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Abstract: We present Local Church-Rosser, Parallelism, and Concurrency Theo-
rems for rules with nested application conditions in the framework of weak adhesive
HLR categories including different kinds of graphs. The proofs of the statements are
based on the corresponding statements for rules without application conditions and
two Shift-Lemmas, saying that nested application conditions can be shifted over
morphisms and rules.
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1 Introduction

Graph replacement systems have been studied extensively and applied to several areas of com-
puter science [Roz97, EEKR99, EKMR99] and were generalized to high-level replacement (HLR)
systems [EHKP91] and weak adhesive HLR systems [EEHP06, EEPT06], based on adhesive cat-
egories [LS05]. Application conditions restrict the applicability of a rule. Originally, they were
defined in [EH86], specialized to negative application conditions (NACs) [HHT96], and gener-
alized to nested application conditions (ACs) [HP05].

The Local Church-Rosser, Parallelism, and Concurrency Theorems are well-known theorems
for graph replacement systems on rules without applicationconditions [EK76, Kre77a, Kre77b,
Ehr79, ER80, Hab80] and are generalized to high-level replacement (HLR) systems [EHKP91]
and rules with negative application conditions [LEPO08b]. Nested application conditions (ACs)
were introduced in [HP05] and intensively studied in [HP09]. They generalize the well-known
negative application conditions (NACs) in the sense of [HHT96, LEPO08b]. Furthermore, nested
application conditions in the category of graphs are expressively equivalent to first order formulas
on graphs. In this paper, we generalize the theorems to weak adhesive HLR systems on rules with
nested application conditions.
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Parallelism and Concurrency

Theorem without ACs with NACs with ACs
Local Church-Rosser [EK76, Ehr79, EHKP91, EEPT06] [HHT96, LEPO08b] this paper

Parallelism [Kre77a, Kre77b, EHKP91, EEPT06] [HHT96, LEPO08b] this paper
Concurrency [ER80, Hab80, EHKP91, EEPT06] [LEPO08b] this paper

The proofs of the theorems are based on the corresponding theorems for weak adhesive HLR
systems on rules without application conditions in [EEPT06] and facts on nested application
conditions in [HP09], saying that application conditions can be shifted over morphisms and
rules.

Theorem + Shift-Lemmas for ACs⇒ Theorem for rules with ACs

The paper is organized as follows: In Sections2 and 3, we review the definitions of a weak
adhesive HLR category, nested conditions, and rules. In Section 4, we state and prove the Local
Church-Rosser, Parallelism, and Concurrency Theorems forrules with nested application condi-
tions. The concepts are illustrated by examples in the category of graphs with the classM of all
injective graph morphisms. A conclusion including furtherwork is given in Section5.

2 Graphs and High-level Structures

We recall the basic notions of directed, labeled graphs [Ehr79, CMR+97] and generalize them to
high-level structures [EHKP91]. The idea behind the consideration of high-level structures is to
avoid similar investigations for similar structures such as Petri-nets and hypergraphs.

Directed, labeled graphs and graph morphisms are defined as follows.

Definition 1 (Graphs and Graph Morphisms) Let C= 〈CV ,CE〉 be a fixed, finite label alphabet.
A graph over C is a systemG = (VG,EG,sG, tG, lG,mG) consisting of two finite sets VG and
EG of nodes(or vertices) and edges, sourceand target functionssG, tG : EG → VG, and two
labeling functionslG : VG→CV and mG : EG→CE. A graph with an empty set of nodes isempty
and denoted by/0. A graph morphism g: G→ H consists of two functionsgV : VG→ VH and
gE : EG→EH that preserve sources, targets, and labels, that is, sH ◦gE = gV ◦sG, tH ◦gE = gV ◦tG,
lH ◦gV = lG, and mH ◦gE = mG. A morphismg is injective(surjective) if gV andgE are injective
(surjective), and anisomorphismif it is both injective and surjective. Thecomposition h◦g of
g with a morphismh: H → M consists of the composed functionshV ◦ gV and hE ◦ gE. The
category having graphs as objects and graph morphisms as arrows is called Graphs.

Our considerations are based on weak adhesive HLR categories, i.e. categories based on
objects of many kinds of structures which are of interest in computer science and mathematics,
e.g. Petri-nets, (hyper)graphs, and algebraic specifications, together with their corresponding
morphisms and with specific properties. Readers interestedin the category-theoretic background
of these concepts may consult e.g. [EEPT06].

Definition 2 (Weak Adhesive HLR Category) A categoryC with a morphism classM is a
weak adhesive HLR category, if the following properties hold:
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1. M is a class of monomorphisms closed under isomorphisms, composition, and decom-
position, i.e., for morphismsf and g, f ∈M , g isomorphism (or vice versa) implies
g◦ f ∈M ; f ,g∈M impliesg◦ f ∈M ; andg◦ f ∈M , g∈M implies f ∈M .

2. C has pushouts and pullbacks alongM -morphisms, i.e. pushouts and pullbacks, where at
least one of the given morphisms is inM , andM -morphisms are closed under pushouts
and pullbacks, i.e. given a pushout (1) as in the figure below,m∈M impliesn∈M and,
given a pullback (1),n∈M impliesm∈M .

3. Pushouts inC alongM -morphisms are weak VK-squares, i.e. for any commutative cube
in C where we have the pushout withm∈M and (f ∈M orb,c,d∈M ) in the bottom and
the back faces are pullbacks, it holds: the top is pushout iffthe front faces are pullbacks.

A

B

C

D

m n(1)

A′

A C

C′

f
cB′

B D

D′

b d
m

Fact 1 ([EEPT06]) The categoryGraphswith classM of all injective graph morphisms is
a weak adhesive HLR category. Further examples of weak adhesive HLR categories are the
categories of hypergraphs with all injective hypergraph morphisms, place-transition nets with
all injective net morphisms, and algebraic specifications with all strict injective specification
morphisms.

Remark1 Adhesive categories [LS04, EEPT06] are special cases of (weak) adhesive HLR
categories, where, in addition, the classM is the class of all monomorphisms. By [EEPT06],
the category〈PTNets,M 〉 of place/transition nets and the category〈Spec,Mstrict〉 of algebraic
specificatons are weak adhesive HLR, but not adhesive.

Weak adhesive HLR-categories have a number of nice properties, called HLR properties.

Lemma 1(Properties of weak adhesive HLR categories [LS04, EEPT06]) For a weak adhesive
HLR-category〈C ,M 〉, the following properties hold:

1. Pushouts alongM -morphisms are pullbacks.

2. M pushout-pullback decomposition. If the diagram (1)+(2) inthe figure below is a
pushout, (2) a pullback, w∈M and (l ∈M or c ∈M ), then (1) and (2) are pushouts
and also pullbacks.

3. Cube pushout-pullback decomposition. Given the commutative cube (3) in the figure be-
low, where all morphisms in the top and the bottom are inM , the top is pullback, and the
front faces are pushouts, then the bottom is a pullback iff the back faces of the cube are
pushouts.
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A C E

B D F

c r

u w

l s v(1) (2)

A′

AC

C′

B′

BD

D′

(3)

4. Uniqueness of pushout complements. Given morphisms c: A→C in M and s: C→ D,
then there is, up to isomorphism, at most one B with l: A→ B and u: B→ D such that
diagram (1) is a pushout.

In the following, we consider weak adhesive HLR categories with anE -M factorization and
binary coproducts.

Definition 3 (E -M Factorization) A weak adhesive HLR category〈C ,M 〉 has anE -M fac-
torizationfor a given morphism classE if, for each morphismf , there is a decomposition, unique
up to isomorphism,f = m◦ewith e∈ E andm∈M .

Remark2 (Binary coproducts) In a weak adhesive HLR category〈C ,M 〉 with binary coprod-
ucts, the binary coproducts are compatible withM in the sense thatf ,g∈M implies f+g∈M .
In fact, PO (1) in the figure below withf ∈M implies ( f+id) ∈M and PO (2) withg∈M

implies(id+g) ∈M , but now( f+g) = (id+g)◦ ( f+id) ∈M by closure under composition.

A B

A+C B+C B+D

DC
f g

f+id id+g

(1) (2)

The category Graphs with the classesM andE of all injective and surjective graph mor-
phisms, respectively, satisfies the specific properties.

Fact 2 ( [EEPT06]) 〈Graphs,M 〉 has anE -M factorization and binary coproducts.

3 Rules with Application Conditions

We use the framework of weak adhesive HLR categories and introduce rules with application
conditions for high-level structures like Petri nets, (hyper)graphs, and algebraic specifications.

Assumption We assume that〈C ,M 〉 is a weak adhesive HLR category with anE -M factor-
ization (used in Shift-Lemma2) and binary coproducts (used in Definition8).

Application conditions are defined as in [HP09], Definition 4. Syntactically, application con-
ditions may be seen as a tree of morphisms equipped with certain logical symbols such as quan-
tifiers and connectives.
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Definition 4 (Nested Application Conditions) Anested application condition, short application
condition, condition, or AC, acP over an objectP is of the form true or∃(a,acC), wherea: P→C
is a morphism and acC is an application condition overC. Moreover, Boolean formulas over
conditions overP are conditions overP: for conditionsc,ci over P with i ∈ I (for all index
setsI ), ¬ c and∧i∈I ci are conditions overP. ∃a abbreviates∃(a, true), ∀(a,acC) abbreviates
¬∃(a,¬acC), and∄ abbreviates¬∃.

P

G

C,
a

p q
=

acC
|=

)∃(

Every morphismsatisfiestrue. A morphismp: P→ G satisfiesa condition∃(a,acC) if there
exists a morphismq in M such thatq◦a= p andq |= acC. The satisfaction of conditions overP
by morphisms with domainP is extended to Boolean formulas over conditions in the usualway.
We write p |= acP to denote that the morphismp satisfies acP. Two conditions acP and ac′P over
P areequivalent, denoted by acP≡ ac′P, if for all morphismsp: P→G, p |= acP iff p |= ac′P.

Remark3 The definition of conditions generalizes those in [HHT96, HW95, KMP05, EEHP06].
In the context of rules, conditions are also calledapplication conditions. Negative application
conditions [HHT96, LEPO08b] correspond to nested application conditions of the form∄a. Ex-
amples of nested application conditions are given below.

∃(
1 2
→֒

1 2
) There is an edge from the image of 1 to the image of 2.

∄(
1 2
→֒

1 2
) There is no edge from the image of 1 to the image of 2.

∃(
1 2
→֒

1 2
)

∧∄(
1 2
→֒

1 2
)

There is a directed path of length 2, but not of length 1, from
the image of 1 to the image of 2.

∃(
1
→֒

1 2
,

∄(
1 2

→֒
1 2

))
There is a proper edge outgoing from the image of 1 without
edge in converse direction.

∀(
1
→֒

1 2
,

∃(
1 2

→֒
1 2

))
For every proper edge outgoing from the image of 1, the
target has a loop.

∃(
1
→֒

1 2
,

∀(
1 2

→֒
1 2 3

,

∃(
1 2 3

→֒

1 2 3
)))

For the image of node 1, there exists an outgoing edge such
that, for all edges outgoing from the target, the target has a
loop.

In the presence of anM -initial objectI [HP09], conditions∃(a,c) over the initial objectI can be
used to defineconstraintsfor objectsG, namelyG satisfies∃(a,c) if the uniqueM -morphism
I →֒G satisfies∃(a,c).

Remark4 In general, one could choose a satisfiability notion, i.e. a class of morphismsM ′,
and require that the morphismq in Definition 4 is in M ′. Examples areA - andM -satisfiability
[HP06] whereA andM are the classes of all morphisms and all monomorphisms, respectively.

5 / 23 Volume 26 (2010)



Parallelism and Concurrency

Application conditions can be shifted over morphisms into corresponding application condi-
tions over the codomain of the morphism.

Lemma 2 (Shift of Application Conditions over Morphisms)Let 〈C ,M 〉 be a weak adhesive
HLR category withE -M -factorization. There is a transformationShift such that, for all ap-
plication conditionsacP over P and all morphisms b: P→ P′, n: P′→ H, n◦b |= acP⇔ n |=
Shift(b,acP). P

H

P′
b

n◦b n

Shift(b,acP)acP

The Shift-construction is based on jointly epimorphic pairs of morphisms. A morphism pair
(e1,e2) with ei : Ai → B (i = 1,2) is jointly epimorphicif, for all morphismsg,h: B→C with
g◦ ei = h◦ ei for i = 1,2, we haveg = h. In the case of graphs, “jointly epimorphic” means
“jointly surjective”: a morphism pair(e1,e2) is jointly surjective, if for eachb ∈ B there is a
preimagea1 ∈ A1 with e1(a1) = b or a2 ∈ A2 with e2(a2) = b. For previous versions of the
Shift-construction see [LEPO08b, HP09].

Construction The transformation Shift is inductively defined as follows:

P

C

P′

C′

a a′(1)

b

b′acC

Shift(b, true) = true.
Shift(b,∃(a,acC)) =

∨

(a′,b′)∈F ∃(a
′
,Shift(b′,acC)) with

F = {(a′,b′) | (a′,b′) jointly epimorphic,b′ ∈M , (1) commutes}
Shift(b,∃(a,acC)) = false ifF is empty.

For Boolean formulas over application conditions, Shift isextended in the usual way: For ap-
plication conditions ac,aci with i ∈ I (for all index setsI ), Shift(b,¬ac) = ¬Shift(b,ac) and
Shift(b,∧i∈I aci) = ∧i∈I Shift(b,aci).

Example1 Given the morphismb: P→ P′ below, the application condition∃a is shifted into
the application conditionShift(b,∃a) = ∃a′∨∃a′′∨∃ idP′ wherea′ is the morphism depicted in
the figure below anda′′ obtained froma′ by identifying the nodes with labelordernrin C′; it can
be simplified totruebecause∃ idP′ is equivalent totrue. The application condition∄a is shifted
into Shift(b,∄a) = ¬Shift(b,∃a)≡ ¬ true≡ false.

�
�

�
�name

�



�
	orders�



�
	name’

P �
�

�
�name

�



�
	orders �



�
	name’

�



�
	ordernr

�



�
	title

P′

�
�

�
�name

�



�
	orders�



�
	name’

�



�
	ordernr

C

�
�

�
�name

�



�
	orders �



�
	name’

�



�
	ordernr�



�
	ordernr

�



�
	title

C′

b

b′

a a′
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Proof of Lemma2. The statement is proved by structural induction.Basis. For the condition
true, the equivalence holds trivially.Inductive step. For a condition of the form∃(a,acC), we
have to shown◦b |= ∃(a,acC)⇔ n |= Shift(b,∃(a,acC)).

Only if. Let n◦ b |= ∃(a,acC). By definition of satisfiability, there is someq ∈M with
q◦ a = n◦ b andq |= acC. Let (a,b) be the pushout in (1) in the left diagram below. By the
universal property of pushouts, there is an induced morphism q: C→ H such thatq = q◦b and
n = q◦a. By E -M factorization ofq, q = m◦e with e∈ E andm∈M . Define nowa′ = e◦a
andb′ = e◦b. Then the diagramPP′CC′ commutes. SinceM is closed under decomposition,
q = m◦b′ ∈M , m∈M impliesb′ ∈M . Since〈a,b〉 is jointly epimorphic ande∈ E , (a′,b′)
is jointly epimorphic. Thus,(a′,b′) ∈F . By inductive hypothesis,q = m◦ b′ |= acC⇔ m |=
Shift(b′,acC). Now n |= ∃(a′,Shift(b′,acC)) and, by definition of Shift,n |= ∃(b,Shift(a,acC)).

P

P′

C

C

C′

H

a

a

a′

n

b b
b′

e

m

q

q
(1)

acC
P

P′

C

C′

H

a

a′
b b′

n m

acC

If. Let n |= Shift(b,∃(a,acC)). Then there is some(a′,b′) ∈ F with b′ ∈M such thatn |=
∃(a′,Shift(b′,acC)) and somem∈M such thatm◦a′ = n andm |= Shift(b′,acC). By inductive
hypothesis,m |= Shift(b′,acC)⇔m◦b′ |= acC. Now m◦b′ ∈M , m◦b′ ◦a = n◦b (see the right
diagram above), andm◦b′ |= acC, i.e.,n◦b |= ∃(a,acC).

Rules [EEHP06, HP09] are specified by a span ofM -morphisms〈L ←֓ K →֒R〉with a left and
a right application condition. We consider the classical semantics based on the double-pushout
construction [Ehr79, CMR+97].

Definition 5 (Rules) Arule ρ = 〈p,acL,acR〉 consists of a plain rulep = 〈L ←֓ K →֒ R〉 with
K →֒ L andK →֒ R in M and two application conditions acL and acR overL andR, respectively.
L andR are called the left- and the right-hand side ofp andK the interface; acL and acR are the
left andright application condition ofp.

L K R

DG H

m m∗(1) (2)

acL =
|

acR

|=

A direct derivationconsists of two pushouts (1) and (2) such thatm |= acL andm∗ |= acR. We
write G⇒ρ,m,m∗ H and say thatm: L→G is the match ofρ in G andm∗ : R→H is the comatch
of ρ in H. We also writeG⇒ρ,m H or G⇒ρ H to express that there is anm∗ or there aremand
m∗, respectively, such thatG⇒ρ,m,m∗ H.

The concept of rules is completely symmetric.
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Fact 3 (Inverse rule) For every ruleρ = 〈p,acL,acR〉 with p = 〈L ←֓ K →֒ R〉, the ruleρ−1 =
〈p−1

,acR,acL〉 with p−1 = 〈R ←֓ K →֒ L〉 is the inverse ruleof ρ . For every direct derivation
G⇒ρ,m,m∗ H, there is a direct derivationH⇒ρ−1,m∗,m G via the inverse rule.

Notation In the case of graphs, a rule (schema)〈L ←֓ K →֒ R〉 with discrete interfaceK is
shortly depicted byL⇒ R, where the nodes ofK are indexed in the left-and the right-hand side
of the rule (schema). A negative application condition of the form∄(L →֒ L′) is integrated in the
left-hand side of a rule (schema) by crossing the partL′−L out. E.g. the rule (schema)〈p,acL〉
with

p =
〈 �



�
	authors ←֓

�



�
	authors →֒

�



�
	authors

�
�

�
�name
〉

and

acL = ∄
( �



�
	authors →֒

�



�
	authors

�
�

�
�name
)

is depicted by

�



�
	authors
1

�
�

�
�name =⇒

�



�
	authors
1

�
�

�
�name .

Moreover, the grey edge with labels+,− in the rule (schema) RegisterBook(catnr,ordernr) in
the figure below represents the conjunction of the negative application conditions “There does
not exist a+-labelled edge” and “There does not exist a−-labelled edge”.

Example2 In the figure on the next page, rules (rule schemata) with leftapplication conditions
are given, corresponding more or less to the operations of the small library system originally
investigated in [EK80].

Right application conditions of rules can be shifted into corresponding left application condi-
tions and vice versa.

Lemma 3 (Shift of Application Conditions over Rules [HP09]) There are transformationsL
and R such that, for every right application conditionacR and every left application condition
acL of a ruleρ and every direct derivation G⇒ρ,m,m∗ H, m |= L(ρ ,acR)⇔m∗ |= acR and m|=
acL⇔m∗ |= R(ρ ,acL).

L K R

DG H

m m∗(1) (2)

L(ρ ,acR) =
|

acR

|=

Construction The transformation L is inductively defined as follows:

L K R

ZY X

l r

l∗ r∗

b a(2) (1)

L(ρ∗,acX) acX

L(ρ , true) = true
L(ρ ,∃(a,acX)) = ∃(b, L(ρ∗,acX)) if 〈r,a〉 has a pushout
complement (1) andρ∗ = 〈Y← Z→ X〉 is the derived rule
by constructing the pushout (2).
L(ρ , ∃(a,acX)) = false, otherwise.

For Boolean formulas over application conditions, L is extended in the usual way: For applica-
tion conditions ac,aci with i ∈ I , L(b,¬ac) = ¬L(b,ac) and L(b,∧i∈I aci) = ∧i∈I L(b,aci). The
transformationR is given by R(ρ ,acL) = L(ρ−1

,acL).
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AddAuthor(name):
�



�
	authors
1

�
�

�
�name =⇒

�



�
	authors
1

�
�

�
�name

AddPublisher(name’):
�
�

�
publishers

1

�
�

�
�name =⇒

�
�

�
publishers

1

�
�

�
�name

AddReader(readernr):
�



�
	readers
1

�



�
	readernr =⇒

�



�
	readers
1

�



�
	readernr

OrderBook(ordernr,name,title,name’):
�
�

�
�name
2�



�
	orders
1 �



�
	name’
3

�



�
	ordernr =⇒

�
�

�
�name
2�



�
	orders
1

�



�
	ordernr

�



�
	title�



�
	name’
3RegisterBook(ordernr,catnr):

�



�
	orders
1

�
�

�
catalog
5

�



�
	ordernr

�



�
	catnr

�
�

�
�name
2�



�
	title
3�



�
	name’
4

+,-
=⇒

�



�
	orders
1

�
�

�
catalog
4

�



�
	catnr

�
�

�
�name
2�



�
	title
3�



�
	name’
4

+

LendBook(catnr,readernr):
�
�

�
catalog
1

�



�
	catnr
2

�



�
	readernr
3

+
=⇒

�
�

�
catalog
1

�



�
	catnr
2

�



�
	readernr
3

–

Example3 Given the rule (schema)ρ = OrderBook(ordernr,name, title,name′) in the upper
row of the figure below, the right application condition∄(R→ X) is shifted overρ into the left
application condition∄(L→Y).

�
�

�
�name

�



�
	orders �



�
	name’

L �
�

�
�name

�



�
	orders �



�
	name’

K �
�

�
�name

�



�
	orders �



�
	name’

�



�
	ordernr

�



�
	title

R

�
�

�
�name

�



�
	orders �



�
	name’

�



�
	ordernr

Z

�
�

�
�name

�



�
	orders �



�
	name’

�



�
	ordernr

Y

�
�

�
�name

�



�
	orders

�



�
	ordernr

�



�
	title�



�
	ordernr

�



�
	name’

X
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In the following, we define the equivalence of rules and the equivalence of application condi-
tions with respect to a rule. The equivalence with respect toa rule is more restrictive than the
unrestricted one in Definition4.

Definition 6 (Equivalence) Two rulesρ andρ ′ areequivalent, denoted byρ ≡ ρ ′, if the re-
lations⇒ρ and⇒ρ ′ are equal. For a ruleρ , two left (right) application conditions ac and ac′

areρ-equivalent, denoted by ac≡ρ ac′, if the rules obtained fromρ by adding the application
condition ac and ac′, respectively, are equivalent.

There is a close relationship between the transformations Land R: For every ruleρ , Shift of a
condition over the rule to the left and then over the rule to the right isρ-equivalent to the original
condition.

Lemma 4 (L and R) For every ruleρ and every application conditionacover R, the right-hand
side of the plain rule ofρ , the application conditionsR(ρ ,L(ρ ,ac)) and ac are ρ-equivalent:
R(ρ ,L(ρ ,ac))≡ρ ac.

Proof. By the Shift-Lemma3, for every direct derivationG⇒ρ,m,m∗ H, m∗ |= R(ρ ,L(ρ ,ac))⇔
m |= L(ρ ,ac)⇔m∗ |= ac, i.e., R(ρ ,L(ρ ,ac)) and ac areρ-equivalent.

Remark5 In general, the application conditionsR(ρ ,L(ρ ,ac)) andacare not equivalent in the
sense of Definition4. E.g., for the ruleρ = 〈p, true,ac〉 with p = 〈 /0 ←֓ /0 →֒

1
〉 andac= ∃(

1
→

1
), L(ρ ,¬ac) = ¬L(ρ ,ac) = ¬false≡ trueandR(ρ ,L(ρ ,¬ac)) = R(ρ , true) = true 6≡ ¬ac.

There is a nice interchange result of Shift and L saying that,for a ruleρ , the shift of a right ap-
plication condition over a rule and a match isρ-equivalent to the shift of the application condition
over the comatch and the rule induced by the match.

Lemma 5 (Shift and L) For every direct derivation L∗⇒ρ,k,k∗ R∗ via a ruleρ and every appli-
cation conditionac, Shift(k,L(ρ ,ac))≡ρ∗ L(ρ∗,Shift(k∗,ac)), whereρ∗ denotes the rule derived
from ρ and k. A corresponding statement holds forShift andR.

L K R

K∗L∗ R∗
k k∗(11) (21)

Proof. Let G⇒ρ∗,l ,l∗ H be a direct derivation,m= l ◦k andm∗ = l∗ ◦k∗. By Shift-Lemmas2
and3, we havel |= Shift(k,L(ρ ,ac))⇔m |= L(ρ ,ac)⇔m∗ |= acR⇔ l∗ |= Shift(k∗,ac)⇔ l |=
L(ρ∗,Shift(k∗,ac)).

L K R

K∗L∗ R∗

DG H

k k∗

l l∗

(11) (21)

(12) (22)

m m∗
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As a consequence of Shift-Lemma3, every rule can be transformed into an equivalent one
with true right application condition. A rule of the form〈p,acL, true〉 is said to be a rule with left
application condition and is abbreviated by〈p,acL〉.

Corollary 1 (Rules with Left Application Condition) There is a transformationLeft from rules
into rules with left application condition such that, for every ruleρ , the rulesρ andLeft(ρ) are
equivalent.

Proof. For a ruleρ = 〈p,acL,acR〉, Left(ρ) = 〈p,acL ∧ L(ρ ,acR)〉. By Definition 5, Shift-
Lemma3, and the definition of Left, the rulesρ and Left(ρ) are equivalent:G⇒ρ,m,m∗ H iff
G⇒p,m,m∗ H ∧m |= acL∧m∗ |= acR iff G⇒p,m,m∗ H ∧m |= acL∧m |= L(ρ ,acR) iff G⇒p,m,m∗

H ∧m |= acL∧L(ρ ,acR) iff G⇒Left(ρ),m,m∗ H.

4 Local Church-Rosser, Parallelism, and Concurrency

In this section, we present Local Church-Rosser, Parallelism, and Concurrency Theorems for
rules with application conditions generalizing the well-known theorems for rules without appli-
cation conditions [EEPT06] and with negative application conditions [LEO06]. The proofs of
the statements are based on the corresponding statements for ruleswithout application condi-
tions [EEPT06] and Shift-Lemmas2 and 3, saying that application conditions can be shifted
over morphisms and rules. The structure of the proofs is as follows: We switch from derivations
with application conditions to the corresponding derivations without application conditions, use
the results for derivations without application conditions, and lift the results without application
conditions to application conditions.

derivations with ACs =⇒ result with ACs
↓ ↑

derivations without ACs =⇒ result without ACs

Fact 4 (Every derivation with ACs induces a derivation without ACs) For every direct deriva-
tion G⇒ρ,m H, there is a direct derivationG⇒p,m H via the plain rulep, called theunderlying
direct derivation without ACs.

In the following, we study parallel and sequential independence of direct derivations for rules
with application conditions. By Corollary1, we may assume that the rules are rules with left
application condition.

Assumption Let ρ1 = 〈p1,acL1〉 and ρ2 = 〈p2,acL2〉 be rules withpi = 〈Li ←֓ Ki →֒ Ri〉 for
i = 1,2.

Two direct derivations are parallel (sequentially) independent if the underlying direct deriva-
tions without application conditions are parallel (sequentially) independent and the induced
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matches satisfy the corresponding application conditions. For rules with negative application
conditions, the definition corresponds to the one in [LEO06].

Definition 7 (Parallel and Sequential Independence) Two direct derivationsH1⇐ρ1,m1 G⇒ρ2,m2

H2 areparallel independentif there are morphismsd2 : L1→ D2 andd1 : L2→ D1 such that the
trianglesL1D2G andL2D1G commute,m′1 = c2◦d2 |= acL1, andm′2 = c1◦d1 |= acL2.

GD1H1

R1 K1 L1

D2 H2

R2K2L2

=c1 = c2

d1 d2

acL1 acL2

Two direct derivationsG⇒ρ1,m1 H1⇒ρ2,m′2
M are sequentially independentif there are mor-

phismsd2 : R1→ D2 andd1 : L2→ D1 such that the trianglesR1D2H1 andL2D1H1 commute,
m′∗1 = c2 ◦d2 |= R(ρ1,acL1) andm2 = c1◦d1 |= acL2.

H1D1G

L1 K1 R1

D2 M

R2K2L2

=c1 = c2

d1 d2

acL1 acL2

Two direct derivations that are not parallel (sequentially) independent, are calledparallel (se-
quentially) dependent.

Example4 The two direct derivationsH1⇐ρ1 G⇒ρ2 H2 via ρ1 = AddAuthor(name) andρ2 =
AddPublisher(name′) are parallel independent.

�



�
	authors�

�
�
publishers

�



�
	authors�

�
�
publishers

�



�
	authors�

�
�
publishers

�
�

�
�name

�



�
	authors

�
�

�
�name

�



�
	authors

�



�
	authors

�



�
	authors�

�
�
publishers

�



�
	authors�

�
�
publishers

�



�
	name’

�
�

�
publishers

�



�
	name’

�
�

�
publishers

�
�

�
publishers

GH1 D1 D2 H2

Fact 5 (Independence with ACs implies independence without ACs)Parallel (sequential) in-
dependence of direct derivations implies parallel (sequential) independence of the underlying
direct derivations without ACs.

By definition, parallel and sequential independence are closely related.

Fact 6 (Parallel and sequential independence)Two direct derivationsH1⇐ρ1,m1 G⇒ρ2,m2 H2

are parallel independent iff the two direct derivationsH1⇒ρ−1
1 ,m∗1

G⇒ρ2,m2 H2 are sequentially
independent, wherem∗1 is the comatch ofρ1 in H1.
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Now we present a Local Church-Rosser Theorem for rules with application conditions.

Theorem 1(Local Church-Rosser Theorem)Given two parallel independent direct derivations
H1⇐ρ1,m1 G⇒ρ2,m2 H2, there are an object M and direct derivations H1⇒ρ2,m′2

M ⇐ρ1,m′1
H2

such that G⇒ρ1,m1 H1⇒ρ2,m′2
M and G⇒ρ2,m2 H2⇒ρ1,m′1

M are sequentially independent. Given
two sequentially independent direct derivations G⇒ρ1,m1 H1⇒ρ2,m′2

M, there are an object H2
and direct derivations G⇒ρ2,m2 H2⇒ρ1,m′1

M such that H1⇐ρ1,m1 G⇒ρ2,m2 H2 are parallel
independent.

G

H1

H2

M

ρ1

ρ2

ρ2

ρ1

Proof. Let H1⇐ρ1,m1 G⇒ρ2,m2 H2 be parallel independent. Then the underlying direct deriva-
tions without ACs are parallel independent. By the Local Church-Rosser Theorem without
ACs [EEPT06], there are an objectM and direct derivationsH1⇒p2,m′2

M⇐p1,m′1
H2 such that

G⇒p1,m1 H1⇒p2,m′2
M andG⇒p2,m2 H2⇒p1,m′1

M are sequentially independent. By assumption,
mi,m′i |= acLi for i = 1,2. Thus, there are direct derivationsH1⇒ρ2,m′2

M⇐ρ1,m′1
H2 with ACs.

Let R1→ D2 andL2→ D1 be the morphisms in the figure below. ThenR1→ D2→ H1 = m∗1
andL2→ D1→ H1 = m′2. By Shift-Lemma3, R1→ D2→ M = m′∗1 |= R(ρ1,acL1) andL2→
D1→G = m2 |= acL2. Thus, the derivationG⇒ρ1,m1 H1⇒ρ2,m′2

M is sequentially independent.
Analogously, the second derivation is sequentially independent.

Vice versa, letG⇒ρ1,m1 H1⇒ρ2,m′2
M be sequentially independent. Then the underlying direct

derivations without ACs are sequentially independent. By the Local Church-Rosser Theorem
without ACs [EEPT06], there are an objectH2 and direct derivationsG⇒p2,m2 H2⇒p1,m′1

M such
that H1⇐p1,m1 G⇒p2,m2 H2 are parallel independent. By assumption, we know thatm1,m′1 |=
acL1, m2 |= acL2 (by Shift-Lemma3, m′∗1 |= R(ρ1,acL1) implies m′1 |= acL1). Thus,G⇒ρ2,m2

H2⇒ρ1,m′1
M is a derivation with ACs. LetL2→ D1 andL1→ D2 in the figure below be the

morphisms withL1→D2→G= L1→GandL2→D1→G= L→G. ThenL1→D2→H2 = m′1
andL2→ D1→ H1 = m′2 |= acL2. Thus, the direct derivationsH1⇐p1,m1 G⇒p2,m2 H2 become
parallel independent. The statement also can be proved withthe help of the first statement and
Fact6.

For clarifying the notations, a sketch of a part of the proof of Local Church-Rosser Theorem
for rules without ACs is given oriented at the one in [HMP01].

Proof Sketch.Let H1⇐p1,m1 G⇒p2,m2 H2 be parallel independent. Then there are morphisms
L1→ D2 andL2→ D1 such that the trianglesL1D2G andL2D1G in the figure below commute.

GD1H1

R1 K1 L1

D2 H2

R2K2L2

(1)(2) (3) (4)
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The morphisms are used for the decomposition of the pushouts(i) into pushouts (i1),(i2) for
i = 1, . . . ,4.

GD1H1 D2 H2

D2 D0 D2 D0D1 D1

R1 K1 L1 R2K2L2

m1 m2m∗1 m∗2

(21)

(22)

(11)

(12)

(31)

(32)

(41)

(42)

The pushouts can be rearranged as in the figures below. Furthermore, the diagrams (22) and (42)
are constructed as pushouts. Since the composition of pushouts yields pushouts, we obtain direct
derivationsH1⇒p2,m′2

M⇐p1,m′1
H2 such that the direct derivationsG⇒p1,m1 H1⇒p2,m′2

M and
G⇒p2,m2 H2⇒p1,m′1

M are sequentially independent.

H1D1G D2 M

D2 D0 D2 D0D1 D1

L1 K1 R1 R2K2L2

m1 m∗1 m′2 m′∗2

(11)

(12)

(21)

(22)

(31)

(22)

(41)

(5)

H2D2G D1 M

D1 D0 D1 D0D2 D2

L2 K2 R2 R1K1L1

m2 m∗2 m′1 m′∗1

(31)

(12)

(41)

(42)

(11)

(42)

(21)

(5)

Next, we present the construction of a parallel rule of ruleswith application conditions. As
in [EEPT06], we have to assume that〈C ,M 〉 has binary coproducts. The application condition
of the parallel ruleρ1 + ρ2 guarantees that, whenever the parallel rule is applicable,the rules
ρ1 andρ2 are applicable and, after the application ofρ1, the ruleρ2 is applicable and, after the
application ofρ2, the ruleρ1 is applicable.

Definition 8 (Parallel Rule and Derivation) Theparallel rule of ρ1 andρ2 is the ruleρ1+ρ2 =
〈p,acL,acR〉wherep=p1+p2 is the parallel rule ofp1 andp2, acL=Shift(k1,acL1)∧Shift(k2,acL2),
and acR = Shift(k∗1,R(ρ1,acL1))∧Shift(k∗2,R(ρ2,acL2)).
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L1+L2 K1+K2 R1+R2

L1 K1 R1

L2 K2 R2k1
k∗1

k2 k∗2

A direct derivation via a parallel rule is calledparallel direct derivation or parallel derivation, for
short.

Example5 The parallel rule (schema) ofAddAuthor(name) andAddPublisher(name′) is the
rule (schema) with the plain rule (schema)

p =

〈

�



�
	authors�

�
�
publishers
←֓

�



�
	authors�

�
�
publishers
→֒

�



�
	authors

�
�

�
�name�

�
�
publishers

�



�
	name’

〉

and the application conditions

acL = ∄
(

�
�

�
publishers
�



�
	authors

�
�

�
�name
)

∧∄
( �



�
	authors
�
�

�
publishers

�



�
	name’
)

acR = ∄









�



�
	authors

�
�

�
�name

�
�

�
�name

�
�

�
publishers

�



�
	name’









∧∄









�



�
	authors�

�
�
publishers

�
�

�
�name

�



�
	name’�



�
	name’









requiring that “There does not exist an author node with label name”, “There does not exist a
publisher node with labelname′”, “Afterwards, there do not exist two an author node with two
namenodes”, and “Afterwards, there do not exist a publisher nodewith two name′ nodes”. Here
an author node is a node which is connected with the node with labelauthorsby a directed edge.
Shifting the application conditionacR over the rule (schema)ρ yields the application condition
acL. Thus, the parallel rule (schema) is equivalent to the one with left application condition
depicted below.

AddAuthorPublisher(name,name′):

�



�
	authors

�
�

�
�name�

�
�
publishers

�



�
	name’

=⇒

�



�
	authors

�
�

�
�name�

�
�
publishers

�



�
	name’

The connection between sequentially independent direct derivations and parallel direct deriva-
tions is expressed by the Parallelism Theorem for rules withapplication conditions.

Theorem 2(Parallelism) Given sequentially independent direct derivations G⇒ρ1,m1 H1⇒ρ2,m′2
M, there is a parallel derivation G⇒ρ1+ρ2,m M. Given a parallel derivation G⇒ρ1+ρ2,m M,
there are two sequentially independent direct derivationsG⇒ρ1,m1 H1⇒ρ2,m′2

M and G⇒ρ2,m2

H2⇒ρ1,m′1
M.
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G

H1

H2

M

ρ1

ρ2

ρ2

ρ1

ρ1 + ρ2

Proof. By Definition 8 and Shift-Lemmas2 and3, we have

m |= acL andm∗ |= acR iff mi,m′i |= acLi for i = 1,2. (1)

This may be seen as follows.

m |= acL ⇔ m |= Shift(k1,acL1)∧Shift(k2,acL2)
⇔ m1 |= acL1 andm2 |= acL2

m∗ |= acR ⇔ m∗ |= Shift(k∗1,R(ρ1,acL1))∧Shift(k∗2,R(ρ2,acL2))
⇔ m′∗1 |= R(ρ1,acL1) andm′∗2 |= R(ρ2,acL2)
⇔ m′1 |= acL1 andm′2 |= acL2

L1 L1+L2 L2

G

k1 k2

m1 m2m

R1 R1+R2 R2

M

k∗1 k∗2

m′∗1 m′∗2m∗

If G⇒ρ1,m1 H1⇒ρ2,m′2
M is sequentially independent, then the underlying derivation without

ACs is sequentially independent and, by the Parallelism Theorem without ACs [EEPT06], there
is a parallel derivationG⇒p1+p2,m M. By assumption,mi,m′i |= acLi for i = 1,2 and, by State-
ment (1), m |= acL and m∗ |= acR, i.e., G⇒p1+p2,m M satisfies ACs. IfG⇒ρ1+ρ2,m M is a
parallel derivation, then there is an underlying parallel derivation without ACs, and, by the Par-
allelism Theorem without ACs [EEPT06], there are sequentially independent direct derivations
G⇒p1,m1 H1⇒p2,m′2

M andG⇒p2,m2 H2⇒p1,m′1
M. By assumption,m |= acL andm∗ |= acR and,

by Statement (1), mi,m′i |= acLi for i = 1,2, i.e., the sequentially independent direct derivations
satisfy ACs.

Shift operations over parallel rules can be sequentializedinto a sequence of shifts over induced
rules.

Lemma 6 (Shift over Parallel Rules) For every parallel ruleρ = ρ1+ρ2, every right applica-
tion conditionac for ρ , and i, j ∈ {1,2} with i 6= j, we haveL(ρ ,ac)≡ρ L(ρ∗i ,L(ρ∗j ,ac)) where
ρ∗i is induced byρi and ki andρ∗j is induced byρ j and k′j .
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Ri+L jKi+L jLi+L j Ri+K j Ri+Rj

Li Ki Ri K jL j Rj

HiE1G E2 M

Ki+K j

E

ki

m m′

k′j k∗j

m∗

(PO) (PO) (PO) (PO)

(PO)
(PO)

(PO) (PO)

Proof. By the Parallelism Theorem, for every direct derivationG⇒ρ,m,m∗ M there are direct
derivationsG⇒ρi ,mi Hi ⇒ρ j ,mj M. By analysis arguments as in the proof of the Parallelism
Theorem [EEPT06], there are direct derivationsG⇒ρ∗i ,m Hi ⇒ρ∗j ,m′ M depicted below. By the
Shift-Lemma3, m |= L(ρ ,ac)⇔ m∗ |= ac⇔ m′ |= L(ρ∗j ,ac)⇔ m |= L(ρ∗i ,L(ρ∗j ,ac)), i.e, the
application conditions L(ρ ,ac) and L(ρ∗i ,L(ρ∗j ,ac)) areρ-equivalent.

Finally, we present the construction of a concurrent rule for rules with application conditions.

Definition 9 (E-concurrent Rule) LetE ′ be a class of morphism pairs with the same codomain.
Given two rulesρ1 andρ2, an objectE with morphismse1 : R1→ E ande2 : L2→ E is anE-
dependency relationfor ρ1 andρ2 if (e1,e2) ∈ E ′ and the pushout complements (1) and (2) over
K1 →֒R1→E andK2 →֒ L2→E in the figure below exist. Given such anE-dependency relation
for ρ1 andρ2, theE-concurrent ruleof ρ1 andρ2 is the ruleρ1∗E ρ2 = 〈p,acL〉wherep= p1∗E p2

is E-concurrent rule ofp1 andp2 with pushouts (3), (4) and pullback (5),ρ∗1 = 〈L ←֓ D1 →֒ E〉
is the rule derived byρ1 andk1, and acL = Shift(k1,acL1)∧L(ρ∗1,Shift(k2,acL2).

ED1L

L1 K1 R1

D2

K

R

R2K2L2

K

k1 k2(3) (1) (2) (4)

(5)

Example6 TheE-concurrent rule (schema) ofρ1 = OrderBook(ordernr,name, title,name′) and
ρ2 = RegisterBook(ordernr,catnr) according to the dependency relationE, being the right-hand
sideE of ρ1 and the left-hand side ofρ2, is the rule (schema)

p =

〈 �



�
	orders�

�
�
catalog

�
�

�
�name

�



�
	name’

←֓
�



�
	orders�

�
�
catalog

�
�

�
�name

�



�
	name’

→֒
�



�
	orders�

�
�
catalog

�
�

�
�name

�



�
	title�



�
	name’

�



�
	catnr+

〉

with the left application condition
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acL = ∄

(

�



�
	orders�

�
�
catalog

�
�

�
�name

�



�
	name’

�



�
	catnr

)

∧∄

(

�



�
	orders�

�
�
catalog

�
�

�
�name

�



�
	name’

�



�
	ordernr

)

requiring that “There does not exist a catalog node with label catnr” and “There does not exist
an order node with labelordernr”. The E-concurrent rule (schema) may be depicted as follows.

Order;RegisterBook(ordernr,catnr,name, title,name′):

�



�
	orders
1�

�
�
catalog
4

�
�

�
�name
2�



�
	name’
3

�



�
	ordernr�



�
	catnr

=⇒

�



�
	orders
1�

�
�
catalog
4

�



�
	catnr

�
�

�
�name
2�



�
	title�



�
	name’
3

+

The non-existence of a node with labelcatnrguarantees that, whenever theE-concurrent rule
(schema) ofρ1 andρ2 is applicable, thenρ1 with ordernris applicable and, afterwards,ρ2 with
catnris applicable.

For rules without ACs, the parallel rule is a special case of the concurrent rule [EEPT06]. For
rules with ACs, in general, this is not the case: While the application conditions for the parallel
rule must guarantee the applicability of the rules in each order, the application condition for the
concurrent rule only must guarantee the applicability of the rules in the given order. Nevertheless,
the parallel rule of two rules can be constructed from two concurrent rules of the rules, one for
each order.

Lemma 7 (Parallel & Concurent Rules)The parallel ruleρ1+ρ2 = 〈p1+p2,acL,acR〉 and the
rule 〈p1+p2,acL12 ∧acL21〉 obtained from the R1+L2-concurrent rule〈p1+p2,acL12〉 of ρ1 and
ρ2 and the R2+L1-concurrent rule〈p2+p1,acL21〉 of ρ2 andρ1 are equivalent.

R1+L2K1+L2L1+L2

L1 K1 R1 L2

k1 k′2

R2+L1K2+L1L2+L1

L2 K2 R2 L1

k2 k′1

Proof. For plain rulesp1 and p2, the parallel rulep1+p2 and the concurrent rulesp1 ∗R1+L2 p2

andp2 ∗R2+L1 p1 are equivalent [EEPT06]. By Lemma5, Shift-Lemmas2 and3, and Lemma4,
m∗ |= Shift(k∗j ,R(ρ j ,acL j ))⇔m∗ |= R(ρ∗j ,Shift(k j ,acL j ))⇔m|= L(ρ∗j ,R(ρ∗j ,Shift(k j ,acL j ))⇔
m |= Shift(k j ,acL j )), i.e.,

m∗ |= Shift(k∗j ,R(ρ j ,acL j ))⇔m |= Shift(k j ,acL j )). (2)

By Definition 8, Statement (2), and Definition9 we have
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m |= acL andm∗ |= acR

⇔ m |= Shift(k1,acL1)∧Shift(k2,acL2) and
m∗ |= Shift(k∗1,R(ρ1,acL1))∧Shift(k∗2,R(ρ2,acL2))

⇔ m |= Shift(k1,acL1)∧L(ρ∗1,Shift(k′2,acL2)) and
m |= Shift(k2,acL2)∧L(ρ∗2,Shift(k′1,acL1))

⇔ m |= acL12∧acL21

i.e., the parallel rule and the rule constructed from the concurrent rules are equivalent.

We considerE-concurrent derivations viaE-concurrent rules andE-related derivations via
pairs of rules.

Definition 10 (E-concurrent andE-related Derivation) A direct derivation via anE-concurrent
rule is calledE-concurrentdirect derivation orE-concurrent derivation, for short. A derivation
G⇒ρ1 H ⇒ρ2 M is E-relatedif there are morphismsE→ H, D1→ E1, andD2→ E2 as shown
below such that the trianglesR1EH, L2EH, K1D1E1, andK2D2E2 in the figure below commute
and the diagrams (6) and (7) are pushouts.

E

R1K1L1

D1

L2 K2 R2

D2

E1 E2G MH

(6) (7)

= =
= =

Now we present a Concurrency Theorem for rules with application conditions.

Theorem 3(Concurrency) Let E be a dependency relation forρ1 andρ2. For every E-related
derivation G⇒ρ1,m1 H⇒ρ2,m2 M, there is an E-concurrent derivation G⇒ρ1∗Eρ2,m M. Vice versa,
for every E-concurrent derivation G⇒ρ1∗Eρ2,m M, there is an E-related derivation G⇒ρ1,m1

H⇒ρ2,m2 M.

G

H

M

ρ1 ρ2

ρ1∗E ρ2

Proof. By Definition 9 and Shift-Lemmas2 and3, we have

m1 |= acL1 andm2 |= acL2 iff m |= acL. (3)

This may be seen as follows.

m1 |= acL1 andm2 |= acL2

⇔ m |= Shift(k1,acL1) andm′ |= Shift(k2,acL2)
⇔ m |= Shift(k1,acL1) andm |= L(p∗1,Shift(k2,acL2))
⇔ m |= Shift(k1,acL1)∧L(p∗1,Shift(k2,acL2)) = acL.
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If G⇒ρ1,m1 H ⇒ρ2,m2 M is E-related, then the underlying derivation without ACs isE-related
and, by the Concurrency Theorem without ACs [EEPT06], there is anE-concurrent derivation
G⇒p1∗p2,m M. By assumption,mi |= acLi for i = 1,2 and, by Statement3, m |= acL, i.e., E-
concurrent derivationG⇒ρ,m M satisfies ACs. IfG⇒ρ,m M is anE-concurrent derivation, then
the underlying direct derivation without ACs isE-concurrent, and, by the Concurrency Theorem
without ACs [EEPT06], there is anE-related derivationG⇒p1,m1 H ⇒p2,m2 M. By assumption,
m |= acL, and by Statement (3), mi |= acLi for i = 1,2, i.e., theE-related derivation satisfies ACs.

ED1L

L1 K1 R1

D2 R

R2K2L2

E1 E2G MH

k1 k2(3) (1) (2) (4)

(3’) (1’) (2’) (4’)m m′

m1
m2

5 Conclusion

In this paper we present the well-known Local Church-Rosser, Parallelism, and Concurrency
Theorems, known already for rules with negative application conditions [LEPO08b], for rules
with nested application conditions. The proofs are based onthe corresponding theorems for rules
without application conditions [EEPT06] and two Shift-Lemmas [HP09], saying that application
conditions can be shifted over morphisms and rules and assume that〈C ,M 〉 is a weak adhesive
HLR category with anE -M -factorization and binary coproducts.

statement requirements
Local Church-Rosser Shift 2 & 3
Parallelism Shift 2 & 3, binary coproducts
Concurrency Shift 2 & 3
Shift 2 epi-M -factorization
Shift 3 –

Further topics might be the following:

• Amalgamation Theorem for rules with ACs. It would be important to generalize the Amal-
gamation Theorem [BFH87, CMR+97] to weak adhesive HLR systems and rules with
nested application conditions.

• Embedding and Local Confluence Theorems for rules with ACs. It would be important to
generalize the Embedding and Local Confluence Theorems [Ehr77, Ehr79, Plu93, Plu05,
EEPT06, LEPO08a] to rules with nested application conditions.

• Theory to rules with merging. It would be important to generalize the theory to the case
of merging as indicated in [HMP01, EHP02].
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