
Electronic Communications of the EASST
Volume 27 (2010)

Workshop über
Selbstorganisierende, adaptive, kontextsensitive

verteilte Systeme
(SAKS 2010)

QoS-based Self-Management for Business Processes

Diana Comes, Michael Zapf, and Kurt Geihs

12 pages

Guest Editors: Klaus David, Michael Zapf
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

QoS-based Self-Management for Business Processes

Diana Comes, Michael Zapf, and Kurt Geihs

comes@vs.uni-kassel.de, zapf@vs.uni-kassel.de, geihs@vs.uni-kassel.de,
Distributed Systems Group

Universität Kassel, Wilhelmshöher Allee 73,
34121 Kassel, Germany

Abstract: Business processes are commonly implemented as compositions of Web
Services, using the Business Process Execution Language (BPEL) as an orchestra-
tion specification. Business processes do not only require an appropriate setup but
also need to be monitored throughout their runtime, especially when Quality-of-
service (QoS) constraints have to be met. Monitoring results may be used for the
automated reconfiguration and optimization of business processes.

We show how we achieve self-management based on QoS constraints within our
system. The BPRules Language that we set up can be used to improve the QoS
behavior of business processes by triggering appropriate management actions on
the process. Also we propose a service selection strategy for the dynamic selection
and replacement of services within business processes.

Keywords: Business processes, WS-BPEL, Self-Management, MAPE

1 Introduction

Web Services are the standard technology for implementing business tasks in heterogeneous IT
environments. They embody the building blocks for cross-organizational business processes.
In recent years, development environments for Web Services have appeared that enable domain
experts and system designers to realize flexibly configurable business processes.

In order to form a consistent composition, Web Services have to match with each other ac-
cording to functional and non-functional requirements. Functional criteria are basically covered
by input, output, precondition, and effect. Non-functional requirements are commonly referred
to as Quality-of-service parameters (QoS). For a client, QoS criteria of a business process may
be particular interesting, especially when we consider response time or availability. Typically,
these objectives are defined in service-level agreements.

Business processes are typically represented using a language like the Business Process Ex-
ecution Language (BPEL) [8]. While monolithic applications may be tailored to predefined
QoS constraints, and tests may be used to effectively verify the compliance, Web Service-based
business process implementations have a high degree of distribution and a loose coupling of
components of possibly different sources. Hence, an effective business process management re-
quires a support for calculating and aggregating QoS values, and should also allow for a flexible
configuration of rules for autonomous corrective actions.

A successful execution of business processes implies continuous monitoring of QoS at run-
time but also immediate intervention in undesired situations, like when a service is down or not

1 / 12 Volume 27 (2010)

mailto:comes@vs.uni-kassel.de, zapf@vs.uni-kassel.de, geihs@vs.uni-kassel.de


QoS-based Self-Management for Business Processes

responding in the desired time frame. In that case corrective actions need to operate on the busi-
ness process to improve its QoS behaviour. One of these actions may be to select another service
which provides better QoS and to replace the old service.

In this paper we describe how we manage business processes within our management system.
The key feature in our business process management is a self-managing architecture which has
been developed in the course of the ADDOaction project[1]. In order to describe corrective
operations, we make use of the BPRules language which we briefly introduce. BPRules allows us
to define rules on the business process level, associating QoS constraints to appropriate actions.
Moreover, we propose a service selection strategy for the dynamic selection and replacement of
services within business processes. Our selection strategy is customizable to the clients’ needs.
We will show how the service selection strategy can be specified with BPRules.

The paper is structured as follows: Section 2 provides a short introduction to business pro-
cesses and their structures. We summarize the main features of BPRules, a language for spec-
ifying corrective actions in the self-management of business processes. We also explain the
advantages of the service selection strategy and how it is applied. Section 3 describes the archi-
tecture of our system, pointing out the MAPE structure of the control loops. Finally we present
some links to related work in Section 4 and our conclusions in Section 5.

2 Managing Business Processes by QoS

The management of business processes along constraints on the quality of service (QoS) requires
to set up rules or policies which can express two aspects:

• Evaluation: What do we consider to be a good or a failing process?

• Action: What can we do to restore or improve the service quality?

In order to be able to specify these rules, we have to take into account how business processes
are structured. This is usually described by documents formulated in the specification language
WS-BPEL.

2.1 Business processes and self-management

Web Services, often provided by different partners, can be composed to one big service which
realizes a business process. Over time, several composition languages were developed, like the
Web Services Flow Language (WSFL) from IBM, the Web Services Conversation Language
(WSCL) from W3C or XLANG from Microsoft. Business Processes can also be described by
using the Business Process Model and Notation (BPMN) [13]. The focus of BPMN is on the
visualization and notation of a business process. For executing the process, a language like
WS-BPEL is required.

The WS-BPEL language has emerged as the standard technology for implementing busi-
ness processes in a SOA. WS-BPEL permits specifying Web Service compositions by defin-
ing how interactions between given Web Services take place and is therefore an example of the
Programming-in-the-large paradigm. A WS-BPEL process may consist of several activities, like

SAKS 2010 2 / 12



ECEASST

invocations of Web Services, control structures for defining loops (while, for, foreach, repeatUn-
til), or conditional activities (if, switch). A sequence is an activity block in which activities are
sequentially processed, while a flow defines several parallel activites.

WS-BPEL processes may be utilized to represent and implement business processes. Com-
pared with single services, where we have some freedom in choosing an appropriate service,
adapting our application to it where required, services which are orchestrated in a business pro-
cess need to be mutually compatible. Specifically, outputs of previously executed services must
be processable by following services. More precisely, services must fulfill certain functional
requirements, which requires them to comply by formal contracts like interfaces, describing the
classic Input/Output/Precondition/Effect (IOPE) matching. The challenge for setting up business
processes in that aspect is to select those services that are compatible with each other and which
form a process with the desired inputs and outputs.

As an example, we can conceive a bookshop process for buying books in an online shop which
we implement using WS-BPEL. In the process there are four atomic services envolved: a stock
service, a distributor service, a bookshop service, and a bank service. The bookshop process
starts with the arrival of a request from the client, which contains the list of books the client
wants to purchase at the online bookshop. The list of books is checked by the stock service,
whether all of the books are in stock. If the books are not in stock, the distributor service is
invoked to purchase the missing books from a book wholesaler. If the distributor service returns
several books with different prices, the books with the minimum price are selected to be bought.
These books are put on the clients’ bill and the bookshop service is invoked for creating the bill.
Finally the bank service is called to perform the withdrawal from the client’s credit card to the
online shop account.

However, for practical usage, not only the functional requirements but also non-functional
requirements are important, which determine the quality of parts or of the overall service. This
becomes even more salient for distributed business processes which contain Web Services from
different locations, all subject to local conditions and management. Network failures or services
becoming unavailable or not responding in time are possible issues which undermine the user’s
trust in the complete process implementation; the malfunction of one single service may cause
the failure of the entire process.

One promising concept for handling these issues is to keep available a set of functionally
equivalent services and to replace failing services or services which cannot ensure the promised
QoS anymore. However, in most cases, the user will just notice the end-to-end quality failing
the expectations, without an indication which service actually causes the problems. As in most
cases, the reason for some failing service quality cannot be immediately tracked down to one
service, finding the troubled service may require prohibitively high efforts, which may again
impair the trust of the client into the whole business process implementation.

2.2 BPRules

One of the basic concepts of the BPRules language are the handling of sections of a business
process. We can easily identify sections within the process where a set of Web Services are
composed to a larger component, like services under the authority of a single provider. Thus,
defining sections within the process can reduce the complexity and so help to faster identify

3 / 12 Volume 27 (2010)



QoS-based Self-Management for Business Processes

process parts that cause problems. In essence, sections help us to reduce the complexity of the
overall business process management and so make an automatic monitoring and management of
complex processes actually feasible.

As self-management with respect to business processes we understand the application of man-
agement activities on business processes, like the exchange of component services, on request
of some internal part of the execution environment. This request is based on the observation of
current properties of the business process and appropriate evaluation and deduction of corrective
actions. Ideally, such a system should be able to maintain certain properties (like QoS) without
human intervention. Hence, a self-managing business process is a system comprising the busi-
ness process definition, sensors for detecting the current state, a managing subsystem accessing
management interfaces, and the execution engine.

Apart from detecting undesired situations, management actions need to be taken to improve
the business process behaviour. For the specification of reactive management actions in self-
managing business processes we propose a special language called BPRules [4]. We now briefly
describe the concepts of the BPRules language and its processing within our system to demon-
strate the contribution of the language to the self-management capabilities.

The management of our business processes consists of checking conditions and executing
associated corrective actions which are formulated using BPRules. For each business process we
can associate a BPR document. Mainly, a valid document defines the following information:

• sections of the business process;

• rulesets, which contain collections of rules;

• periods of time which determine the set of process instances for which a rule(set) applies
to.

Apart from the possibility to formulate conditions and actions as rules for the management of
business processes, the simple XML syntax of BPRules allows a business analyst to specify rules
without requiring additional programming skills. The business analyst himself may take care to
specify proper rules and to make sure that the application of the rules will improve the QoS of
the process.

Management actions may range from just notifying the interested parties of certain events,
over starting, stopping, or updating the process, to actions like selecting and replacing services
with other versions that promise a better QoS. The BPRules language allows to change or update
rules dynamically at runtime, to use references for QoS parameters and QoS constraints between
sections, or to set rules on a subset of instances (like, for example, running instances).

For each business process we can associate a BPR document as shown in Figure 1. Here it
becomes clear that dividing the process into several parts (sections) provides us with a better
control on the business process by a tunable granularity. We can group multiple activities (e.g.
all activities inside a flow, or a sequence) into a single manageable part. Sections are defined
by declaring start and end activities by their names, or by referring to a structured activity with
nested subactivities.

For our bookshop example we define a section and the associated QoS requirements which are
desired to be met. Informally, we define:

SAKS 2010 4 / 12



ECEASST

Service Registry

BPEL Process
attach

BPR-document

Rule 1

Condition:
QoS constraints

Action:
<select-services>

Rule 2

QoS Requirements 1

QoS constraints 1

QoS Objective Function1

Ruleset green

Ruleset red

QoS Requirements 2

QoS constraints 2

QoS Objective Function 2

section 1

section 2

Sections

Period

Figure 1: Business process and BPRules document

section: the distributor section
targets multiple activities:
request the books to the distributor service, select the books with minimal price, buy
these books from the distributor service
QoS requirements: availability > 0.98, cost < 20, minimal responsetime

In general, rules define a selection of instances which a rule applies to, the condition ex-
pression, and associated actions. If the condition constraints are met, the associated actions are
triggered. Time periods may be defined to constrain the application of a rule to certain process
instances (e.g. running at that moment).

Rulesets are bundles of rules which may be addressed as one element. For instance, when a
certain alert level is reached, another collection of rules has to apply. Rulesets can be modified
at runtime and they can be activated or deactivated as a result of an action. Any element like
sections, periods, rulesets, rules, actions, or expressions can be referenced by its id within the
document contributing to the reusability.

2.3 Service Selection strategy

One possible action as an instance of business process management is to replace a failing service;
this entails the selection of an appropriate replacement. Thus, BPRules allows for the specifica-
tion of a service selection strategy for the dynamic selection and replacement of services within
business processes. The strategy permits selecting services for different sections or the entire
process having different QoS requirements. The service selection strategy is customizable with
respect to the selection method (selection algorithm) and the origin of the QoS values.

A service process is a composition of multiple services that are required in order to execute
the service process. An abstract service represents the functionality of the desired service, and
we assume that there are several concrete services that provide this functionality but which have

5 / 12 Volume 27 (2010)



QoS-based Self-Management for Business Processes

different QoS levels. In order to evaluate whether the entire service composition complies with
the promised QoS level, we need to aggregate the QoS of the services that build up the service
composition, using the algorithm from [5].

We illustrate the usage of the selection strategy by a simple example in listing 1, focusing on
the rule definition. For saving space we simplify the structure and content of the example and
use comments to informally describe the semantics. The rule states that

if the running process instances (line 4-6) meet the undesired QoS constraints (avail-
ability < 0.7 or cost > 30) in section1 (line 7-9)

then perform an action by selecting services from the service registry with the de-
sired QoS requirements (line 16-27): availability > 0.95 and cost < 20 using the
objective function: fob j = max(availability

cost ).

A service instance in a business process may be replaced if the service registry knows about
other services which promise a better QoS. Within the condition part, constraints appear as cri-
teria for service selection. The <select-services> tag (line 13-28) represents in BPRules
the corrective action for service search and replacement.

What still needs to be specified are the criteria to select a service from a set of possible alter-
natives. This is specified within the QoS requirements (the <qos-requirements> element:
line 16-27): Those services are selected from the service registry which fulfill the QoS con-
straints (the <expression> element: line 17-19) and optimize the given objective function
(the <objective-function> element: line 21-26). In this example, the optimization crite-
rion is an expression defined by the quotient of availability and cost. A preferred choice should
yield a high value of this ratio; this can be set by the objective function (lines 21-26) which states
that the QoS dimensions are subject to maximization.

In this way, every section may specify different QoS requirements. For example, when trig-
gering the section of the bookshop process which involves the bank service, a maximum security
is required, while for the distributor section we desire a minimal responsetime.

Furthermore, we want to be able to set the selection method. BPRules allows to specify
the selection algorithm to be used. For instance, when we search n abstract services and each
abstract service may have m concrete service realizations there are in total mn combinations
possible. Combining all concrete services that can realise the service composition leads to an
combinatorial explosion; generally, the selection problem is NP-hard.

Selection algorithms may have very different complexity. In some situations, an optimal
search may cause too high efforts (and thus delays) and is not desired, while other situations
highly depend on a sophisticated algorithm. In BPRules we can specify the appropriate algo-
rithm depending on the number of services to be searched. For example, when searching one
service, a trivial search is sufficient, while in a search that envolves many services or the en-
tire process, a more advanced search is needed, like an optimization algorithm using heuristics.
Based on previous experience, the business analyst should be able to choose the appropriate
selection method most suited for the particular case.

Selection strategies may also differ between set-up time and runtime. At runtime, a quick and
effective solution is usually preferred to an optimal but slow strategy.

Various methods are proposed in the literature to solve the selection optimization problem,

SAKS 2010 6 / 12



ECEASST

like the Integer Programming approach [3], a Genetic Algorithm [2] or other heuristic algo-
rithms [12],[6]. We can define which kind of strategy should be used for set-up or runtime. The
appropriate selection method for a particular process is provided as an attribute (method, line
14 ) of the <select-services> action element. In this case we choose a heuristic selection
(line 14: method = "ALG.OPTIM_S"). The OPTIM_S algorithm which we developed avoids
the combinatorial explosian by setting an upper limit to the possible service variants that are
chosen. The service variants are selected by a heuristic function.

1 <rule id="rule1">
2 <condition>
3 <constraints>
4 <select-instances>
5 <!-- the RUNNING instances -->
6 </select-instances>
7 <expression id="expsect1" applysection="section1">
8 <!-- undesired QoS constraints: availability < 0.7 or cost > 30 -->
9 </expression>

10 </constraints>
11 </condition>
12 <action>
13 <select-services serviceRegistry="http://registry:8097/services"
14 method = "ALG.OPTIM_S" methodClass="selection.OptimServiceImpl"
15 qosValues = "QoS.MONITOR" qosClass ="qos.QoSClass">
16 <qos-requirements>
17 <expression applysection="section1">
18 <!-- desired QoS constraints: availability > 0.95 and cost < 20 -->
19 </expression>
20 <!-- fobj = max(avail/cost) -->
21 <objective-function type="MAX" resultType="double">
22 <function type="Divide" resultType="double">
23 <operand><QoSParameter>availability</QosParameter></operand>
24 <operand><QoSParameter>cost</QosParameter></operand>
25 </function>
26 </objective-function>
27 </qos-requirements>
28 </select-services>
29 </action>
30 </rule>

Listing 1: Rule formulated in BPRules

Our selection strategy is customizable with regard to the origin of the QoS values. The QoS
values of the services may be retrieved from several sources. When searching for services in the
service registry, some clients could be interested in the measured QoS values while others would
consider the values promised in the service level agreements (SLA). In our example we chose the
QoS values that were monitored within our system (attribute qosValues="QoS.MONITOR"
line 15).

3 Architecture for self-managing business processes

A crucial challenge of realizing complex business processes by orchestrating Web Services is
to manage the complete process during its lifetime, especially when the process contains many
different Web Services from various sources, and when it is more than just a sequential process-
ing. To enhance the manageability, we argue that self-management capabilities of the system are

7 / 12 Volume 27 (2010)



QoS-based Self-Management for Business Processes

BPRules
Manager & 
Evaluator

BPEL Engine

Service 
selection

QoS Monitor & 
Aggregator QoS

Events 

Business
Processes Process 

Management 

BPR 
Repository

BPEL Engine

load BPR-doc

action

Client API

Sensor API

Rules EngineDeploy/
Run
rules

Service Registry

Services

BPR Repository

BPR-
doc

Figure 2: The management system

indispensible.
Usually, systems with self-stabilizing properties, which are the result of internal self-organizing,

self-managing, or other "self" processes, include a component which supervises the system under
control, which is, in our case, the complete business process, but also parts of it. This component
requires sensors which allow to retrieve values that lead to appropriate actions, exerted by the
actuator parts.

The controlling entity may be decomposed according to the subtasks required for the overall
control task. One popular decomposition is known as the MAPE cycle, commonly cited in
conjunction with IBM’s Autonomic Computing initiative [10]. The MAPE cycle consists of four
significant conceptual parts. If these parts can be automated, they form an intelligent control
loop:

• Monitor: Queries the sensors and processes their inputs to some appropriate format. This
allows the system to collect the details it needs.

• Analyse: Gets the data from the monitor part and evaluates them according to predefined
or evolved functions. The analysis part is required to detect the current state of the system
to determine if there is a need for action.

• Plan: From the current state, suitable actions are selected in the case that the state is not the
target state. These actions which specify the necessary changes should bring the system
into a new, “better” state.

• Execute: Perform the actions which have been collected in the planning component by
means of certain effectors or actuators.

The execution of business processes is controlled by an execution engine. In our environment
we employ the Oracle BPEL Process Manager (PM) [9] for executing business processes. The
Web Services themselves are executed on the Oracle Application Server OC4J. By using the
Sensor API and Client API of the Oracle BPEL PM, we can provide suitable sensors and effectors
for attaching our system to a BPEL execution environment, implementing the control loop. The
main constituents of our new self-management system are the following components:

SAKS 2010 8 / 12



ECEASST

• QoS Monitor and Aggregator component: monitors the QoS values for each one of the
services from the process and computes the QoS values for the entire process;

• BPRules Manager and Evaluator: evaluates the current state of the process and determines
corrective actions;

• Process Management: performs actions on the process.

Two repositories assist the management process: The BPR repository stores the rulesets for-
mulated in our BPRules language [4], and the service registry contains descriptions of services
to be integrated into the process.

Our system also shows a self-configuration capability during set-up time: At deployment time,
the system parses the BPEL process description file and creates and attaches a sensor for each of
the relevant BPEL activities (as for sequence, invoke, assign, and for). Each time an activity state
changes (represented by activated, faulted, or completed), an event is published via the Sensor
API and received by the QoS Monitor. This starts the loop as shown in Figure 2.

The QoS Monitor and Aggregator component is responsible for monitoring and/or aggregating
the QoS dimensions of the business process and mainly plays the role of the Monitor component
in the MAPE cycle. In order to obtain reasonable QoS values for the process, we have to consider
the QoS values of all Web Services of the business process. Moreover, QoS values can be
delivered by other monitoring services as well, e.g. from the service provider. The main task
of the QoS Monitor/Aggregator is to compute the QoS values for the activities of the process
from all of these inputs. Some examples of measured QoS dimensions are response time, cost,
throughput, or availability. More details about the monitoring can be found in [5].

The Analysis part is realized by the BPRules Manager and Evaluator Component which is
the core of the system. It runs a repository to store and retrieve BPR documents and evaluates
them according to the monitored business process. For the evaluation, the BPR documents are
automatically transformed into Drools Files which are then executed on the Drools Rules En-
gine. The BPRules Manager/Evaluator gets the QoS values of the business process from the
QoS Monitor/Aggregator and matches them against the rule conditions. On a match, the corre-
sponding action is triggered in order to improve the process behaviour. This may be understood
as the Planning part of the cycle.

The actions from the BPRules manager are delegated to the Process Management Component,
i.e. the Execute part. It utilizes the Oracle Client API as effectors to apply changes on the process
like starting, stopping, deploying, or un-deploying. It is also capable of replacing services by
consulting the service registry and dynamically changing the parts of the process. Hence, the
process is managed to be conformant to the QoS expectations.

Replacing services at runtime is not as simple as it seems at first sight. After candidates
have been found in the service registry, these services need to be bound dynamically into the
process, but without affecting the course of business. This is handled in our system by the use of
proxies; more specifically, we employ Java Servlets as intermediary components which receive
the messages from the process and further delegate them to the concrete service. Accordingly,
the WSDL service references which occur throughout the BPEL description file are replaced
with the proxy references. When a service must be replaced, the proxy endpoint reference is

9 / 12 Volume 27 (2010)



QoS-based Self-Management for Business Processes

changed, pointing to the reference of the concrete service which has been discovered from the
service registry.

4 Related work

Rule-based approaches targeting QoS in Web Service Compositions have been proposed by [11]
and [15]. Similar to our work, the web service compositions were also implemented with BPEL.
Baligand et al. describe in [11] their QoSL4BP, a policy-based language. Repp et al. propose
their WS-Re2Policy language [15], based on WS-Policy. Notable differences between the two
languages and BPRules are found in the provided features, whereas the semantics and syntax of
the languages are different.

BPRules supports some features which distinguish it from the other approaches. We allow
for relations between QoS parameters from different sections, rules defined on a number of
instances (like, for instance, a constraint applying to 40% of the running instances), rules applied
to instances executed in a certain period of time, adaptive service selection (permitting to select
an appropriate selection method) or grouping of rules into rulesets. Moreover, rulesets may be
changed and updated at runtime.

Features like the selection of services are generally required in business process management,
and are thus shared between the approaches. Beyond that, our selection approach allows for
different QoS requirements in different sections and the possibility to specify the selection algo-
rithms for the sections and the process. We can also define where the QoS values are retrieved
from, whether they are measured or defined in the SLA.

Zeng et al. describe a "QoS-Aware Middleware for Web Service Composition" [3]. In their
work, the service compositions are represented as statecharts which consist of states and transi-
tions. In our approach we use the BPEL constructs and the BPEL description file which we map
to a tree. We have addressed similar QoS parameters as Zeng et al., like cost, responsetime, and
availability. The authors present two approaches for the service selection, one via local optimiza-
tion and another one via global planning using integer programming. While in their approach
the objective function needs to be linear, in our approach we also consider non-linear functions.

M. Jäger also addresses QoS in service compositions [7],[6]. He concentrates on the aggre-
gation of QoS and on different approaches for service selection, such as integer programming
and heuristic algorithms. Compared to [6],[3] we proposed a rule-based approach, for easier
detection of process malfunctions and behavior improvement. We can also integrate the selec-
tion algorithms described in [6],[3] as selection methods (like in the above example) within our
BPRules language. By the specification of management rules the QoS can be better tailored to
individual management requirements.

Similar to [14] we are adressing non-functional requirements for BPEL processes. In [14]
the authors consider non-functional requirements, which are different from ours, like reliable
messaging, security and transaction. Their framework enforces the non-functional requirements
by the invocation of middleware web services. In our system the QoS parameters are monitored
during the runtime and only if the behavior of the process is not adequate, corrective actions
are triggered. Thus we intervene in the process execution only if required. Another similarity
of both approaches is the specification of the non-functional requirements in extra files, thus

SAKS 2010 10 / 12



ECEASST

keeping them separate from the process functionality. Charfi et al. make use of the deployment
descriptor while we are using the BPR documents, both specified in XML. In addition, we define
rules with corrective actions for behavior improvement within our BPR-documents.

5 Conclusion

The management of business processes with respect to QoS remains a major challenge for the
execution of business processes over the Internet. In this paper we presented our management
system for business process self-management. Our concept has been implemented within the
ADDOaction project [1] and is still work in progress. As we described above, we utilized the
Oracle BPEL Process Manager and associated APIs to connect our system. Clients have different
expectations in regard to the QoS of the process. By making use of our BPRules language we
are able to formulate rules which apply to a whole or to sections of business processes, providing
novel management capabilities which we consider as crucial in the process management. We
proposed a service selection strategy that can be customized to the client’s requirements and we
presented how the service selection and replacement is performed within our system. As future
work, other service selection algorithms will be analysed to be employed with BPRules.

Bibliography

[1] Bleul, S., Comes, D., Geihs, K.: Automatic Service Brokering in Service oriented Archi-
tectures, Project Homepage. http://www.vs.uni-kassel.de/research/addo/.

[2] Canfora, G., Penta, M., Esposito, R., Villani, M.L.: An approach for QoS-aware service
composition based on genetic algorithms. In: Proceedings of the 2005 conference on Ge-
netic and evolutionary computation, pp. 1069–1075. ACM, Washington DC (2005)

[3] Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware
Middleware for Web Services Composition. In: IEEE Transactions on Software Engineer-
ing, pp. 311–327. IEEE Press, (2004)

[4] Comes, D., Bleul, S., Zapf, M.: Management of Business Processes with the BPRules Lan-
guage in Service Oriented Computing. In: 16th Workshops der Wissenschaftlichen Kon-
ferenz Kommunikation in Verteilten Systemen 2009, WowKiVS, Electronic Communica-
tions of the EASST, Kassel (2009)

[5] Comes, D., Bleul, S., Weise, T., Geihs, K.: A Flexible Approach for Business Processes
Monitoring, In: Proceedings Distributed Applications and Interoperable Systems, DAIS
2009, p.116–128. Springer, Lisbon (2009)

[6] Jäger, M.: Optimising Quality of Service for the Composition of Electronic Services, PhD
thesis, University of Berlin, Berlin (2007).

[7] Jäger, M., Rojec-Goldmann, G., Mühl, G.: QoS Aggregation for Web Service Composition
using Workflow Patterns. In: 8th International Enterprise Distributed Object Computing
Conference (EDOC 2004), IEEE Computer Society, California (2004)

11 / 12 Volume 27 (2010)

http://www.vs.uni-kassel.de/research/addo/


QoS-based Self-Management for Business Processes

[8] Web Services Business Process Execution Language Version 2.0, OASIS standard, 2007,
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[9] Oracle BPEL Process Manager, 2008,http://www.oracle.com/technology/products/ias/
bpel/index.html

[10] Miller, B., The autonomic computing edge: The role of knowledge in autonomic systems,
2009, http://www.ibm.com/developerworks/autonomic/library/ac-edge6/#N10100

[11] Baligand, F., Rivierre, N., Ledoux, T.: A Declarative Approach for QoS-Aware Web Ser-
vice Compositions. Proceedings of the 5th international conference on Service-Oriented
Computing ICSOC ’07, Springer (2007)

[12] Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz R., Heuristics for QoS-aware
Web Service Composition, In: Proceedings of the IEEE International Conference on Web
Services, IEEE Computer Society (2006)

[13] Business Process Model and Notation (BPMN), OMG Document, 2009, http://www.omg.
org/spec/BPMN/2.0/

[14] Charfi, A., Schmeling, B., Heizenreder, A., Mezini, M., Reliable, Secure, and Transacted
Web Service Compositions with AO4BPEL, In: Fourth IEEE European Conference on Web
Services (ECOWS’06), IEEE computer society (2006)

[15] Repp, N., Eckert, J., Schulte, S., Berbner, R., Steinmetz, R.: Towards Automated Moni-
toring and Alignment of Service-based Workflows. In: IEEE International Conference on
Digital Ecosystems and Technologies (2008)

SAKS 2010 12 / 12

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
 http://www.oracle.com/technology/products/ias/bpel/index.html
 http://www.oracle.com/technology/products/ias/bpel/index.html
http://www.ibm.com/developerworks/autonomic/library/ac-edge6/#N10100
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/

	Introduction
	Managing Business Processes by QoS
	Business processes and self-management
	BPRules
	Service Selection strategy

	Architecture for self-managing business processes
	Related work
	Conclusion

