
Electronic Communications of the EASST
Volume 26 (2010)

Manipulation of Graphs, Algebras and Pictures

Essays Dedicated to Hans-Jörg Kreowski
on the Occasion of His 60th Birthday

On Teaching Logic and Algebraic Specification

Till Mossakowski

19 pages

Guest Editors: Frank Drewes, Annegret Habel, Berthold Hoffmann, Detlef Plump
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

On Teaching Logic and Algebraic Specification

Till Mossakowski

Till.Mossakowski@dfki.de, http://www.dfki.de/sks/till/
German Research Center for Artificial Intelligence (DFKI GmbH), Bremen, Germany

SFB/TR 8 Spatial Cognition, Universität Bremen, Germany

Abstract: We discuss teaching experiences with courses on first-order logic and
on algebraic specification, with an emphasis on software tools that can be used by
students and that illustrate the meaning of logical notions. In particular, we dis-
cuss Language, Proof and Logic and the Heterogeneous Tool Set. Moreover, we
claim that structuring constructs like those of the Common Algebraic Specification
Language can be better digested when starting with applying them to propositional
logic.

Keywords: First-order logic, algebraic specification, structured specification, teach-
ing

Courses on algebraic specification and logic have been important cornerstones of teaching
theoretical computer science for many years. Moreover, algebraic specification and logic are
applied not only in areas like software specification and verification, but also in ontologies and
weak artificial intelligence1, and other areas. During my studies, I myself was greatly influenced
by courses on algebraic specification and logic. The logic courses mainly provided a very ab-
stract and dry introduction to the formalities of logic — the motivation for logic was expected to
have arisen independently of the course. By contrast, Hans-Jörg Kreowski always has carefully
motivated his courses on algebraic specification (and other subjects), has brought spirit into con-
cepts by using a graphic and descriptive style of presentation, and activated students by insisting
on letting them answer questions, discuss points and solve exercises, with room for developing
own ideas (especially within so-called student projects, a specialty of Bremen university). This
teaching greatly influenced my choice of research subject.

In this work, I will report on some research and some teaching I have done in the context of
the Common Algebraic Specification Language (CASL [BM04, CoF04]). CASL is a common
language for algebraic specification that has been initiated by the IFIP working group 1.3 “Foun-
dations of systems specification” (see also the report [AKK99]), which was founded and initially
lead by Hans-Jörg Kreowski.

1 First-Order Logic

Basically, I regularly teach a course about logic that is quite popular (attended by roughly 100
students) and a course on more specialised subjects usually attended only by smaller groups of
students.

1Here, weak AI is used for systems that solve tasks in specialised domains using heuristics or learning, as
opposed to strong AI, which aims at passing the Turing test.

1 / 19 Volume 26 (2010)

mailto:Till.Mossakowski@dfki.de
http://www.dfki.de/sks/till/

On Teaching Logic and Algebraic Specification

Figure 1: Evaluating first-order sentences with the program Tarski’s world.

1.1 Language, Proof and Logic

For teaching first-order logic, I use the book “Language, proof and logic” [BE02], abbreviated
LPL. The most striking feature of LPL is the use of software tools supporting the students with
their own exercises and experiments in logic. This goes as far that a server in Stanford can
automatically evaluate some of the students’ exercises and give detailed feedback, such that
students can revise their solutions. This allows a far better activation of students than with
lectures alone — in a lecture using ex-cathedra teaching in front of 100 students, only a small
portion of them can actually participate.

However, the usefulness of the software tools should also not be overestimated: it is still very
important to have handwritten exercises that are corrected by the teacher, as well as explanations
of the students and discussions within the lecture.

In my view, the most important insight of LPL is the following: the notion of first-order

Festschrift H.-J. Kreowski 2 / 19

ECEASST

Figure 2: Sample proof with the program Fitch.

3 / 19 Volume 26 (2010)

On Teaching Logic and Algebraic Specification

structure (or model) is an advanced topic!1 (The same holds for the notion of algebra used in
algebraic specification.) Instead, LPL largely uses a fixed interpretation of first-order logic in a
blocks world (see Figure 1 showing a screenshot of the program Tarski’s world).

Of course, with using a fixed domain of interpretation (carrier set) and fixed interpretation of
predicates, one loses much of the “loose specification” approach used in both algebraic spec-
ification and logic. However, the essential gain over the traditional approach is that a fixed
interpretation is much easier to grasp. Indeed, a useful didactic will proceed from the concrete
to the abstract (and not vice versa), and the abstractness of the concept of (carrier) set (and of
function and relation) is often underestimated — even if illustrated with useful example carrier
sets from computer science like lists, strings or trees.2 Moreover, fixing the carrier set and in-
terpretation of predicates is not as harmful as it looks: in a blocks world, it is still possible to
obtain some degree of looseness by using different configurations of the blocks. Students can
then inspect the effect of different configurations on the evaluation of sentences, and use a game,
a so-called Henkin-Hintikka game, to understand the evaluation in more detail. Some looseness
of course is also essential to understand the concept of logical consequence — another concept
that is surprisingly difficult to grasp for many students. The most difficult part to understand is
that logical consequence does not imply the truth of the premises — it also holds in cases where
the premises are always false.

Here, the interplay of Tarski’s world with Fitch greatly helps: Fitch is a program that can be
used for the construction of a natural deduction proof, in case that a logical consequence actually
holds — in the other cases, Tarski’s world can be used to construct counter-models. A sample
proof with Fitch is shown in Figure 2. It uses a subproof for proving a universally quantified
implication. Fitch does not construct such proofs, it only checks them and sometimes provides
the resulting formula for a step (if a proof rule and formulas supporting its application have been
selected appropriately). Fitch also checks if restrictions set up by the instructor have met, e.g.
that the built-in first-order prover must not be used, or that a certain conclusion has to be reached.

The feedback that Fitch gives allows students to try out and play around with proof construc-
tion. Moreover, LPL offers a great deal of motivation and explanation of the natural deduction
calculus (and Fitch) in terms of common natural language arguments. LPL also discusses strate-
gies to find proofs; e.g. a simple strategy is to look at the main connectives of the premises and try
corresponding elimination rules, or try the introduction rule corresponding to the main connec-
tive of the conclusion. However, it must be noted that students much more often have difficulties
with Fitch than with Tarski’s world. The reason seems to be again the level of abstraction: while
Tarski’s world is about a blocks world that is still close to everyday experience, Fitch is about
proofs that follow certain rules which are quite common in mathematical arguments, but not in
everyday experience. Moreover, students often have difficulties with finding suitable rules to ap-
ply in a given situation, or with the development of a proof strategy. Therefore, the development
of proof strategies is explicitly discussed in the lecture and supported with numerous exercises.
However, I think that this still does not suffice. An interactive dialogue suggesting different

1First-order structures are only treated in part III of the book (covering advanced topics).
2Let me further illustrate this point with some anecdotes about the concept of function. Vladimiro Sassone told

me that he taught a course on recursive functions. After several weeks, he spent one lecture on students’ questions.
The first question was: “what is a function?”. Michael Kohlhase regularly poses this question in his oral exams, and
in spite of him announcing this question, only about 60% of students know the answer.

Festschrift H.-J. Kreowski 4 / 19

ECEASST

Figure 3: Sample proof with HETS and SPASS.

5 / 19 Volume 26 (2010)

On Teaching Logic and Algebraic Specification

strategies or heuristics might help to stimulate more experiments also for those students that do
not grasp natural deduction so quickly. Probably, also more exercises requiring the judgement of
given Fitch proofs would be useful.

1.2 Hets and State-of-the-Art Provers

This also brings me to another point: the relation of Fitch to state-of-the-art automated and
interactive theorem provers. Some students are motivated to conduct larger proofs, but Fitch is
not suited for this, since it is not possible to prove lemmas and theorems for later re-use. Here, I
use CASL and the Heterogeneous Tool Set HETS [MML07, Mos05], which offers the connection
to a selection of resolution provers (SPASS, Vampire) and tableau provers (Isabelle), as well as
to SAT solvers (zChaff, minisat) — all tools that are used in current research. However, these
tools of course do not offer the special proof rule provided by Fitch that can be used to derive
facts that are specific to the blocks world (this rule is called “AnaCon”). Actually, the rule
AnaCon is not explained in the book. However, it can be simulated with a suitable first-order
axiomatisation of the blocks world. Such an axiomatisation is begun in the LPL book. We
have (together with students) developed a much more complete first-order axiomatisation of
the blocks world in CASL.1 Then proofs can be conducted e.g. with the automated resolution
prover SPASS [WBH+02], see Fig. 3. A drawback is that the output format of resolution proofs
is still rather cryptic, since the problem is first translated to clause form. A translation from
resolution proofs to natural deduction (using tools like Tramp [Mei00] or Metis [MQP06]) could
help here in the future, but one should be careful not to provide an automatic tool that completely
discourages students to build their own natural deduction proofs.

2 Structured Specification

While research in algebraic specification started with the application of methods from universal
algebra and equational logic to the specification of abstract data types, later the algebraic na-
ture was found more in the powerful constructs that are used to build larger specifications from
smaller ones in a modular way. One such construct is the restriction to so-called initial and free
models, a quite central but complex notion in the area of algebraic specification. While teaching
this notion, I developed the idea to use propositional logic (instead of equational or first-order
logic) to illustrate constructs for structuring specification. The advantage is that the logic is so
simple that one can really concentrate on the structuring. Moreover, it is possible to display indi-
vidual models: they are just rows in a truth table. Using this approach, the following subsections
explain logical consequence, conservative extensions, and initial/free specifications. The devel-
opment will be a bit more technical than above, and also will rely on mathematical notation.
However, it will be intensively illustrated with results from HETS.

1We have not published this axiomatisation, since it would enable students to cheat when solving the exercises
in the book. However, the axiomatisation can be mailed to instructors on request.

Festschrift H.-J. Kreowski 6 / 19

ECEASST

2.1 Logical Consequence

Logical consequence is the central notion of logic (and is also important for algebraic specifi-
cation): what follows from what? As indicated above, logical consequence is a notion that is
difficult to grasp for many students. Hence, with HETS, we provide an easy truth table approach
for illustrating this notion.

Definition 1 (Signature) A propositional signature Σ is a set (of propositional symbols, or
variables).

Definition 2 (Sentence) Given a propositional signature Σ, a propositional sentence over Σ is
one produced by the following grammar

φ ::= p | ⊥ | > | ¬φ | φ ∧φ | φ ∨φ | φ → φ | φ ↔ φ

with p ∈ Σ. Sen(Σ) is the set of all Σ-sentences

Definition 3 (Model) Given a propositional signature Σ, a Σ-model (or Σ-valuation) is a func-
tion in Σ→{T,F}. Mod(Σ) is the set of all Σ-models.

A Σ-model M can be extended to M# : Sen(Σ)→{T,F} using truth tables.

Definition 4 φ holds in a Σ-model M (or M satisfies φ), written M |=Σ φ iff

M#(φ) = T

Definition 5 (Logical consequence) Given Γ ⊆ Sen(Σ) and φ ∈ Sen(Σ), φ is a logical conse-
quence of Γ (written as Γ |= φ), if for all M ∈Mod(Σ)

M |= Γ implies M |= φ .

Example 1 An argument in natural language is tested for validity by translating it into proposi-
tional logic.

John plays tennis, if it’s
a sunny weekend day.

If John plays tennis, then
Mary goes shopping.

It is Saturday.
It is sunny.

Mary goes shopping

sunny ∧ weekend→ tennis
tennis→ shopping
saturday
sunny
saturday→ weekend

shopping

The set of premises has the sentence shopping as a logical consequence

Note that the formalisation contains an axiom saturday → weekend not present in the
informal version. This axiom represents implicit background knowledge. The HETS input syntax
for this example is shown in Listing 1. Note that logical implication→ is input as =>, conjunc-
tion ∧ as /\ etc. Moreover, each formula is preceded by a dot, and formulas can be labelled with

7 / 19 Volume 26 (2010)

On Teaching Logic and Algebraic Specification

%(label)%. The notation %implied marks a formula to be a theorem (that has to be proved
to follow from the axioms); all other formulas are axioms.

 logic Propositional

 spec Weekend =
 props tennis, shop, sunny, sat, we
 . sunny /\ we => tennis %(SWT)%
 . tennis => shop %(TSh)%
 . sat %(sat)%
 . sat => we %(satW)%
 . sunny %(sun)%

 . shop %(shop)% %implied
 end �

Listing 1: A simple logical consequence

With HETS, we can now construct the following truth table as shown in Listing 2. The truth
table is divided into three parts, using ||. The first part consists of the signature: all propositional
letters are listed. Below the signature, you find all possible models, one per row. The second part
consists of the theory (the axioms, also playing the role of premises of the argument): for each
axiom, its truth value is listed. Only rows containing T for every axiom are models of the theory
(indicated by an M). Finally, the third part contains the proof goal, or conclusion of the argument.
The conclusion needs to be true for each row that is a model.

A simple non-example of a logical consequence (actually, we omitted the fact that Saturday is
a weekend day) is shown in Listing 3.

2.2 Conservative Extensions

A theory is satisfiable if it has a model.1 Satisfiability of theories is quite important for an
axiomatic or loose approach to specification: it is easy to introduce unintentional inconsistencies,
and an inconsistent (unsatisfiable) specification cannot be realised, hence it does not successfully
model an aspect of reality.2

Satisfiability of large theories is hard to show. Actually, there are large first-order theories like
the SUMO ontology for which satisfiability is an open question — indeed there is a prize set up
for proving consistency of SUMO [PSST08]. A modular way to satisfiability is opened up by
conservative extensions: in a sense, these transport satisfiability.

To illustrate the concept, consider the specification in Listing 6. Indeed, to formally underpin
this, we introduce some notions that will be central for structured specification:

Definition 6 Given two signatures Σ1,Σ2 a signature morphism is a function σ : Σ1→ Σ2 (note
that signatures here are sets).

Sentences can be translated along signature morphisms:

1In some logics like equational logic, each theory is trivially satisfiable. In these cases, satisfiability should be
replaced with satisfiability by a non-trivial model, where the latter is a model that falsifies at least one sentence.

2This is different for paraconsistent logics, which however will not be considered here.

Festschrift H.-J. Kreowski 8 / 19

ECEASST

 Legend:
 M = model of the premises
 + = OK, model fulfils conclusion
 - = not OK, counterexample for logical consequence
 o = OK, premises are not fulfilled, hence conclusion is irrelevant

 ------------ signature ----------- ---------- premises --------- conclusion
 || sat | shop | sunny | tennis | we || SWT | TSh | sat | satW | sun || shop
 ===++=====+======+=======+========+====++=====+=====+=====+======+=====++=====

 o || F | F | F | F | F || T | T | F | T | F || F
 o || F | F | F | F | T || T | T | F | T | F || F
 o || F | F | F | T | F || T | F | F | T | F || F
 o || F | F | F | T | T || T | F | F | T | F || F
 o || F | F | T | F | F || T | T | F | T | T || F
 o || F | F | T | F | T || F | T | F | T | T || F
 o || F | F | T | T | F || T | F | F | T | T || F
 o || F | F | T | T | T || T | F | F | T | T || F
 o || F | T | F | F | F || T | T | F | T | F || T
 o || F | T | F | F | T || T | T | F | T | F || T
 o || F | T | F | T | F || T | T | F | T | F || T
 o || F | T | F | T | T || T | T | F | T | F || T
 o || F | T | T | F | F || T | T | F | T | T || T
 o || F | T | T | F | T || F | T | F | T | T || T
 o || F | T | T | T | F || T | T | F | T | T || T
 o || F | T | T | T | T || T | T | F | T | T || T
 o || T | F | F | F | F || T | T | T | F | F || F
 o || T | F | F | F | T || T | T | T | T | F || F
 o || T | F | F | T | F || T | F | T | F | F || F
 o || T | F | F | T | T || T | F | T | T | F || F
 o || T | F | T | F | F || T | T | T | F | T || F
 o || T | F | T | F | T || F | T | T | T | T || F
 o || T | F | T | T | F || T | F | T | F | T || F
 o || T | F | T | T | T || T | F | T | T | T || F
 o || T | T | F | F | F || T | T | T | F | F || T
 o || T | T | F | F | T || T | T | T | T | F || T
 o || T | T | F | T | F || T | T | T | F | F || T
 o || T | T | F | T | T || T | T | T | T | F || T
 o || T | T | T | F | F || T | T | T | F | T || T
 o || T | T | T | F | T || F | T | T | T | T || T
 o || T | T | T | T | F || T | T | T | F | T || T
 M+ || T | T | T | T | T || T | T | T | T | T || T �

Listing 2: Truth table for the logical consequence from Listing 1

 spec Weekend2 =
 props tennis, shop, sunny, sat, we
 . sunny /\ we => tennis %(SWT)%
 . tennis => shop %(TSh)%
 . sat %(sat)%
 . sunny %(sun)%
 . shop %(shop)% %implied
 end �

Listing 3: Example of a non-consequence

9 / 19 Volume 26 (2010)

On Teaching Logic and Algebraic Specification

 Legend:
 M = model of the premises
 + = OK, model fulfils conclusion
 - = not OK, counterexample for logical consequence
 o = OK, premises are not fulfilled, hence conclusion is irrelevant

 ------------ signature ----------- ------ premises ------ conclusion
 || sat | shop | sunny | tennis | we || SWT | TSh | sat | sun || shop
 ===++=====+======+=======+========+====++=====+=====+=====+=====++=====

 o || F | F | F | F | F || T | T | F | F || F
 o || F | F | F | F | T || T | T | F | F || F
 o || F | F | F | T | F || T | F | F | F || F
 o || F | F | F | T | T || T | F | F | F || F
 o || F | F | T | F | F || T | T | F | T || F
 o || F | F | T | F | T || F | T | F | T || F
 o || F | F | T | T | F || T | F | F | T || F
 o || F | F | T | T | T || T | F | F | T || F
 o || F | T | F | F | F || T | T | F | F || T
 o || F | T | F | F | T || T | T | F | F || T
 o || F | T | F | T | F || T | T | F | F || T
 o || F | T | F | T | T || T | T | F | F || T
 o || F | T | T | F | F || T | T | F | T || T
 o || F | T | T | F | T || F | T | F | T || T
 o || F | T | T | T | F || T | T | F | T || T
 o || F | T | T | T | T || T | T | F | T || T
 o || T | F | F | F | F || T | T | T | F || F
 o || T | F | F | F | T || T | T | T | F || F
 o || T | F | F | T | F || T | F | T | F || F
 o || T | F | F | T | T || T | F | T | F || F
 M- || T | F | T | F | F || T | T | T | T || F
 o || T | F | T | F | T || F | T | T | T || F
 o || T | F | T | T | F || T | F | T | T || F
 o || T | F | T | T | T || T | F | T | T || F
 o || T | T | F | F | F || T | T | T | F || T
 o || T | T | F | F | T || T | T | T | F || T
 o || T | T | F | T | F || T | T | T | F || T
 o || T | T | F | T | T || T | T | T | F || T
 M+ || T | T | T | F | F || T | T | T | T || T
 o || T | T | T | F | T || F | T | T | T || T
 M+ || T | T | T | T | F || T | T | T | T || T
 M+ || T | T | T | T | T || T | T | T | T || T �

Listing 4: Truth table for the non-consequence from Listing 3

 spec Sp =
 Σ1
 Γ1
 then
 Σ∆

 Γ∆

 end �

 spec Animals =
 props bird, penguin
 . penguin => bird
 then
 prop can_fly
 . penguin => not can_fly
 end �

Listing 5: Theory extensions in CASL.

Festschrift H.-J. Kreowski 10 / 19

ECEASST

 logic Propositional

 spec Animal =
 props bird, penguin, living
 . penguin => bird %(pb)%
 . bird => living %(bl)%
 then %cons
 prop animal
 . bird => animal %(ba)%

 . animal => living %(al)%
 end �

 spec Penguin =
 props bird, penguin
 . penguin => bird %(pb)%
 then
 prop can_fly
 . bird => can_fly %(bc)%
 . penguin => not can_fly %(pnc)%
 end �

Listing 6: Example of a conservative and a non-conservative extension in CASL

Definition 7 A signature morphism σ : Σ1→ Σ2 induces a sentence translation σ : Sen(Σ1)→
Sen(Σ2), defined inductively by

• σ(⊥) =⊥

• σ(>) =>

• σ(φ1∧φ2) = σ(φ1)∧σ(φ2)

• etc.

Models are translated against signature morphisms. The intuition is that the translated model
M|σ works as follows: interpret a symbol by first translating it along the signature morphism σ

and then look up the interpretation in the original model M.

Definition 8 A signature morphism σ : Σ1 → Σ2 induces a model reduction |σ : Mod(Σ2)→
Mod(Σ1). Given M ∈Mod(Σ2) i.e. M : Σ→{T,F}, then M|σ∈Mod(Σ1) is defined as M|σ (φ) :=
M(σ(φ)) i.e. M|σ= M ◦σ . Dually, M is called a σ -expansion of M|σ .

Sentence and model translation interact well with each other:

Theorem 1 (Satisfaction condition) Given a signature morphism σ : Σ1→ Σ2, M2 ∈Mod(Σ2)
and φ1 ∈ Sen(Σ1), then:

M2 |=Σ2 σ(φ1) iff M2|σ |=Σ1 φ1

(“truth is invariant under change of notation.“)

11 / 19 Volume 26 (2010)

On Teaching Logic and Algebraic Specification

This condition is the central ingredient of the notion of institution [GB92]. In a special course,
I first introduce several examples of the satisfaction condition in order to motivate this abstract
notion.

Definition 9 A theory morphism (Σ1,Γ1)→ (Σ2,Γ2) is a signature morphism σ : Σ1→ Σ2 such
that for M2 ∈Mod(Σ2,Γ2) we have M2|σ∈Mod(Σ1,Γ1)

Extensions (written in CASL with the keyword then; cf. Listing 5) always lead to a theory
morphism (by definition). The semantics of the CASL specification is the theory morphism
σ : (Σ1,Γ1)→ (Σ2,Γ2), where Σ2 = Σ1 ∪Σ∆ and Γ2 = Γ1 ∪Γ∆, such that σ : Σ1 → Σ2 is the
inclusion.

We are now ready to define conservative extensions:

Definition 10 A theory morphism σ : T1→ T2 is model-theoretically-conservative, if any M1 ∈
Mod(T1) has a σ -expansion to a T2-model.

We can now evaluate which of the extensions shown in Listing 6 are conservative. Actually,
the first extension is conservative. The truth table output by HETS is shown in Listing 7. On
the left hand side (columns bird, living and penguin), we see valuations of the smaller
signature, and the corresponding evaluations of the axioms pb and bl. Models of the smaller
theory are marked with an M in the leftmost column. On the right hand side in column animal,
possible expansions to the larger signature are listed, together with the evaluation of the axioms
ba and al. Models of the larger theory are marked with an M in the column right to the middle.
Altogether, we can see that each model of the smaller theory has at least one expansion to the
larger theory.

By contrast, the second extension is not conservative: the last model fails to have an expansion,
see Listing 8.

The central theorem that allows us to transport satisfiability is the following:

Theorem 2 If T1
σ1−→ T2

σ2−→ . . .
σn−1−−→ Tn are model-theoretically conservative, and T1 is satisfi-

able, then Tn is satisfiable.

2.3 Initial and Free Specifications

Freeness and cofreeness constraints are a powerful mechanism at the level of structured specifi-
cations. They work for any logic. Propositional logic is a good starting point for learning about
freeness and cofreeness, since things are much less complicated here when compared with other
logics.

Consider the following two somewhat circular statements:

Harry: John tells the truth.
John: If Mary is right, then Harry does not tell the truth.

Let us formalise these statements and look at the logical consequences. We introduce three
propositions telling us whether Harry, John, resp. Mary tell the truth.

Festschrift H.-J. Kreowski 12 / 19

ECEASST

 Legend:
 M = model of the axioms
 + = OK, has expansion
 - = not OK, has no expansion, hence conservativity fails
 o = OK, not a model of the axioms, hence no expansion needed

 ---- small signature --- -- axioms --- large ---- axioms ----
 signature
 || bird | living | penguin || pb | bl || || animal || ba | al

 ===++======+========+=========++======+======++===++========++========+=======
 M+ || F | F | F || T | T || M || F || T | T
 || | | || | || || T || T | F
 ---++------+--------+---------++------+------++---++--------++--------+-------
 o || F | F | T || F | T || || || |
 ---++------+--------+---------++------+------++---++--------++--------+-------
 M+ || F | T | F || T | T || M || F || T | T
 || | | || | || M || T || T | T
 ---++------+--------+---------++------+------++---++--------++--------+-------
 o || F | T | T || F | T || || || |
 ---++------+--------+---------++------+------++---++--------++--------+-------
 o || T | F | F || T | F || || || |
 ---++------+--------+---------++------+------++---++--------++--------+-------
 o || T | F | T || T | F || || || |
 ---++------+--------+---------++------+------++---++--------++--------+-------
 M+ || T | T | F || T | T || || F || F | T
 || | | || | || M || T || T | T
 ---++------+--------+---------++------+------++---++--------++--------+-------
 M+ || T | T | T || T | T || || F || F | T
 || | | || | || M || T || T | T �

Listing 7: Truth table for a conservative extension from Listing 6

 Legend:
 M = model of the axioms
 + = OK, has expansion
 - = not OK, has no expansion, hence conservativity fails
 o = OK, not a model of the axioms, hence no expansion needed

 small signature axioms large --- axioms ---
 signature
 || bird | penguin || pb || || can_fly || bc | pnc

 ===++======+=========++======++===++=========++========+=====
 M+ || F | F || T || M || F || T | T
 || | || || M || T || T | T
 ---++------+---------++------++---++---------++--------+-----
 o || F | T || F || || || |
 ---++------+---------++------++---++---------++--------+-----
 M+ || T | F || T || || F || F | T
 || | || || M || T || T | T
 ---++------+---------++------++---++---------++--------+-----
 M- || T | T || T || || F || F | T
 || | || || || T || T | F �

Listing 8: Truth table for a non-conservative extension from Listing 6

13 / 19 Volume 26 (2010)

On Teaching Logic and Algebraic Specification

 spec Liar0 =
 prop mary
 props harry, john
 . harry => john %(whenjohn)%
 . john => (mary => not harry) %(whenharry)%
 then %implies
 . harry %(harry)%
 . john %(john)%
 . mary %(mary)%

 . not harry %(notharry)%
 . not john %(notjohn)%
 . not mary %(notmary)%
 end �

Listing 9: A circular set of statements

Actually, when calling HETS with the truth table prover, the first goal cannot be proved, see
Listing 10.

 Legend:
 M = model of the premises
 + = OK, model fulfils conclusion
 - = not OK, counterexample for logical consequence
 o = OK, premises are not fulfilled, hence conclusion is irrelevant

 ----- signature ----- ----- premises ------ conclusion
 || harry | john | mary || whenjohn | whenharry || harry
 ===++=======+======+======++==========+===========++======

 M- || F | F | F || T | T || F
 M- || F | F | T || T | T || F
 M- || F | T | F || T | T || F
 M- || F | T | T || T | T || F
 o || T | F | F || F | T || T
 o || T | F | T || F | T || T
 M+ || T | T | F || T | T || T
 o || T | T | T || T | F || T �

Listing 10: Truth table for the circular statements from Listing 9

The other goals cannot be proved either. So this theory cannot decide the truth of the propo-
sitional letters, and it leaves open whether Harry, John or Mary tell the truth or lie, and indeed,
we have five possible cases (indicated by the five models, i.e. those rows marked with M in List-
ing 10). A semantics that admits many possible interpretations and only constrains them by
logical formulas is called open world semantics.

By contrast, a closed world semantics assumes some default, e.g. any propositional letter
whose truth value cannot be determined is assumed to be false. Indeed, free or initial seman-
tics imposes this kind of constraints. As a prerequisite, we need to define a partial order on
propositional models:

Definition 11 Given a propositional signature Σ and two Σ-models M1 and M2, then M1 ≤M2
if M1(p) = T implies M2(p) = T for all p ∈ Σ.

Festschrift H.-J. Kreowski 14 / 19

ECEASST

Then, a free (or initial) specification, written free{SP}, selects the least model of a specifica-
tion:

Mod(free{SP}) = {M ∈Mod(SP) |M least model in Mod(SP)}

Note that a least model need not exist; in this case, the model class of free{SP} is empty, hence
the free specification inconsistent. Coming back to our example, have a look at Listing 11. With
the HETS truth table prover, we now get the truth table in Listing 12. That is, Harry, John and
Mary all are lying! Actually, we are not forced by the specification to think that they tell the
truth, so by minimality of the initial model, the propositional letters are all assigned false.

 spec Liar1 =
 free {
 prop mary
 props harry, john
 . harry => john %(whenjohn)%
 . john => (mary => not harry) %(whenharry)%
 }
 then %implies
 . not harry %(notharry)%

 . not john %(notjohn)%
 . not mary %(notmary)%
 end �

Listing 11: Closed world assumption, specified as a free extension

 ----- signature ----- -------- premises -------- conclusion
 || harry | john | mary || notharry | notjohn | free || notmary
 ===++=======+======+======++==========+=========+======++========
 M+ || F | F | F || T | T | T || T
 o || F | F | T || T | T | F || F
 o || F | T | F || T | F | F || T
 o || F | T | T || T | F | F || F
 o || T | F | F || F | T | F || T
 o || T | F | T || F | T | F || F

 o || T | T | F || F | F | F || T
 o || T | T | T || F | F | F || F �

Listing 12: Truth table for the specification of Listing 11

Of course, the assumption that propositional letters are false by default is somewhat arbitrary.
We could have taken the opposite assumption. Indeed, this exactly is what final (or cofree)
specifications do, see Listing 13. However, no greatest model exists in this case, hence the
cofree specification is inconsistent, as shown in Listing 14.

Mod(cofree{SP}) = {M ∈Mod(SP) |M greatest model in Mod(SP)}

We can also mix the open and closed world assumptions. Assume that we want to be unspecific
about Mary, but use closed world assumption for Harry and John, see Listing 15.

The semantics is as follows:

15 / 19 Volume 26 (2010)

On Teaching Logic and Algebraic Specification

 spec Liar2 =
 cofree {
 prop mary
 props harry, john
 . harry => john %(whenjohn)%
 . john => (mary => not harry) %(whenharry)%
 }
 then %implies
 . false %(false)%

 end �
Listing 13: Closed world assumption, specified as a cofree extension

 ----- signature ----- ---------- premises --------- conclusion
 || harry | john | mary || whenjohn | whenharry | cofree || false
 ===++=======+======+======++==========+===========+========++======
 o || F | F | F || T | T | F || F
 o || F | F | T || T | T | F || F
 o || F | T | F || T | T | F || F
 o || F | T | T || T | T | F || F
 o || T | F | F || F | T | F || F
 o || T | F | T || F | T | F || F

 o || T | T | F || T | T | F || F
 o || T | T | T || T | F | F || F �

Listing 14: Truth table for the specification of Listing 13

 spec Liar3 =
 prop mary
 then
 free {
 props harry, john
 . harry => john %(whenjohn)%
 . john => (mary => not harry) %(whenharry)%
 }
 then %implies

 . not harry %(notharry)%
 . not john %(notjohn)%
 end �

Listing 15: Mixed open world and closed world semantics using free

Festschrift H.-J. Kreowski 16 / 19

ECEASST

Mod(SP1 then free{SP2}) =
{M ∈Mod(SP1 then SP2) |

M is the least model in {M′ ∈Mod(SP1 then SP2) |M|σ= M′|σ} }

and as a result, we obtain that both Harry and John lie (independently of what Marry does!),
see Listing 16.

 ----- signature ----- ---------- premises -------- conclusion
 || harry | john | mary || whenjohn | whenharry | free || notharry
 ===++=======+======+======++==========+===========+======++=========
 M+ || F | F | F || T | T | T || T
 M+ || F | F | T || T | T | T || T
 o || F | T | F || T | T | F || T
 o || F | T | T || T | T | F || T
 o || T | F | F || F | T | F || F
 o || T | F | T || F | T | F || F

 o || T | T | F || T | T | F || F
 o || T | T | T || T | F | F || F �

Listing 16: Truth table for the specification of Listing 15

 spec Liar4 =
 prop mary
 then
 cofree {
 props harry, john
 . harry => john %(whenjohn)%
 . john => (mary => not harry) %(whenharry)%
 }
 then %implies

 . harry \/ mary %(harrymary)%
 . john %(john)%
 end �

Listing 17: Mixed open world and closed world semantics using cofree

The dual concept is cofreeness with mixed open and closed world semantics, see Listing 17.
Also the semantics is obtained by dualising:

Mod(SP1 then cofree{SP2}) =
{M ∈Mod(SP1 then SP2) |

M is the greatest model in {M′ ∈Mod(SP1 then SP2) |M|σ= M′|σ} }

The result in the example is that John tells the truth, and at least either of Harry and Mary as
well, see Listing 18.

3 Conclusion

The overall picture is as follows: typically, I start with a course on first-order logic as described in
Section 1, followed by a more special course on structuring and institutions, following Section 2.

17 / 19 Volume 26 (2010)

On Teaching Logic and Algebraic Specification

 ----- signature ----- --------- premises ----------- conclusion
 || harry | john | mary || whenjohn | whenharry | cofree || harrymary
 ===++=======+======+======++==========+===========+========++==========
 o || F | F | F || T | T | F || F
 o || F | F | T || T | T | F || T
 o || F | T | F || T | T | F || F
 M+ || F | T | T || T | T | T || T
 o || T | F | F || F | T | F || T
 o || T | F | T || F | T | F || T

 M+ || T | T | F || T | T | T || T
 o || T | T | T || T | F | F || T �

Listing 18: Truth table for the specification of Listing 17

The second course starts with propositional logic, which keeps the examples simple, and then
proceeds to description logics (used for ontologies and semantic web) and finally again to first-
order logic.

Teaching algebraic specification and logic can really be fun, and there is much room for de-
veloping better ideas and tools supporting this. Feedback and improvements are welcome!

Acknowledgments This work has been supported by the German Federal Ministry of Educa-
tion and Research (Project 01 IW 07002 FormalSafe).

Bibliography

[AKK99] E. Astesiano, H.-J. Kreowski, B. Krieg-Brückner. Algebraic Foundations of Systems
Specification. Springer, 1999.

[BE02] J. Barwise, J. Etchemendy. Language, proof and logic. CSLI publications, 2002.

[BM04] M. Bidoit, P. D. Mosses. CASL User Manual. Lecture Notes in Computer Science
(IFIP Series) 2900. Springer, 2004. With chapters by T. Mossakowski, D. Sannella,
and A. Tarlecki.
http://www.cofi.info/index.php/CASL user manual

[CoF04] CoFI (The Common Framework Initiative). CASL Reference Manual. Lecture Notes
in Computer Science (IFIP Series) 2960. Springer, 2004.
http://www.cofi.info/index.php/CASL reference manual

[GB92] J. Goguen, R. Burstall. Institutions: Abstract Model Theory for Specification and
Programming. Journal of the ACM 39(1):95–146, 1992.

[Mei00] A. Meier. System Description: TRAMP: Transformation of Machine-Found Proofs
into ND-Proofs at the Assertion Level. In McAllester (ed.), Automated Deduction -
CADE-17, 17th International Conference on Automated Deduction, Pittsburgh, PA,
USA, June 17-20, 2000, Proceedings. Lecture Notes in Computer Science 1831,
pp. 460–464. Springer, 2000.

Festschrift H.-J. Kreowski 18 / 19

http://www.cofi.info/index.php/CASL_user_manual
http://www.cofi.info/index.php/CASL_reference_manual

ECEASST

[MML07] T. Mossakowski, C. Maeder, K. Lüttich. The Heterogeneous Tool Set. In Grumberg
and Huth (eds.), TACAS 2007. Lecture Notes in Computer Science 4424, pp. 519–
522. Springer, 2007.

[Mos05] T. Mossakowski. Heterogeneous specification and the heterogeneous tool set. 2005.
Habilitation thesis, University of Bremen.

[MQP06] J. Meng, C. Quigley, L. C. Paulson. Automation for Interactive Proof: First
Prototype. Information and Computation 204(10):1575–1596, 2006.
http://www.sciencedirect.com/science/article/B6WGK-4K9C6J3-1/2/
e4e5661335eef1bb58ed32a67a7f2427

[PSST08] A. Pease, G. Sutcliffe, N. Siegel, S. Trac. The Annual SUMO Reasoning Prizes at
CASC. In Konev et al. (eds.), Proceedings of the First International Workshop on
Practical Aspects of Automated Reasoning, Sydney, Australia, August 10-11, 2008.
CEUR Workshop Proceedings 373. CEUR-WS.org, 2008.
http://ceur-ws.org/Vol-373/paper-05.pdf

[WBH+02] C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobalt, D. Topic. SPASS
Version 2.0. In Voronkov (ed.), Automated Deduction – CADE-18. Lecture Notes in
Computer Science 2392, pp. 275–279. Springer, 2002.

19 / 19 Volume 26 (2010)

http://www.sciencedirect.com/science/article/B6WGK-4K9C6J3-1/2/e4e5661335eef1bb58ed32a67a7f2427
http://www.sciencedirect.com/science/article/B6WGK-4K9C6J3-1/2/e4e5661335eef1bb58ed32a67a7f2427
http://ceur-ws.org/Vol-373/paper-05.pdf

	First-Order Logic
	Language, Proof and Logic
	Hets and State-of-the-Art Provers

	Structured Specification
	Logical Consequence
	Conservative Extensions
	Initial and Free Specifications

	Conclusion

