, we perform DPO
transformations which are typed in a schema S in the slice category Alg(MP*)↓S, where MP* is
the signature obtained by removing all axioms from MP, and provide sufficient conditions that
guarantee the fulfilment of the axioms after transformation. These conditions are necessary as
not all DPO transformations yield typed instances which fulfil all the axioms. The following
figures demonstrate two such counter examples: adding a link violates axiom (M.19) (Fig. 7), and
eliminating inheritance violates axiom (MP.3) (Fig. 8). In the figures, the element-wise mapping
of the homomorphisms is indicated by equally named nodes and edges, and frames are used to
group the elements belonging to a single graph.

In order to rule out situations as depicted in Fig. 7 we need DPO rules that pull back edges.
Such rules only add an edge at the right side if no other edge exists which starts at the same node.

19For example, integer addition or the if-then-else statement are both represented by suitable operations.
20Only very few messages do not have a next argument. This includes the end message which terminates process

execution and the if-then-else message which contains a then and an else argument instead.
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:this

:current

:birthday

(d) Right part

Figure 6: Example method “Change target of birthday link”

Definition 3 (DPO rules pulling back edges) Let Σ = (S,OP,P) be an extended signature, and

let L l←− K r−→ R be a DPO rule. Then the DPO rule pulls back edges if for each edge eR ∈ RE there
is a node k ∈ KN and an edge eL ∈ LE, such that the equations

sourceL(eL) = lN(k)

sourceR(eR) = rN(k)
typeL,E(eL) = typeR,E(eR)

hold.

In order to rule out situations as depicted in Fig. 8, we restrict DPO rules to completing
homomorphisms which “pull back” relations. Completing homomorphisms are an extension
of strictly full homomorphisms:21 While a strictly full homomorphism h only “pulls back” a
relation if all related elements are known to be in the range of h, a completing homomorphism
h “pulls back” relations even if only a part of the related elements is known to be reached. This
is illustrated in Fig. 9 by referring to the predicate under. On the left side, the homomorphism
f is not completing as the under predicate is not pulled back completely: There is no preimage
for y′ which is “under” x. On the right side, f has been made completing by adding the missing
preimage y for y′ such that y is “under” x.

This leads to the following definition:

Definition 4 (Completing homomorphism) Let Σ = (S,OP,P) be an extended signature, let
h : A→ B be a Σ-homomorphism between the Σ-systems A and B, and let p ∈ Pw be a predicate

21A homomorphism h : A→ B is strictly full if hw(x) ∈ pB⇒ x ∈ pA for all x ∈ Aw and all predicates p ∈ Pw.
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(c) Induced transformation

Figure 7: Adding a link violates axiom (M.19) on page 8

over a sort word w ∈ S∗. Then h is completing on p if for every non-empty sort word w′ resulting
from eliminating arbitrary sorts from w and for each two tuples x∈ Bw and x′ ∈ Aw′ the implication

hw′(x′) = 〈x〉w′ ∧ x ∈ pB⇒∃y ∈ Aw : 〈y〉w′ = x′∧hw(y) = x∧ y ∈ pA

holds, where the notation 〈x〉w′ stands for the projection of the tuple x onto the elements of the
sorts in w′. h is completing if h is completing on all predicates.

Now we are able to define valid DPO rules:

Definition 5 (Valid rule) A DPO rule L l←− K r−→ R is valid iff it pulls back edges and l and r are
completing homomorphisms.

These restrictions do not have much impact on the expressiveness of methods. The first
restriction requiring completing homomorphisms disallows changing the inner structure of objects
by adding or removing particles. However, this is an unusual way of dealing with objects at
runtime at best. The second restriction allows to add a link on the right side of a rule only if a
similar link has previously been removed on the left side of the same rule. This is unproblematic
if it can be ensured that there always exists a link for each (object, association) pair, which, for
example, can initially point to a “null” object to indicate an uninitialised link.22

Now we can state the main theorem of this section:

Theorem 1 (Transformation preserves axioms [Sch09b, Theorem 14.29]) Let S be an MP-
system. Let L l←− K r−→ R be a valid rule in Sys(S), G a Sys(S)-object, and m : L→ G a match in

Sys(S), such that the rule is applicable according to the DPO model. Let G
f←− D

g−→ H be the
resulting transformation after applying the rule in Alg(MP*)↓S. Then D and H fulfil all axioms
and are, therefore, Sys(S)-objects.

22[Sch09b] shows in full detail how this can be done.
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(c) Induced transformation

Figure 8: Eliminating inheritance violates axiom (MP.3) on page 6

Proof sketch. The pushout complement D on the left side of a DPO transformation is a Sys(S)-
object because it is a subobject of G by construction, and implicational classes are closed under
the formation of subobjects [AHS04, Cor. 16.19]. On the right side, we have to show for each
M-axiom separately that its validity is retained by pushouts in Alg(MP*)↓S. The validity of the
homomorphism axioms and all schema-related axioms in H follows directly from the fact that
H is an object in Alg(MP*)↓S and that S is an MP-system. Axiom (M.9) is valid in H because
the pushout construction does not add any new elements to H as the underlying signature of
MP* consists of unary operation symbols only [EEPT06, Fact 8.12]. Axiom (M.17) is valid in
H because for any pair of nodes (x,y) ∈ underIH , there is a pair of preimages (x′,y′) related by
underI in either R or G, due to the pushout morphisms being jointly surjective [AHS04, Prop.
11.29]. As both of these systems are MP-systems, they are related by rel due to axiom (M.17), and
so are x and y, as all homomorphisms and especially the pushout morphisms preserve relations. A
similar argumentation is used to prove that the axioms (M.15) and (M.18) are valid in H. The proof
of the validity of the axioms (M.10), (M.11), and (M.16) needs more work. Here it is necessary to
assume the second property of valid rules, namely that the rule’s morphisms are completing. This
ensures that in all cases, any node constellation in H that fulfils the premise of one of the three

x
f //_________ x′

y′

_LR

(a) not completing

x
f //_________ x′

y

_LR

f //_________ y′

_LR

(b) completing

Figure 9: Example of a non-completing and a completing homomorphism
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axioms can be reflected to either R or G (or both), such that the same argumentation as above can
be used to show the validity of the axioms in H. Last but not least, the proof of the validity of
axiom (M.19) in H needs the first property of valid rules, namely that the span pulls back edges.
This ensures that if one assumes two edges in H with the same source, both edges have preimages
under the same pushout morphism. The rest of the proof follows similarly.

5 Model Transformation and Data Migration

So far we can describe object-oriented systems, consisting of typed data, programs, and processes.
In this section we introduce schema transformations that can be uniquely extended to migrations
of corresponding data and processes (the migration of programs is handled in the next section).23

Definition 6 (Transformation, Refactoring) A transformation t : S S#

 S′ in the category Alg(MP)

is a span S lt←− S# rt

−→ S′. Such a transformation is called a refactoring iff lt is surjective.

A general transformation allows reduction and unfolding as well as extension and folding
through the use of non-surjective homomorphisms (reduction and extension) and non-injective
homomorphisms (unfolding and folding) on the left and right side of the span, respectively
(see Fig. 11 on page 16 for an example of folding and unfolding). Refactorings are special
transformations which are constrained to surjective homomorphisms on the left side of the
span. This constraint stems from the fact that refactorings are not allowed to delete schema
objects because such a deletion almost always causes loss of information at the instance level,
which contradicts the intuitive requirement that a refactoring should preserve information. In the
following we use the term schema transformation if the span consists of schema objects, and
migration if the span consists of typed instances.24

First, we need a technical lemma which ensures that the epireflector F from Proposition 1
never changes the schema:

Lemma 3 (Epireflector F does not change schema) Let I
typeI−−→ S ∈ ObAlg(MP)2

be given, and

let FOb(I
typeI−−→ S) be the typed instance I′

typeI′−−−→ S′. Then S = S′ holds.

Proof. See [SLK10, Lemma 9].

Given a typed instance I
typeI−−→ S and a schema transformation t : S S#

 S′, the migration is
performed according to [SLK10] as follows (visualised in Fig. 10):

(1) P lt , the pullback functor along lt, is applied to I
typeI−−→ S, resulting in the typed instance

I# typeI#−−−→ S#. This part of the transformation is responsible for unfolding instance elements if
lt is not injective, and for deleting elements if lt is not surjective.

23See [LKSP06a, LKSP06b, KLS07] for precursor material on data migration induced by schema transformations.
24Schema transformations such as deletion of classes without instances are not considered to be refactorings

since our classification is purely schema-based. We never look at the instance level in order to classify a schema
transformation as information-preserving or (possibly) information-destroying.
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Figure 10: Schema transformation and instance migration

(2) F rt
, the composition functor along rt, is applied to I# typeI#−−−→ S#, resulting in the typed instance

I# rt◦typeI#−−−−−→ S′. This part of the transformation is used to retype instance elements and to add
new types without any instances.

(3) I# rt◦typeI#−−−−−→ S′ may violate the typing axioms. In order to fix this, we apply the epireflector
F : Alg(MP)2→ Sys to it, obtaining the typed instance I′

typeI′−−−→ S′ in the subcategory Sys(S′).
This part of the transformation is responsible for identifying instance elements due to retyping.

Note that due to Lemma 3, the schema is left unchanged, so the epireflector can be restricted
to the slice category for a given schema S, yielding the functor F S : Alg(MP)↓S→ Sys(S). The
composition of the three functors above results in the migration functor defined below:

Definition 7 (Migration functor) Let t : S S#

 S′ be a transformation. The migration functor
M t : Sys(S)→ Sys(S′) is defined as:

M t := F S′ ◦F rt ◦P lt ,

where the functor P lt : Sys(S)→ Alg(MP)↓S# is the pullback functor along lt, the functor
F rt

: Alg(MP)↓S#→Alg(MP)↓S′ is the composition functor along rt, and F S′ : Alg(MP)↓S′→
Sys(S′) is the epireflector F : Alg(MP)2→ Sys restricted to the slice category Alg(MP)↓S′.

The example in Fig. 11 shows a transformation which moves the origin of an association one
level upwards the inheritance hierarchy and the induced migration of an exemplary instance. On
the left side the class B is unfolded, yielding the two classes B and X in the middle, and the origin
of the association is moved to the temporary class X. On the right side the class X is folded with
the class A, such that the association starts at the class A after the transformation. The modification
of objects and links by the induced migration is performed analogously. Note that the unfolding
on the left is due to the pullback construction, and the folding on the right side is due to the
epireflector which takes care that axiom (M.18) is satisfied.25 Similar transformations which
manipulate the schema graph by moving the source or the target of an association, an attribute, or
an inheritance edge can be formulated and induce corresponding migrations on the instance level.

25Note that the effect shown cannot be simulated by deleting the association on the left and re-adding it on the
right because the induced migration leads to data loss: the middle instance graph will have all links to the deleted
association removed, and the right instance graph will be identical to the middle one as the schema addition will have
no effects on the instance level.
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B
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A

(a) Schema transformation

1:A

1:B2:C

1:A

1:B

2:C1:X

1:A

1:B

2:C

1:B

1:X1:X

1:A

(b) Induced migration

Figure 11: Moving the origin of an association upwards the inheritance hierachy

Another type of transformations based on unfolding and folding is introducing a class. This is
illustrated in Fig. 12. Note that this transformation can easily be adapted to the situation where B
has no existing superclasses (thereby introducing a new root class C) by removing the classes A
and A’, making the folding on the right side the identity operation.

6 Method Migration

The migration of methods is performed in the same way as the migration of data and processes.
But as methods are valid DPO rules according to Def. 5, it has to be ensured that their properties
are preserved by a migration. Additionally, methods already executed which are represented by
two pushout diagrams shall be transformed so that the resulting diagrams are again pushouts. This
ensures that processes that have already been executed are compatible to the new schema after
migration. However, this does not hold for arbitrary transformations. In Fig. 13, two classes B
and C of a schema S are merged, resulting in the class BC in the schema S′. At the instance level,
the right pushout of a method adding a link is presented. The migrated diagram is a pushout in
the subcategory Sys(S′) of all typed instances conforming to the typing axioms, but not a pushout
in the category Alg(MP*)↓S′ in which the migration is computed. This can be deduced from the
elementary properties of pushouts (see e. g. [EEPT06]).

In order to migrate DPO rules and DPO diagrams properly we need to restrict the allowed
transformations. We can show that if transformations are disallowed to fold associations on the
right side, DPO rules can be migrated correctly in all cases. This results in the following definition
of a proper transformation:
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Figure 12: Introducing a class

Definition 8 (Proper transformation) A transformation S lt←− S∗ rt

−→ S′ in Alg(MP) is proper if rt

is injective on associations, i. e., if rt
E(x) = rt

E(y)⇒ x = y holds for all x, y ∈ S∗E.

The correct migration of valid DPO rules is guaranteed by the following proposition:

Proposition 2 (Migration preserves valid DPO rules [Sch09b, Proposition 15.23]) Given a

proper transformation t : S S∗
 S′, let

(I1 typeI1−−−→ S) l←− (I2 typeI2−−−→ S) r−→ (I3 typeI3−−−→ S)

be a valid DPO rule. Then

M t(I1 typeI1−−−→ S)
M t(l)←−−−M t(I2 typeI2−−−→ S)

M t(r)−−−→M t(I3 typeI3−−−→ S)

is a valid DPO rule as well.

Proof sketch. It has to be shown that the pullback functor and the epireflector both preserve valid
DPO rules, i. e. completing homomorphisms and spans pulling back edges. For the pullback
functor, the preservation of both properties is proven easily by using the pullback properties that
pullback morphisms are jointly monic and that certain unique preimages exist in the pullback
object.26 To show that the epireflector preserves spans pulling back edges is done by a sort

26If (f ′ : P→ B, g′ : P→ A) is pullback of (f : A→ C, g : B→ C), and if f (x) = g(y) for some x and y, then there
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Figure 13: Pushout in Alg(MP*)↓S is not preserved by a migration

of “triple pull-back”: first, the edge under consideration is pulled back along the surjective
reflection arrow, then it is pulled back along the valid DPO rule, and finally it is transferred to
the epireflective subcategory again by applying the epireflector on it. The remaining case that
the epireflector preserves completing homomorphisms is proven similarly, but has to be extended
as simply pulling back along the surjective reflection arrow may not suffice due to predicates
being made true by the epireflector.27 So for each predicate and each axiom that may render this
predicate true, the triple pull-back approach described above has to be proven separately, taking
the axiom’s conclusion into consideration.

The migration of DPO diagrams is ensured by the following proposition:

Proposition 3 (Migration preserves pushouts [Sch09b, Proposition 15.35]) Let t : S S∗
 S′ =̂

S lt←− S∗ rt

−→ S′ be a proper transformation and (L
typeL−−−→ S) l←− (K

typeK−−−→ S) r−→ (R
typeR−−−→ S) be a valid

DPO rule. Let

(D
typeD−−−→ S)

g−→ (H
typeH−−−→ S) n←− (R

typeR−−−→ S)

be a pushout of

(D
typeD−−−→ S) k←− (K

typeK−−−→ S) r−→ (R
typeR−−−→ S)

in Alg(MP∗)↓S, where all typed instances are in Sys(S). Then

M t(D
typeD−−−→ S)

M t(g)−−−→M t(H
typeH−−−→ S)

M t(n)←−−−M t(R
typeR−−−→ S)

is a pushout of

M t(D
typeD−−−→ S)

M t(k)←−−−M t(K
typeK−−−→ S)

M t(r)−−−→M t(R
typeR−−−→ S)

in Alg(MP∗)↓S′, where all typed instances are in Sys(S′).

exists a unique z in the pullback object P with g′(z) = x and f ′(z) = y. This follows directly from the limit property of
pullbacks by comparing the pullback square with the terminal object.

27This includes the identification of elements, as for each sort, there is a corresponding equality predicate.
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Proof sketch. First it is proven that the pullback functor preserves DPO pushouts. First note that
DPO pushouts are pullbacks in our categories as the DPO rule morphisms are completing and, as
such, injective [EEPT06, Remark 2.25]. So applying the pullback functor to a DPO pushout yields
a pullback in the target category, as the pullback functor preserves limits due to being right-adjoint
to the composition functor along the same morphism [Gol84, section 15.3]. It remains to show
that the resulting pullback diagram is also a pushout. This is done by proving that the morphisms
in the target diagram meet certain conditions; in particular, if (f ′ : P→ B, g′ : P→ A) is pullback
of (f : A→ C, g : B→ C), then this square is a pushout if f and f ′ are injective, if f and g are
jointly surjective, and if g is injective up to f ′28 (compare again [EEPT06, Remark 2.25]).

For the second part of the proof, note that applying the epireflector to a pushout diagram
necessarily yields a pushout diagram in the target category because the epireflector is left-adjoint
to the inclusion functor. However, we have to show that this pushout diagram in the subcategory
Sys(S′) is also a pushout diagram in the category Alg(MP∗)↓S′, as this is the category where
DPO transformations take place. To show this, we first prove that this is true if the following
compatibility condition is met. Let (f ′ : B→ P, g′ : A→ P) be pushout of (f : C→ A, g : C→ B)
in Alg(MP∗)↓S′. Then applying the epireflector to this diagram yields again a pushout in the
same category if for each predicate p ∈ Pw and each tuple x ∈ keruP

p we have some y ∈ keruA

p with
g′w(y) = x or some z ∈ keruB

p with f ′w(z) = x, i. e. if the kernel of the reflection arrow uP can be
separately described by the kernels of the reflection arrows uA and uB (without any interactions
between these kernels). Having proven this, we show for each predicate that this property is
fulfilled by the epireflector into Sys(S′).

Both propositions can be combined, yielding the following theorem:

Theorem 2 (Correctness of the migration of programs [Sch09b, Theorem 15.36]) Let t : S S∗
 S′

be a proper transformation. Then the migration functor M t transfers the validity of non-applied
methods (DPO rules) and applied methods (DPO transformations) from the category Alg(MP)↓S
into the category Alg(MP)↓S′.

Proof. Direct consequence of Proposition 2 and Proposition 3.

7 Outlook

With the framework presented above, a major step towards migration of complete object-oriented
systems is proposed. Certainly, the framework is not universal as it is subject to some (reasonable)
constraints. Migrations are considered to be instances of transformations. The innovative part of
the theory described consists of the automatic transformation of a migration source, computing
the target with the help of a functor on slice categories. This functor is composed of three factors:
Generally, the pullback functor P lt is right-adjoint where the second factor—the composition
functor F rt

—is its left-adjoint. But the third factor—the construction F S into the subcategory
Sys(S)—yields an adjunction as well. Thus, the whole migration enjoys well-understood universal
properties which can further be pursued into three different directions.

28This means that g(x) = g(y) with x 6= y implies x, y ∈ Im f ′.
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The first direction for future research will be the development of tools that support migration
induced by refactoring rules. If transformation rules can be captured ergonomically in an appropri-
ate application, migrations can automatically and uniquely be computed. Thus, content migration
of databases is possible as well as migration of running processes in a software system. These
tools should discover potential for composition, as well: Bigger refactorings should be decompos-
able into elementary changes, atomic steps must be proved to combine to more comprehensive
procedures. This is another facet for future research.

Theorem 2 states that dynamical semantics is preserved by refactorings where semantics
is based on valid DPO rules. Hence the second direction is to find a comparable correctness
criterion for data. This must include a formal specification of “information” to distinguish between
semantics-preserving refactorings and information-distorting transformations.

The third direction consists of abstracting away from pure graph structures. It has to be
investigated to what extent the results can be generalised to elementary topoi or even to adhesive
categories [Gol84, EEPT06]. An approach can be found in [KLS07] which covers data migration
only. Hence, an extension to method migration is desirable.
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