
Electronic Communications of the EASST
Volume 3 (2006)

Guest Editors: Jean-Marie Favre, Reiko Heckel, Tom Mens
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the
Third Workshop on Software Evolution

through Transformations:
Embracing the Change

(SeTra 2006)

Generating Requirements Views: A Transformation-Driven
Approach

Lyrene Fernandes da Silva, Julio Cesar Sampaio do Prado Leite

14 Pages

ECEASST

2 / 14 Volume 3 (2006)

Generating Requirements Views: A Transformation-Driven
Approach

Lyrene Fernandes da Silva1, Julio Cesar Sampaio do Prado Leite2

1Federal University of Rio Grande do Norte (UFRN) - Brazil
2Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) - Brazil

Abstract: This paper reports the use of transformations based on XML to generate requirements
views. A strategy to generate views is defined and scenarios and class diagrams are automatically
created from a goal oriented model; the V-graph.

Keywords: Requirements models, views, traceability, transformations, XML.

1 Introduction
During software construction, we may use different types of models and languages such as:
scenarios, requirements sentences, lexicons, component models, class diagrams, entity-
relationship models, and activity diagrams. These different software representations are
necessary because each one of them portrays a different and limited set of characteristics. This
is done in order to decrease software complexity and help the engineer to focus on scoped
problems.

However, because of the volatility of the requirements, it is necessary to be ready for
changes, or evolution. Requirements evolution happens in two ways: during software
development, changing from the high abstraction level to the implementation level, i.e., from
the requirements to the code; and in order to make the model ready to attend new requirements
or fix errors and omissions [19][23]. In both cases, knowing and managing the interactions
between requirements (the traceability) is of fundamental importance. As a consequence it is
important to decompose and modularize the concerns of the system for two main reasons: (a)
the concerns indicate the coupling and cohesion among their components, and (b) it is
important in order to analyze the impact of changes between requirements at the same
abstraction level and requirements and software artifacts on different abstraction levels [28].

As defined in [33], traceability means the ability to find related requirements in a
requirements specification, discovering: the source of the requirements (pre-traceability); the
components that implement them (post-traceability); or requirements that affect each other
[28]. Traceability is important to manage and to propagate changes in requirements, thus
supporting software construction [15]. However, if many different models are used during the
construction process, it is necessary to map the information from one kind of model to others,
propagating changes, verifying correctness and conflicts among them.

In order to address this problem, in this paper, we present an approach based on
transformations to create different views of requirements models. The transformations are
defined by using rules and have been implemented in the context of XML (eXtensible Markup
Language) technology, by means of XSLT transformations. We exemplify this approach by
the creation of rules to transform a goal model, called V-graph, into models: scenarios [23] and
class diagrams [4].

Generating Requirements Views:
A Transformation-Driven Approach

Proc. SeTra 2006 3 / 14

This approach was defined in the context of an aspect-oriented requirement modeling
strategy [31][32]. In this context, we have considered that using views is extremely important
because they can be an alternative way to separate concerns and decrease tangling and
scattering problems that occur due to the tyranny of the dominant decomposition [34]. The V-
graph model was used because it can represent both non-functional and functional
requirements. Furthermore, it explicitly represents the positive and negative interactions
between requirements in opposition to use cases, scenarios and requirements sentences which
do not tackle the issue of requirements interference. Therefore, we can identify crosscutting
concerns by analyzing the interactions among them. In this paper, we present our approach to
generate views from V-graph, but we omit the details about “aspects” defined in [31][32]
because of the limited space available.

The remainder of this paper is organized as follows. In Section 2, we present the
context of this work, the concept of views and the V-graph. In Section 3, we present how we
can generate different views by using transformations, the benefits of this strategy and the
defined transformation rules to generate scenarios and class diagrams from V-graph models. In
Section 4, we present a case study to illustrate the visualization mechanism. In Section 5, we
cite some related work. Finally, in Section 6, we present the concluding remarks and
guidelines for future works.

2 State of the Art
Considering software development as an evolutionary process, in which the design and the
programming are based on the requirements definition and the requirements are continually
changing, software evolution happens: during the development process by refining the models
created during the requirements definition process into architecture models and code; and
during each activity, by making a set of models better, generating different versions of the
same model.

In both cases, it is necessary to be able to identify where changes impact, modify and
propagate these changes for all the used models. The traceability (or mapping) between models
can be supported by a transformation-driven approach [3]. Transformations are interesting in
this case because they can be used to:
 Generate views – different total or partial models can be generated from a base model.

Partial models can represent the system focusing on different concerns or different
viewpoints. Total models can represent the information of a base model using another
notation. In both cases, generating views helps software evolution.

 Facilitate analysis – by using different views, the engineer can focus on scoped problems,
analyze and modify the modeling in a more effective way. Consistency and completeness
checking are facilitated because transformations can generate models with the same
information but changing the perspective to analyze it. A proper inspection mechanism,
when in place, can point out errors and omissions between views.

 Propagate changes – changes made in a model can be automatically propagated to other
models. This decreases the rework, increases the engineer’s productivity and guarantees
that all models are updated;

On the other hand, it is difficult to use a transformation-driven approach, because it is
hard to map one model to others. This is not always possible, usually the concerns represented
in a model are not represented in another model, some information can be omitted, and thus it
is difficult to guarantee the consistency and completeness of these models.

ECEASST

4 / 14 Volume 3 (2006)

In the requirements definition process, non-completeness and inconsistencies are more
tolerable than in other activities because models created in this stage will be refined by future
feedback. These models cannot have all of the information about the solution to the problem
and they have to accommodate some conflicts and ambiguities from the domain because these
conflicts have to be analyzed and resolved.

For us, the creation of views provides different perspectives of the same model,
separating the crosscutting concerns in different ways and offering the requirements engineer
different ways to analyze these concerns. In Section 2.1 we present the concept of views used
in this work and in Section 2.2 we present the syntax and semantic of the V-graph.

2.1 Views
Views are representations of the overall architecture that are meaningful to one or more
stakeholders in the system (IEEE St.1471). Using views is a way of separating different
concerns in order to focus on one at a time. Views help understanding and elaborating
solutions [33], therefore, they are necessary during all the development process.

In the requirements engineering area, the words viewpoints, views and point-of-view
are sometimes used with similar or different meanings [22]. In order to make the view concept
clear, in [16], three categories of views are presented:
 Views as opinions (viewpoints) – in the social context, each stakeholder has his premises,

priorities and experiences, and they use different ways to deal with the problems.
Therefore, it is necessary to know how to compare and negotiate the different opinions or
different ways of how to look at the things, for example, what is the opinion of the
manager, of the seller and of the buyer about an e-commerce site?

 Views as services (concerns) – the idea of partitioning the system into a set of services that
can be connected in different ways provides component-based development. For example, a
component for payment of bills, another for security, among others;

 Views as models (perspectives) – in the context of software engineering many techniques
based on languages have been proposed in order to partially portray a system, such as
entity-relationship models, use cases diagrams and sequence diagrams. Therefore, it is
important to detect consistency and completeness problems among these models.

These categories of views are not disjointed categories. Usually, we use models
(perspectives) to represent services (concerns) from the point of view of one or more
stakeholders (viewpoint). Furthermore, models, by definition, make some types of information
explicit and hide others, so we can have models focusing on functions, data, sequence of
activities and so on.

2.2 V-Graph
V-graph is a type of goal model [36]. Goal models represent the functional and non-functional
requirements through decomposition trees [25]. V-graph, see Figure 1(a), is defined by goals,
softgoals, tasks and the following decomposition relationships – contribution links (and, or,
make, help, unknown, hurt, break) and correlation links (make, help, unknown, hurt, break).
Each element has a type and topics. The type defines a generic functional or non-functional
requirement, for example, Security and Management. The topic defines the context of that
element, for example, data and communication.

Generating Requirements Views:
A Transformation-Driven Approach

Proc. SeTra 2006 5 / 14

Figure 1. (a) V-graph and (b) a V-graph example

Figure 1(b) portrays a V-graph example. In such figure, we can observe that in order
to achieve the goal “Model [requirements]” (“Model” is the type and “requirements” is the
topic) the goals “Edit [scenarios]”, “Edit [lexicon]” and “Manage [project]” have to be
achieved. The relationships among these four goals are contribution links. The contribution
links represent a hierarchy between root (a more abstract element that is father of subelements)
and children (an operationalization that can be a leaf or another root of the tree).

V-graph is an interesting model to represent requirements because with it we can
consider requirements at three abstraction levels (softgoals, goals and tasks). This is important
because in the same model we can represent reasons and operations, the context and how each
element contributes to achieving the system goals. Furthermore, there are important results in
goal modeling, concerning: how to analyze obstacles to the satisfaction of a goal [18]; how to
qualitatively analyze the relationships in goal models; how to analyze variability [14]; how to
analyze conflicts among goals through a propagation mechanism of labels [13]; how to
identify aspects in goal models [36]; how to derive a feature, state and component model from
goal models [30]; and how to provide goal reuse [24] – this last work mentions a composition
mechanism used to integrate a goal model and a reusable goal model from a library.

3 Using Transformations to Generate Requirements Views
Views have been used in different activities of software construction because they help the
developer to delimit the scope of a problem and thus, its complexity. Therefore, the developer
can analyze the correctness and completeness of one concern or a set of concerns at a time.
During the requirements definition process, as well as during the design process, i.e., during
the elaboration of solutions, it is important that developers be able to obtain different views
from a base model in order to facilitate the analyses of the solutions created from different
viewpoints and perspectives.

As we defined in Section 2, a view is a representation of the software architecture or
of one part of the system's architecture, focusing on one or more concerns, by one or more
stakeholders. Figure 2(a) presents, through a features model [8], the variability, considering
views as models and as services. This feature model shows that a view represents one or more

ECEASST

6 / 14 Volume 3 (2006)

services using one or more types of models (notation). Therefore, we can create views to the
requirements focusing each concern separately (partial views) or in conjunction (total views),
using different types of models.

(a) (b)
Figure 2. (a) Feature model representing the V-graph views and (b) Visualization mechanism

Therefore, we consider fundamental to have a visualization mechanism in order to
facilitate the requirements modeling. An automatic mechanism to generate views can
accelerate the modeling process because it decreases reworking and inconsistencies among
different requirements models. Figure 2(b) summarizes a modeling process using a
visualization mechanism to automatically generate views from V-graph. Such visualization
mechanism consists on a transformation component that needs the following sets of
information: the syntax and semantic of the source language (in our case, V-graph) and the
target language (representation to be generated), and transformation rules. Next subsection
deals with how to transform V-graphs into scenarios and class diagrams.

3.1 Transformation Rules
The V-graph is a representation where we can explicitly model functional and non-functional
requirements using softgoals, goals and tasks. This is its dominant decomposition manner, an
intentional-oriented decomposition. However, the hierarchy and the topics of the V-graph
provide new perspectives of the system, based on, for example, situations and data.
Furthermore, the relationships between goals, softgoals and tasks provide a perspective of
interaction, or traceability. Using this knowledge, we define rules to transform the information
from a V-graph into two different models: scenarios [23] and class diagram [4]. Therefore, we
provide requirements views that help “combating” V-graph’s dominant decomposition.

Transforming V-graph into Scenarios

Scenarios are an interesting topic to the software engineering community [35][29]. The
scenario-driven software development is based on the concept that using the problem's
language (user’s domain) is really beneficial for the interaction and communication between
users and developers. Scenarios are common situations to the users [31]. They have to take
into account the usability, enable the comprehension of the domain and problem and help
unifying criteria, the sorting of details and user training [7].

Generating Requirements Views:
A Transformation-Driven Approach

Proc. SeTra 2006 7 / 14

Each scenario describes, through semi-structured natural language, a specific situation
of the application or of the domain, focusing on behavior. Scenarios can be detailed and used
as design, in order to help programming. There are many representation proposals for
scenarios, informal representations in free text [7] or formal representations [17]. We opted for
an intermediate representation: it facilitates the comprehension using natural language and
forces sorting of the information by using a well-defined structure, proposed in [23]. In order
to transform the information in V-graph into a scenarios model some steps are followed:
1. First, we generate scenarios and episodes by using the goal tree hierarchy: each node (goals

and tasks) of the tree that is not a leaf generates a scenario; each subgoal and subtask that is
a leaf generates an episode of that scenario; and each subgoal and subtask that is not a leaf
generates an episode with a reference (link) to a scenario; contributions “or” generate
optional episodes.

2. Second, we generate resources, constraints and context. Each topic of goal and task that
generated episodes without references to any scenario is a resource of that scenario; each
softgoal negatively related (correlation or contribution) to goal/task that generated a
scenario generates an exception into that scenario; each softgoal negatively related
(correlation or contribution) to goal/task that generated a episode (without reference to any
scenario) generates a constraint into that episode; each goal related (contribution) to task
that generated a scenario generates the context into that scenario.

3. Next, we merge scenarios with the same title, because it is possible there be more than one
goal or task with the same name in V-graph in order to facilitate the visualization of the tree
of goals.

Table 1 summarizes the transformation process from V-graph to Scenarios and Section 4
presents an example of scenarios model generated by using this process.

Table 1. (a) Transformation process and (b) transformations: V-graph Scenarios
V-graph Scenarios

Goals, tasks Scenarios and episodes in
accordance of the hierarchy of
goals and tasks

Softgoals negatively correlated Exceptions or constrainsts

Goals of tasks that generated
scenarios

Context

Topics of goals and tasks that
generated episodes without
references to scenarios

Resources

(a) (b)

Transforming a V-graph into a Class Diagram

Objects are executable entities, instances of a class that defines its attributes and services.
Object or class models, usually, are used when we want to adopt the object-oriented paradigm
in the design and programming activities. However, these models can be used during the
requirements definition process to represent data and functionalities [33]. In this sense, we
derived class diagrams from V-graph models. In order to transform the information in V-graph
into a class diagram, we followed the general pattern described below.

ECEASST

8 / 14 Volume 3 (2006)

1. First, we use the hierarchy of goals and tasks to define classes and attributes: each topic of
goal/task that is not a leaf generates a class whose name is the topic name; and each topic
of goal/task that is a leaf generates an attribute in class generated by its parent node.

2. Second, we define the methods of the classes: every goal/task is method of classes whose
name is its topic; each goal/task that is a leaf generates a method into class generated by its
parent node; if one of the methods refers any topic different of class name then this topic is
an attribute of that class.

3. Next, we generate the relationships between classes: classes refer at least one similar
method are associated; each correlation or contribution between elements that generate
classes generates an association into the class diagram;

4. Finally, classes with same name are merged.
Table 2 summarizes the process to transform V-graph into Class Diagram and Section

4 presents an example of class diagram generated by using this process.

Table 2. (a) Transformation process and (b) transformations: V-graph Class diagram
V-graph Class diagram

Topic Classes and attributes in
accordance of the hierarchy of
goals and tasks

Goals, tasks Methods

Contributions, correlations,
and goals/tasks that refer
similar topics

Associations

(a) (b)

3.2 Implementation
We implemented this strategy using XML (eXtensible Markup Language) and XSLT
(eXtensible Stylesheet Language Transformation). V-graph syntax was defined using a DTD
(Document Type Definition). The visualization mechanism, i.e., the transformations, was
programmed in XSLT. Therefore, a V-graph model (in XML) is the input to the visualization
component and the outputs are scenarios (in HTML) and class diagrams (in Dot). Figure 3
shows how we used XML and XSLT to implement our strategy. The Dot format and the
GraphViz application [16] are used to create graphic representations to V-graph and class
diagrams.

The choice for XML based transformations was due to the characteristics of our
proposal, models written in XML, and due to the characteristic of our transformation rules. In
our case, the transformations were localized and direct, and as such the XSLT mechanism was
sufficient. Of course if more complex rules were necessary, we would have to use a more
robust transformation platform. However it is important to stress that despite its simplicity, we

Generating Requirements Views:
A Transformation-Driven Approach

Proc. SeTra 2006 9 / 14

can easily implement different representations and layouts for the information described in
XML with its structure defined in a DTD. Furthermore, XML can easily be read and changed
for different applications.

Figure 3. XML and XSLT used to transform requirements views

4 Case Study
This section presents part of our case study. The complete case study has four goal models: a
goal model for an information system that helps writing scenarios and lexicon [32]; a goal
model for Security; a goal model for Reliability; and a goal model for Persistence. The V-
graph illustrated in Figure 1(b) is the part of this case study we have used in this paper to
demonstrate our approach. On the right side of Figures 4 e 5 we show this same V-graph. The
octagons are goals and the hexagons are tasks. Pointed links are correlations and the other
links are contributions. Each goal and task has at least one Type and zero or more Topics
(bracketed text). On the left side of Figures 4 e 5, we portray the created views: scenarios and
class diagram.

Figure 4. Example of the scenario view

ECEASST

10 / 14 Volume 3 (2006)

Figure 4 portrays an example of scenarios generated from the V-graph. In this
example, there are three scenarios with the titles “Model [requirements]”, “Edit [scenario]”
and “Manage [project]”; they were derived from goals with similar names. In the scenario
“Manage [project]”, there are two resources (project and user) generated from topics of their
episodes; the context attribute is generated from the goal “Model [requirements]”; the attribute
episode is generated based on the goals/tasks that decompose the goals “Model
[requirements]”, “Edit [scenario]” and “Manage [project]”; and each underlined episode
indicates a relationship with another scenario.

Figure 5 portrays an example of class diagram to the V-graph (in Figure 1b). Each
goal/task that is not a leaf (and has topics) generates a class into the class diagram. Children of
goal/task that do not generate classes (and have topics) generate attributes related to the class
generated by their goals/tasks parent. Relationships between classes are generated from the
contribution links between goals/tasks that generate those classes. In Figure 5 we can observe
the classes “requirement”, “project” and “scenario”, their attributes and operations; the
relationships between them are generated based on the relationships between tasks/goals
whose topics are source to these classes.

Figure 5. Example of class diagram

This case study is available in [32]. The complete modeling has 9 goals, 105 tasks, 12
softgoals, 7 correlations and 173 contributions. After the transformation process applied to this
case study, 40 scenarios and 14 classes were generated into the scenarios view and class
diagram view, respectively. Although the class diagram does not have the types of
relationships and cardinality, the models created help the engineer to analyze the domain from
the date perspective in opposition to the intentional perspective of the V-graph. Scenarios and
class diagrams represent two other dominant ways to separate concerns, therefore by using our
approach the engineers have these views without having to create them manually.
Furthermore, any change made in the V-graph can be automatically propagated to the other
models.

Generating Requirements Views:
A Transformation-Driven Approach

Proc. SeTra 2006 11 / 14

5 Related Work
Although using different types of models helps managing the complexity during software
modeling, it causes tangling and scattering of concerns, making it difficult to maintain every
model consistent and updated. Therefore, integration mechanisms are necessary in order to
integrate services and models as well as to integrate opinions (conflicts resolution). This paper
focused on the integration of models using a transformation-driven approach.

Software transformation has been a central topic in different software related areas. In
the early seventies/eighties several researchers believed it to be central to the idea of automatic
programming and several program transformation initiatives were initiated, notably the Irvine
Transformation Catalogue [11]. Also in the area of software reuse, the idea of software
transformation was particularly successful, for instance [1] and the approaches on product-line
[2] and the Draco approach to software construction [21][26][30]. The use of transformations,
in this type of context, requires a more powerful mechanism, since the control structure is not
straightforward and a strict discipline to help the validation of the complex rewrite rules is
necessary.

There are also many approaches less complex which have been used to transform
requirements models into other requirements models or design models. Many of them are
based on natural language that process or consider the structure of the source language to
identify the constructs of the target language, such as:

In [6], a process to generate ontology from LEL is defined. This approach is based on
transformations but it is only semi-automatic. In [5], an approach has been defined to generate
activity diagrams from use cases and after that to transform these diagrams into Pres, a formal
notation that permits verification. Therefore, this approach enables the enrichment of the use
case model and the production of more precise and complete requirements. In [12], an
automated approach to transform feature models into the class diagrams is defined.

In [9], a process to integrate RNFs and RFs is defined. This approach uses the
constructs of MER, of class diagram and of lexicon extended language (LEL) [20], in order to
make this integration. Such integration process is based on mapping the RNFs specified in
LEL into the MER and into the class diagram. However, this mapping is not based on
transformations, it is based on the analysis of the information in the LEL, MER and in the
class diagram.

In [27], an integration framework of models (modeling methods) is defined. This
framework determines the specification of: (1) style – defines the notation; (2) work plan –
specifies the activities, strategies and processes to define a view; (3) domain – indicates the
domain area; (4) specification – the development method; and (5) work report – indicates the
state and history of the modeling. The information described in (1) e (2) is abstract
information; they can be applied to every instance of the same type of model whereas
information in (3), (4) and (5) of this framework is specific to each instance of the model. The
main goal of this work is to give support for consistency checking among different models and
managing inconsistencies, facilitating the reuse of information on how to map one
representation into others. This framework inspired us to define informally the information
described in (1) and (2) in order to specify the transformations from V-graph into scenarios
and class diagrams, as we have shown in Section 3.2.

ECEASST

12 / 14 Volume 3 (2006)

6 Final Remarks
In this paper, we present a visualization mechanism used to generate requirements models.
This mechanism is transformation-driven. We created some transformation rules in order to
automatically generate scenarios and class diagrams from the V-graph model. Using
transformations during the requirements definition helps us make the trace among the different
models used. It facilitates modeling because consistent models are generated and changes are
automatically propagated. Consequently, these transformations help software evolution.

The results that we have had using this approach have been satisfactory because we
consider that generated views help the engineer analyze the system. However, such views
cannot be considered complete models, but initial models that help the engineers because they
do not have to begin the modeling from scratch. Future work involves: making better
transformation rules in order to obtain more detailed models; defining transformation rules to
both directions, V-graph (scenarios and class diagrams) and (scenarios and class diagrams)
 V-graph; creating a verification mechanism to report inconsistencies and omissions into
each type of view; and also tools are extremely necessary to support the edition of any of these
models. Furthermore, it is necessary to plan experiments in order to validate our approach at
the requirements definition stage and to evaluate what is the impact of using it during the
entire software development process.

Currently, we are working on the definition of the transformation rules to generate the
system architecture from the requirements definition. This work is part of our aspect-oriented
approach to model requirements [31][32]. When taking crosscutting concerns into account, the
visualization approach presented in this paper is equally important because using views is an
alternative way to separate crosscutting concerns, facilitating the tasks of modeling, analysis,
traceability and software evolution.

7 References
1. D. Batory, S. Dasari, B. Geraci, V. Singhal, M. Sirkin, J. Thomas. Achieving reuse with

software system generators. In: IEEE Software, September-1995, pp. 89-94.
2. D. Batory, R. Lopez-Herrejon and P. Martin. Generating Product-Lines of Product-Families.

In: Automated Software Engineering Conference, 2002.
3. I. Baxter. Transformational Maintenance by Reuse of Design Histories, Ph.D. Thesis,

Information and Computer Science Department, University of California at Irvine, Nov.
1990, TR 90-36.

4. G. Booch, J. Rumbaugh and I. Jacobson. The Unified Modeling Language User Guide.
Addison-Wesley, 1999.

5. R. Boudour and M. Kimour. Model Transformation for Requirements Verification in
Embedded Systems, In: Asian Journal Informational Technology, 4 (11): 1012-1019,
2005.

6. K. Breitman1, J. Leite. Lexicon Based Ontology Construction. In: Lecture Notes in
Computer Science 2940- Editors: C. Lucena, A. Garcia, A. Romanovsky, et al., ISBN: 3-
540-21182-9, Springer-Verlag Heidelberg, February 2004, pp.19-34.

7. J. Carroll et al. d'etre: capturing design history and rationale in multimedia narratives. In:
HUMAN FACTORS IN COMPUTING SYSTEMS (CHI94), Boston-USA, ACM Press,
1994, p. 192-197.

Generating Requirements Views:
A Transformation-Driven Approach

Proc. SeTra 2006 13 / 14

8. K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, 2000.

9. L. Cysneiros, J. Leite and J. Neto. A Framework for Integrating Non-Functional
Requirements into Conceptual Models. Requirements Engineering Journal, Vol. 6, No.
2, p. 97-115, 2001, Springer-Verlag London Limited.

10. Draco - Software Reuse, Domain Analysis and Draco Information. Available at:
http://www.bayfronttechnologies.com/l02draco.htm. Accessed on: Mar, 7th, 2006.

11.M. S. Feather. A Survey and Classification of some Program Transformation Approaches
and Techniques. In IFIP 87, pages 165-195, 1987.

12.F. García, M. Laguna, Y. González-Carvajal and B. González-Baixauli. Requirements
variability support through MDD and graph transformation. Submitted to Elsevier Preprint,
2005.

13.P. Giorgini, J. Mylopoulos, E. Nicchiarelli and R. Sebastián, Reasoning with goal models,
Proceedings of the 21st International Conference on Conceptual Modeling, 2002, pp. 167-
181.

14.B. Gonzáles, M. Laguna and J. Leite, “Visual variability analysis with goal models”,
Proceedings of IEEE International Symposium on Requirements Engineering (RE'04),
Japan, 2004, pp. 38-47.

15.O. Gotel, and A. Finkelstein. An analysis of the requirements traceability problem. In:
PROC. OF THE FIRST INTERNATIONAL CONFERENCE ON REQUIREMENTS
ENGINEERING (ICRE'94), IEEE Conputer Society Press., 1994. p. 94-101.

16.GRAPHVIZ. Available at: http://www.graphviz.org/. Accessed on: Mar, 7th, 2006.
17.P. Hsia et al. Formal Approach to Scenario Analysis. IEEE Software, vol. 11, No. 2, 1994.

p. 33-41.
18.A. Lamsweerde and E. Letier, “Handling obstacles in goal-oriented requirements

engineering”, IEEE Transaction Software Engineering, 26(10):978–1005, 2000.
19.M. Lehman. Laws of software evolution revisited. Lecture Notes in Computer Science,

Vol. 1149, 1996. p.108-120.
20.J. Leite and A. Franco. O Uso de Hipertexto na Elicitação de Linguagens da Aplicação. In:

ANAIS DE IV SIMPÓSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE, 1990. p.
134–149.

21. J. Leite, M. Sant'Anna, F. Gouveia. Draco-PUC: A Technology Assembly for Domain-
Oriented Software Development, International Conference on Software Reuse 1994.

22.J. Leite. Viewpoints on Viewpoints. In: ACM Joint Proceedings of the SIGSOFT'96
Workshops, ACM Press, 1996. p. 285-288.

23.J. Leite et al. Enhancing a requirements baseline with scenarios. In: PROC. OF THE
THIRD IEEE INTERNATIONAL SYMPOSIUM ON REQUIREMENTS ENGINEERING
(RE’97), IEEE Computer Society Press, 1997. p. 44-53.

24.J. Leite, Y. Yu, L. Liu, E. Yu and J. Mylopoulos, “Quality-Based Software Reuse”,
Proceedings of the CAiSE 2005-LNCS 3520, 2005, pp. 535-550.

25.J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using nonfunctional
requirements: A process-oriented approach”, IEEE Transactions on Software Engineering,
18(6):483–497, June 1992.

26. J. Neighbors. The Draco Approach to constructing Software from reusable components.
In: IEEE Trans. on Software Engineering, vol.SE-10, No.5, pp.564-574, September-1984.

ECEASST

14 / 14 Volume 3 (2006)

27.B. Nuseibeh. Crosscutting requirements. In: PROC. OF THE 3RD INTERNATIONAL
CONF. ON ASPECT-ORIENTED SOFTWARE DEVELOPMENT (AOSD 2004),
Lancaster-UK, 2004. p. 3-4. ISBN:1-58113-842-3.

28.W. Robinson, S. Pawlowski and V. Volkov. Requirements Interaction Management. ACM
Computing Surveys, Vol. 35, No. 2, 2003. p. 132-190.

29.C. Rolland et al. A proposal for a scenario classification framework. Journal of
Requirements Engineering, Vol. 3, Springer Verlag, 1998. p. 23-47.

30. M. Sant’anna, J. Leite and A. Prado. A Generative Approach to Componentware. In: Proc.
of the Workshop on Component-based Software Engineering, ICSE'20, Kyoto, Japan, April
1998.

31.L. Silva, J. Leite. An Aspect-Oriented Approach to Model Requirements. In: RE'05
DOCTORAL CONSORTIUM in conjunction on the 13th IEEE International Requirements
Engineering Conference, Paris-France, 2005.

32.L. Silva. An Aspect-Oriented Strategy to Model Requirements. Rio de Janeiro, 2006.
220p. PhD Thesis on Software Engineering - PUC-Rio. In Portuguese.

33.I. Sommerville. Software Engineering, Ed. 6th, Addison- Wesley, 2000.
34.P. Tarr, et al. “N Degrees of Separation: Multi-Dimensional Separation of Concerns”. In:

PROC. OF THE 21st Int'l Conf. on Software Engineering (ICSE'99), 1999. p. 107-119.
35.K. Weidenhaupt et al. Scenario Usage in system development: current practice. IEEE

Software, Vol. 15, No. 2, 1998. p. 34-45.
36.Y. Yu, J. Leite and J. Mylopoulos, “From goals to aspects: discovering aspects from

requirements goal models”, Proceedings of IEEE International Symposium on
Requirements Engineering (RE'04), Japan, 2004, pp. 38-47.

37.Y. Yu, J. Mylopolous, A. Lapouchnian, S. Liaskos and J. Leite, “From stakeholder goals to
high-variability software design”, Internal report, 2005.

38.L. Zorman. Requirements Envisaging through utilizing scenarios – REBUS. 1995. Ph.D.
Dissertation, University of Southern California.

