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Abstract: The conceptual ideas that are intended to become the basis for the tree

automata workbench MARBLES
1 are sketched. The goal is to design and implement

an extensible system that facilitates experiments with virtually any kind of algorithm

on tree automata. Moreover, the system will be released with a library and an appli-

cation programmer’s interface to make it accessible to anyone who wants to apply

tree automata algorithms in research and development.
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1 Introduction

Already in the 1960s, researchers realized that large parts of the theory of finite automata can be

generalized by replacing strings with trees, retaining most of the positive algorithmic results and

closure properties. This observation gave rise to a flourishing theory, including a large number

of techniques and algorithms for the analysis, modification, and synthesis of various kinds of

tree recognizers, tree grammars, and tree transducers [GS84, NP92, GS97, FV98, CDG+07].

Throughout the rest of this paper, all devices that fall into one of these categories will be called

tree automata. Nowadays, probably more theoretical research than ever before is done in this

area, a fact that is explained by a constantly growing number of applications in fields such as

verification and model checking [GK00, AJMd02, Löd02, FGV04], natural language processing

[KG05, GKM08], XML processing [Sch07], code selection in compilers [FSW94, Bor04], and

generation of graphs and pictures [Eng94, Dre06].

The system TREEBAG
2 uses tree generators to generate sets of objects over arbitrary domains.

The central data type of TREEBAG is the ranked and ordered tree, with nodes labelled by symbols

taken from a ranked alphabet Σ. In other words, every symbol f ∈ Σ comes with a rank k ≥ 0,

such that a node labelled with f is required to have exactly k children (which are totally ordered).

This means that a tree in the sense of TREEBAG is a term, i.e., a well-formed expression composed

of abstract (i.e., “meaningless”) operation symbols, each having a specified rank that determines

the number of subexpressions. TREEBAG deals with two types of tree automata on such trees,

namely tree grammars and tree transducers. A tree grammar is a device that generates trees out

of itself, whereas a tree transducer transforms input trees into output trees. A tree generator is a

tree grammar composed with a (possibly empty) sequence of tree transducers.

∗ Dedicated to Hans-Jörg Kreowski on the occasion of this 60th birthday.
1 Tree Automata Workbench = taw = a large marble, a game of marbles (Oxford New Amer. Dict.).
2 Tree-Based Generator
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In the well-known way, trees of the type described above can be assigned a semantics by

choosing a domain A and associating an operation on A (of the appropriate arity) with each

symbol in the ranked alphabet Σ. In other words, a Σ-algebra is specified that maps every tree

to an element of A. Together, a tree generator and an algebra constitute a tree-based generator

whose generated language is a subset of A:

tree-based generator

tree generator interpretationgenerated

trees

semantic

domain A

TREEBAG makes it possible to assemble tree-based generators interactively. This makes TREEBAG

very flexible, because arbitrary combinations of tree grammars, tree transducers, and algebras

can be used. However, in another respect, TREEBAG is quite restricted. All that can be done when

a tree-based generator has been assembled is to execute it. In contrast, the usefulness of tree

automata in most application areas does not primarily lie in the fact that they can be executed.

Their real advantage is that they are simple enough to be effectively analyzed and manipulated.

For instance, in a model checking application, tree automata may be generated that model safety

and liveness properties of a protocol to be verified. Analyzing these automata then corresponds

to checking correctness criteria. A tool that is supposed to be useful in such situations must make

it possible to assemble not only tree automata but also algorithms on tree automata. This means

that tree automata are mainly perceived as objects to be analyzed and manipulated, rather than

as executable algorithms. MARBLES is intended to become such a tool. Its major purpose is to

provide researchers with a software environment and infrastructure that enables them to create,

use, and experiment with algorithms on tree automata.

In addition to TREEBAG, there are several other systems that implement certain types of tree

automata or algorithms on them.

AutoWrite (http://dept-info.labri.fr/∼idurand/autowrite) is a system that allows the user to

check properties of term rewrite systems by means of tree automata constructions. In particular, it

allows to load, save, and combine bottom-up tree recognizers. Using the graphical user interface,

one can build and manipulate bottom-up tree recognizers related to the term rewrite systems

whose properties one wants to check.

Forest FIRE (http://www.loekcleophas.com) is a toolkit focusing on recognition, pattern

matching, and parsing algorithms in connection with regular tree languages. The system has

been developed on the basis of detailed taxonomies, with the major purpose of gaining a deeper

conceptual understanding of how the ideas and techniques used in various tree automata con-

structions are related to each other.

MONA (http://www.brics.dk/mona) is a tool for checking the validity of formulas in the weak

second-order theory of one successor (WS1S) or of two successors (WS2S). For deciding WS2S,

the decision procedures convert a given formula into a so-called guided tree automaton, a variant

of a bottom-up tree recognizer, and analyze this automaton.

Tiburon (http://www.isi.edu/licensed-sw/tiburon) is a command-line based package of algo-

rithms on weighted regular tree grammars, context-free string grammars, and tree transducers,

including various analyzers, modifiers, and synthesizers. Tiburon has mainly been developed for

applications in Natural Language Processing, but can be used for other purposes as well.

Festschrift H.-J. Kreowski 2 / 16
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Timbuk (http://www.irisa.fr/lande/genet/timbuk) is a toolkit for reachability proofs in term

rewrite systems, among other techniques by manipulating nondeterministic bottom-up tree rec-

ognizers. It is intended to be used for the verification of programs and cryptographic protocols.

The proposed system MARBLES differs from each of these systems in several respects. Most

notably, the systems above have all been developed with a particular application or problem area

in mind. The one that is probably closest to MARBLES is Tiburon. The devices and algorithms

implemented in Tiburon are typical even for MARBLES, and it is conceivable that Tiburon could,

in principle, be extended to include most of the intended functionality of MARBLES. However, its

design was not guided by MARBLES’ emphasis on a general concept that is reflected in both the

graphical user interface and the application programmers interface and that allows the system to

be adapted and extended by researchers with different needs. This distinguishes MARBLES from

the other systems. The intention behind it is to support tree automata research in general, by

providing researchers with a suitable platform and infrastructure for their own extensions.

Of course, the list of systems above could be extended by mentioning various implementations

of general term rewrite systems, (functional) programming languages based on term rewriting,

theorem provers, and systems for executable algebraic specifications, because most of them in-

clude tree automata as special cases (at least in the unweighted case). However, the point is that

such systems and languages are too general to provide support for the kind of problems MARBLES

is supposed to address.

This article is a revised version of [Dre09b]. Its remainder is structured as follows. The next

section presents some aspects of TREEBAG that have, in one way or the other, inspired the intended

characteristics of MARBLES. In Section 3, some of the different types of trees, tree automata,

and tree automata algorithms that should, in principle, be covered by MARBLES, are discussed.

Section 4 presents initial ideas regarding some of the concepts needed for making this possible.

Finally, Section 5 concludes the paper.

2 TREEBAG

Let us now have a slightly closer look at the concepts and design principles of TREEBAG. The

following description is intentionally kept at a rather abstract level. Concrete classes of, e.g., tree

grammars and algebras in TREEBAG are sometimes mentioned as examples, mainly for readers

who happen to be familiar with tree automata theory. Readers who want to inform themselves in

more detail should consult the TREEBAG user manual (see http://www.cs.umu.se/∼drewes/treebag)

or [Dre06] for the theory behind.

The work on TREEBAG was started during the second half of the 1990s, when the author was a

member of Hans-Jörg Kreowski’s research group at the University of Bremen. Around this time,

context-free graph and collage grammars were two of the major research topics of the group;

see, e.g., [HKV91, HKL93, HKT93, DHKT95, DK96, DHK97, DK99]. Their generative power

can be characterized by combinations of a certain type of tree grammar (namely the regular tree

grammar) with suitable algebras in the style of Mezei and Wright [MW67], i.e., the grammars

can be viewed as tree-based generators. For graphs, this has been made explicit by Engelfriet in

[Eng94], and for collages by the author in [Dre96, Dre00]. See also [DEKK03], where this char-

acterization was used to establish certain decidability results for collage languages. In [Eng80],
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Engelfriet discusses symbolic computation by tree transductions, which is essentially the same

idea, applied to transformation rather than generation: a tree transduction, together with algebras

interpreting the input and output trees, is considered as a symbolic algorithm that performs a

computation on abstract trees rather than on the concrete objects of the two domains in question.

Although the results mentioned above use only regular tree grammars, it should be obvious

that one may in fact combine arbitrary kinds of tree generators with any sort of algebra, yielding

a large number of different grammatical formalisms with comparatively little effort. Being a

rather straightforward implementation of this idea (in Java), TREEBAG allows its user to assem-

ble tree-based generators of various kinds. There are four major abstract classes, namely tree

grammars, tree transducers, algebras, and displays. The first three represent the corresponding

formal concepts, whereas displays show the results of the generating process. Concrete sub-

classes of the four abstract classes implement particular types of tree grammars, tree transduc-

ers, algebras, and displays. For example, the classes generators.ET0LTreeGrammar and

generators.mtTransducer implement ET0L tree grammars and macro tree transducers,

resp. (See [Eng80, CF82, EV85, FV98] for the latter.) The user can define specific instances

(usually in ordinary ASCII text files) of such concrete classes and use them in assembling tree-

based generators. Such instances are called components in the following.

Figure 1 shows a typical situation when working with TREEBAG. Window 1 is the main window

of the system, the so-called worksheet. When the user loads a component, it is represented on

the worksheet as a blob. These blobs represent the nodes of a directed acyclic graph whose edges

determine the data flow between components. The data-flow edges are interactively established

by the user, subject to a few rather obvious rules: The output of a tree grammar or tree transducer

can become the input of any number of tree transducers and algebras, and the output of an algebra

can become the input any number of displays. The configuration in Figure 1 consists of a regular

tree grammar, a free term algebra with a corresponding tree display, a top-down tree transducer,

and two copies of a collage algebra, each with its corresponding collage display. With each

display component, a window is associated, namely the windows numbered 3–5. These windows

show the tree generated by the regular tree grammar, its interpretation by the collage grammar,

and the interpretation of the transformed tree by (another instance of) the same collage algebra.

An additional window (numbered 2 in the figure) contains buttons that provide access to the

user commands of the regular tree grammar. Double clicks on the other components on the work-

sheet would open similar sections in this window, each one being populated by the individual

commands understood by the respective component.

Let us now discuss two aspects of the design of TREEBAG which are expected to have some

influence on MARBLES. In fact, these two aspects are quite closely related and can be seen as the

two sides of the same coin.

From the point of view of the user, the way in which components can be interconnected de-

pends only on their types, i.e., whether they are tree grammars, tree transducers, algebras or

displays. In other words, if the user wants to connect a tree grammar and a tree transducer, this

can be done regardless of whether the tree grammar at hand is a regular tree grammar, ET0L

tree grammar, context-free tree grammar or whatever type of tree grammar might at some point

in time be implemented in TREEBAG. Of course, users must interconnect the “right” components

to achieve the desired effect. Every concrete component class provides the user with a set of

commands that can be used to interact with components of this class (recall Figure 1, where

Festschrift H.-J. Kreowski 4 / 16
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Figure 1: A typical configuration of TREEBAG

Window 2 contains buttons for the commands provided by the implementation of regular tree

grammars). While the commands would be different for, e.g., ET0L tree grammars, this has no

influence on the way in which regular tree grammars or ET0L tree grammars can be connected

to other components.

The person who implements new classes of tree grammars, tree transducers, algebras or dis-

plays will find out that the properties mentioned in the previous paragraph simply reflect prop-

erties of the implementation. The core of TREEBAG does not make any distinction between, e.g.,

different classes of tree grammars. In fact, consider the file defining the regular tree grammar

used in Figure 1:

generators.regularTreeGrammar("example grammar"):

( { S, A },

{ f:2, g:1, a:0 },

{ S -> f[S,S],

S -> g[A],

A -> f[A,A],

A -> a },

S )
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When the user instructs TREEBAG to load this component, TREEBAG parses only the first line, to

discover that the user wishes to load an instance of generators.regularTreeGrammar.

The rest of the file uses a syntax which is specific to the implementation of this class and therefore

unknown to (the core of) TREEBAG. To handle this, TREEBAG dynamically tries to load the class

generators.regularTreeGrammar and, upon success, creates an (uninitialized) object

of this class. Now, it lets this object, which is required to contain a method called parse,

initialize itself by parsing the remainder of the file. Each of the four abstract component types

of TREEBAG requires its concrete subclasses to implement such a parsing method. To handle

component-specific user commands, each concrete subclass provides two further methods. The

first returns, at any point in time, the list of user commands available at that moment (which

means that the list of commands may change), while the second executes a given command.

This structure makes it possible to extend TREEBAG by new classes of tree grammars, tree

transducers, algebras, and displays in an easy way, without having to change existing parts of the

system. One only has to implement it as a subclass of the appropriate abstract component class

and place it in the appropriate directory. Immediately afterwards (provided that everything has

been done correctly), it is possible to load instances of this class onto the worksheet, interconnect

them with other components, and work with them.

It may be interesting to note that the implementations of some of the classes currently available

in TREEBAG make use of decomposition results from the literature. For example, a so-called

branching synchronization tree grammar of nesting depth n can be decomposed into a regular

tree grammar and a sequence of n top-down tree transducers (see [DE04]). During the parsing

step, the implementation of this class in TREEBAG performs this decomposition and writes the n+1

components onto the hard disk (in the syntax required by the respective classes). Afterwards, it

uses TREEBAG’s loading mechanism to load them as internal variables hidden from the user (i.e.,

so that they do not appear on the worksheet). Every user command is basically forwarded to

these internal components, and whichever output tree they produce is returned. In this way, the

implementation of the class becomes considerably easier and less error prone than a direct one.

3 Trees, Tree Automata, and Tree Automata Algorithms

As mentioned in the introduction, the major intended purpose of MARBLES is to make it possible

to apply and experiment with algorithms on tree automata. The aim is to design MARBLES in

such a way that it accommodates virtually all kinds of tree automata algorithms. While this does

not mean that all such algorithms should readily be implemented in the system, the design of

MARBLES should enable researchers (and application programmers) interested in a particular type

of algorithm on tree automata to make the necessary extensions. As in the case of TREEBAG, this

should be possible without changes to existing parts. However, compared to TREEBAG, the design

challenge is considerably bigger for MARBLES, because its intended coverage is much wider. It

seems to be reasonable to distinguish between (at least) three central categories of objects: trees,

tree automata, and tree automata algorithms. Each of them may, in principle, have any number

of subcategories one may wish to implement in MARBLES. In the following, some of the possible

subcategories of each will be discussed to illustrate this point.

Festschrift H.-J. Kreowski 6 / 16
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3.1 Trees

In the traditional setting (and in TREEBAG), tree automata work on trees over ranked alphabets,

as explained above. This is appropriate, because trees are supposed to be evaluated by algebras

by associating with every symbol of rank k a k-ary function on some domain. However, tree

automata on unranked trees have received a lot of attention during recent years. In this setting,

symbols are unranked, and the number of children of a node does not depend on its label. It

turns out that this variant is well suited for applications in connection with XML, because XML

documents can appropriately be viewed as unranked trees. (For example, a node correspond-

ing to a list structure in HTML may have any number of children of type list item.) Thus, an

XML document type corresponds to a tree language of unranked trees, and a tree transducer on

unranked trees corresponds to a transformation between XML document types.

While the two types of trees mentioned are the only ones that play a major role in contempo-

rary research on tree automata, this situation may change in the future. Thus, MARBLES should

allow programmers to implement other classes of trees than just these.

3.2 Tree Automata

Tree automata can be classified according to various criteria. An important observation is that

the resulting classifications are, to a rather large extent, orthogonal.

Perhaps the most obvious classification is the one that gave rise to the structure of TREEBAG,

namely the distinction between tree grammars, tree recognizers (which are not directly available

in TREEBAG), and tree transducers. From an abstract point of view, a tree grammar is a formal

device that generates output trees without requiring input. As usual, the tree recognizer is the

dual concept. It takes a tree as input and computes an output value, usually in the range {0,1},
indicating whether the tree is accepted or not. Finally, a tree transducer is a formal device

transforming input trees into output trees.

The second classification distinguishes between tree automata according to the type of trees

they act upon, i.e., tree automata on ranked or unranked trees. Each of the types of tree automata

in the first classification can be ranked or unranked. In this sense, these two classifications are

orthogonal. In fact, one may even wish to consider tree transducers that turn unranked trees into

ranked ones, or vice versa.

Finally, one may consider weighted tree automata [FV09], which deal with tree series instead

of tree languages. A tree series is a mapping ψ : TΣ→ S, where TΣ denotes the set of all trees

over a given alphabet, and S is a semiring. In other words, weighted tree automata generalize the

traditional case, which is obtained by choosing the Boolean semiring. Even this third classifica-

tion is orthogonal to the two previous ones, provided that the used definition of tree automata is

general enough to include the weighted case.

It is interesting to note that, from an abstract point of view as well as from the point of view

of system design, weighted tree recognizers are very similar to algebras. Both take a tree as

input and compute a value in some other domain. In fact, this observation yields one of the

possible ways to define the semantics of weighted tree automata. The initial algebra semantics

of a weighted tree automaton A over a semiring S associates a Σ-algebra A with A [FV09,

pp. 322–323]. The domain of A is Sk, where k is the number of states of A. The evaluation of
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a tree with respect to A yields the tuple of weights carried by the states at the root node of the

tree.

3.3 Algorithms on Tree Automata

Many useful algorithms on tree automata have been described in the literature. For classifi-

cation purposes, it is useful to distinguish between analyzers, synthesizers, and decomposition

algorithms.

An analyzer for tree automata takes a tree automaton as input and analyses it with respect

to certain properties. Well-known examples are algorithms that decide whether the language

represented by a tree recognizer or tree grammar is empty or whether it is finite (cf., e.g., [DE98]).

A synthesizer is an algorithm that takes zero or more tree automata (and maybe some addi-

tional data) as input and yields a tree automaton as output. There are various important types of

synthesizers:

• A generator is an algorithm that outputs tree automata without requiring other tree au-

tomata as input. A prominent example is given by grammatical inference algorithms for

tree automata. These are algorithms whose purpose it is to “learn” tree languages. For this,

the algorithm is provided with some source of information regarding the tree language (or

tree series) to be learned, such as positive and negative examples. The algorithm is then

expected to construct a tree automaton representing the tree language in question. See,

e.g., the references in [Dre09a] for a variety of approaches.

Conceptually, a tree automaton A may be considered as a generator that outputs the con-

stant value A.

• Conversion algorithms take a tree automaton as input and yield another tree automaton

as output, usually with the same semantics as the input automaton. Well-known exam-

ples are conversions between regular tree grammars and finite-state tree recognizers and

algorithms that minimize tree automata, make them deterministic, remove useless states or

nonterminals, etc (see, e.g., [CDG+07]). There are also conversion algorithms that do not

retain the semantics of the tree automaton they are applied to. For example, a macro tree

transducer mtt may be turned into a finite-state tree recognizer that accepts the pre-image

of the tree transformation computed by mtt. A conversion algorithm that inverts suitable

types of top-down tree transducers would be another example.

• Composition algorithms turn n tree automata (n > 1) into one. A wealth of such algo-

rithms can be found in the literature. One type of example is, of course, given by compo-

sition in the strict sense. For instance, certain types of tree transductions are known to be

closed under composition. Another example is the main result of [DE04], which provides

an algorithm for converting a regular tree grammar g and n top-down tree transducers

td1, . . . , tdn into a branching synchronization tree grammar generating the image of L(g)
under tdn ◦ · · · ◦ td1. Composition algorithms in a more general sense may not perform

mathematical composition, but combine tree automata in a different way. For example,

two finite-state tree recognizers can be turned into one that recognizes the intersection of

the tree languages recognized by the two individual automata.
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Finally, decomposition algorithms are the conceptual inverse of composition algorithms, turn-

ing one tree automaton into several others. For example, for {x,y} = {top-down,bottom-up},
every x tree transducer may be decomposed into two y tree transducers [Eng75]. A similar exam-

ple is given by the result that every deterministic total macro tree transducer may be decomposed

into a top-down tree transducer followed by a YIELD mapping [EV85].

Of course, algorithms on tree automata may additionally be classified by the types of tree

automata they work on, similarly to the way in which tree automata can be classified.

4 A Proposed Attribute Type System for MARBLES

As mentioned earlier, the goal behind the development of MARBLES is that it should allow its

user to assemble configurations of tree automata algorithms in a similar way as TREEBAG allows

its user to assemble various sorts of tree-based generators. In particular, there should be a way

to load components representing (tree automata and) tree automata algorithms, establish a data-

flow relation between them, and execute them. However, while TREEBAG comes with a fixed set of

component types, something like this is neither possible nor desirable for MARBLES. In contrast,

users should be given the possibility to define and implement their own classes of tree automata

algorithms and experiment with them. The following two fictitious scenarios try to illustrate

this.7

Scenario 1: Test Environment for Minimization Algorithms.

Doctoral student X works in a research group using bottom-up tree recognizers for model check-

ing purposes. A typical example is the verification of a process communication protocol P by

generating a tree recognizer AP that models the system behavior P causes, and then analyzing

AP to establish P’s correctness. The problem is that AP tends to be unnecessarily huge, so that

its analysis takes too much time. Unfortunately, AP is also nondeterministic, which means that it

cannot efficiently be minimized.

Therefore, in her thesis, X proposes and studies a number of efficient heuristics for reducing

nondeterministic tree recognizers A in size (called minimization, for simplicity). The general

technique used is to compute a suitable equivalence≡ on the state set of A, such that the quotient

automaton A/≡ accepts the same language as A. The various heuristics studied differ only in

the concrete definition (and computation) of ≡. Besides studying the minimization algorithms

theoretically to establish their correctness and worst case complexity, X wants to study empiri-

cally how they behave on real examples arising in the model checking context, in terms of size

reduction and efficiency. However, X does not have the time to implement a test environment for

her algorithms from scratch, in addition to her theoretical studies. Therefore, she decides to use

MARBLES.

First, she notices that there is a type of tree automata algorithm called generator, a special type

of synthesizer. She defines and implements a simple generator which lets the user choose the

name of a protocol (from a fixed set of possible choices) and possibly some other parameters.

7 While being fictitious, the scenarios have a real background, as they are inspired by [Kaa08] and ongoing work in

our own group, resp.
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The generator will then output nondeterministic bottom-up tree recognizers of increasing size,

whenever the user presses a certain button.

Next, X discovers that there are so-called converters, and decides to implement a new type

of converter as an abstract class. A concrete implementation is obtained by providing a method

that, for a given bottom-up tree recognizer A, computes an equivalence relation ≡ on the states.

The converter will then return A/≡.

Fortunately, X finds out that someone else has already implemented two useful auxiliary com-

ponents. One of them is a wrapper for arbitrary converters that simply executes them, but also

reports how much time the execution takes. The other one takes bottom-up tree recognizers as

input and saves some statistics about them to a file, such as the number of states and transitions.

Now, X has everything needed to make the desired tests. All she has to do is to implement

the different algorithms yielding the equivalence relations ≡, load and interconnect the required

components, and execute them.

Scenario 2: Simulation of Minimal Adequate Teachers Using Corpora.

The research group in which researcher Y is working has previously studied grammatical in-

ference algorithms that, within Angluin’s learning model of a minimal adequate teacher (MAT),

construct a bottom-up tree recognizer for a recognizable tree languages L. Now, they want to find

out whether such an algorithm can be used to learn the syntax of natural languages reasonably

well, where the necessary data is taken from a corpus.8

The major obstacle is the MAT, an oracle capable of answering two types of queries, namely

membership queries (Is the tree t in L?) and equivalence queries (Does the bottom-up tree recog-

nizer A satisfy L(A) = L? If not, return a counterexample.) Clearly, a MAT is not available in the

situation sketched above. The research question is whether it can (imperfectly) be simulated on

the basis of a corpus, so that the inference algorithm as a whole runs with reasonable efficiency

and yields acceptable results.

Y decides to try out some approaches and to use MARBLES for that purpose. Thus, she defines

two new types of algorithms, namely MATs and learners. A learner is a generator that must be

connected to a MAT to create a tree automaton. During the first phase, she only wants to test

different realizations of the MAT, to see whether the results are promising enough to continue.

Therefore, she implements a single learner (e.g., any of those in [Dre09a]). In contrast, a variety

of different MATs are implemented, using different approaches for answering membership and

equivalence queries based on a corpus.

To find out how good the various approaches are, Y implements a component that has access

to a sufficiently large sample of positive and negative examples. It takes a tree recognizer as

input, runs it on the samples, and returns statistics regarding its sensitivity and specifitivity. In

a second phase of her research work, Y even wants to study other variants of the learner, which

can be done in the same setting by replacing one learner with another.

In scenarios such as those above, the researcher who wants to use MARBLES must imple-

ment certain extensions, new types of tree automata and algorithms that become components

of MARBLES. The central idea behind MARBLES is that the developer can easily tell the system

8 A corpus is a manually analyzed and annotated database of sentences in a natural language.
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how the implemented extensions can be used and, in particular, how the new components can

be combined with others. Thus, there must be a possibility to describe the types of components

in an easy and flexible way. Rather than defining a strict typing system, the goal is to enable

developers to communicate the major properties of new components to both MARBLES and its

users. Thus, one needs a way to name the basic data types and relate them with each other. The

solution proposed here is an extensible hierarchy of attributes. To see where the hierarchy comes

in, consider the case of binary ordered trees. The property of being binary should be expressed

by an appropriate attribute, for example, by giving the attribute uniformRank the value binary.

However, since binary trees are essentially a special case of ranked trees, one may wish to reserve

this attribute for ranked trees, which means that one should be allowed to specify uniformRank

only under the premise that the tree is ranked, which may be indicated by the attribute ranked

having the value true. Independently of whether or not the tree is ranked, it may be ordered

or not. The latter could be expressed by assigning the attribute ordered the value true or false.

However, both ranked and ordered make sense only for trees. Thus, their premise could be that

the attribute class associated with the data structure in question has the value tree. This attribute

may be an “outermost” one, meaning that it does not have a premise and can, thus, be the root

of the hierarchical structure. In summary, binary ordered trees could be designated a tree of

attribute assignments of the form

treeclass[trueranked[binaryuniformRank], trueordered],

designating a basic type in MARBLES. The following definition formalizes this notion.

Definition 1 (attribute trees and basic types)

1. Let ATTR be a finite set of attributes a, each having a finite set V (a) = {v1, . . . ,vn} of

possible values. For v ∈ V (a), let va denote the assignment of v to a. The set of all such

assignments is denoted ASS(ATTR).

2. For all a∈ ATTR, assume that an attribute assignment prem(a)∈ ASS(ATTR)∪{⊥}, called

the premise of a, is specified. The set of all attribute trees is defined inductively, as follows.

(a) Every va ∈ ASS(ATTR) is an attribute tree with root attribute a.

(b) For all attribute trees t1, . . . , tn whose root attributes are pairwise distinct and have the

same premise va, va[t1, . . . , tn] is an attribute tree with root attribute a.

3. An attribute tree whose root attribute has the premise ⊥ is a basic type. The set of basic

types is denoted by basic.

It should be noted that attribute trees (and, thus, basic types) are loose specifications in the

sense that they do not generally refer to a specific data type. The rationale behind this is that it

should be possible to specify only those attributes that are of interest in a given situation. For

example, consider a class of algorithms working on, e.g., tree grammars. If it is essential that the

trees generated by these tree grammars are binary ordered trees, then the basic type discussed

above may be appropriate. However, if the algorithms work on any type of ranked trees, ordered

or not, then the more general basic type treeclass[trueranked] is more appropriate.
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Note that no specific semantics or implementation is associated with the attributes. It should,

however, be possible to do this in MARBLES by, e.g., associating an attribute with formal semantic

requirements, or with an abstract class in the implementation. How this can be done in the most

appropriate way is an interesting topic for future work. A similar remark applies to the types at

the higher levels discussed next.

The next definition concerns automaton types. It takes a very general approach, where an

automaton is a device that turns a finite number of input values of specified basic types and into

a finite number of output values, also of specified basic types.

Definition 2 (automaton type) An automaton type is a pair (in,out) with in ∈ basick and out ∈
basicl for some k, l ≥ 0. Such a type will normally be written as in → out. The set of all

automaton types is denoted by AUT .

As an example, a tree grammar of the most general form could be described as being an au-

tomaton of type ()→ (treeclass). In other words, it takes no input and yields any type of tree as

output. Note that such an automaton type does not say much about how the actual implemen-

tation of an automaton behaves, which kinds of operations it provides, and so on. For example,

reasonable types of tree grammars are always nondeterministic. Implementations should there-

fore provide a means to enumerate the generated trees or nondeterministically generate one.

Automaton types may specify such details if necessary, but they need not. In the most specific

case, an automaton type may be associated with a particular class in the implementation. The

level of detail used may vary depending on the situation.

Slightly more specific than the type ()→ (treeclass) would be the type of tree grammars gener-

ating ranked trees, namely ()→ (treeclass〈trueranked〉). For weighted tree automata over a semi-

field that work on ranked trees, the type (treeclass〈trueranked〉)→ (semiringclass〈hasInversesprop〉)
could be an appropriate description, and for tree transducers on unranked trees one could use

(treeclass〈falseranked〉)→ (treeclass〈falseranked〉). Though uncommon in the literature, one may

also wish to consider, e.g., tree transducers that take two trees as input and produce one output

tree, the corresponding type being (treeclass, treeclass)→ (treeclass).
Note that the concept is very general. For example, an algebra can be seen as an automaton of

type (treeclass〈trueranked〉)→ (anyclass), if anyclass is assumed to be the most general basic type,

standing for arbitrary data. Also weighted tree automata over multioperator monoids [Kui00]

have this type. Clearly, the concept covers even devices that do not work on trees at all. Thus, in

principle, MARBLES may even be extended to automata on other structures, such as graphs.

Finally, the next definition makes it possible to specify types of algorithms on tree automata.

Definition 3 (algorithm type) The set ALG of algorithm types is inductively defined to be

the smallest set containing all triples (in,use,out) such that, for some k, l,m ≥ 0, in ∈ AUTk,

out ∈ AUTm, and use ∈ ALGl . Such a triple is denoted by in
use−→ out.

The intuitive interpretation of in
use−→ out is that of an algorithm which turns inputs according

to in into outputs according to out, thereby possibly making use of other algorithms given by use.

A typical example is the MAT learner in Scenario 2, which could be of the type () MAT−−→ (TA),
where TA is the automaton type treeclass〈trueranked〉 → boolclass.
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As mentioned earlier, one of the ideas behind MARBLES is that its GUI, similar to the one of

TREEBAG, should allow the user to assemble configurations of tree automata in order to experiment

with them. The basic (and still somewhat tentative) plan is that every implementation of a class of

tree automata or tree automata algorithms comes with a specified type according to the definitions

above. When the user loads an instance of such a component, this information is used in order

to determine which connections between these components are possible. The idea is that an

algorithm of the type in Definition 3 will, from the point of view of the user, have k + l +m slots

representing the inputs, the used algorithms, and the outputs. For instance, if a component has an

output slot s of type treeclass〈trueranked〉 → boolclass (a recognizer for ranked trees) and another

one has an input slot s′ of type treeclass→ boolclass (a recognizer for any sort of trees), then the

data flow can be directed from s to s′.

5 Concluding Remarks

In this paper, ideas and plans regarding a successor of the system TREEBAG have been presented.

While this work is still in a very preliminary phase, the overall goal is clear. MARBLES should

make it possible to experiment with configurations of tree automata algorithms in a similar way

as TREEBAG makes it possible to experiment with tree-based generators. Moreover, MARBLES

should be extensible by researchers who are not directly involved in the development of the

system itself, but want to use it for their own purposes. For this, concepts such as those presented

in Section 4 seem to be a necessity, because the GUI must be able to handle extensions without

explicitly being adapted.

An aspect that has not been discussed in the present paper, but which is a necessity as well,

is to provide programmers with a well-documented library and a clearly structured application

programmer’s interface (API). Without this, it would be too difficult, error prone, and time con-

suming for other researchers to make their own extensions. In fact, it should also be possible to

make use of the API without adopting the rest of MARBLES, and especially its GUI. This would

give programmers the possibility to apply tree automata algorithms in their own applications.

Another aspect that has not yet been decided upon is whether and to what extent MARBLES shall

be compatible and able to interoperate with other systems dealing with tree automata, such as

those mentioned in Section 1.
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