
Electronic Communications of the EASST
Volume 28 (2010)

Proceedings of the
Third International DisCoTec Workshop on
Context-Aware Adaptation Mechanisms for

Pervasive and Ubiquitous Services
(CAMPUS 2010)

Ambient Contracts

Dries Harnie, Christophe Scholliers and Wolfgang De Meuter

6 pages

Guest Editors: Sonia Ben Mokhtar, Romain Rouvoy, Michael Wagner
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Ambient Contracts

Dries Harnie∗, Christophe Scholliers† and Wolfgang De Meuter

Software Languages Lab
Vrije Universiteit Brussel, Belgium

{dharnie,cfscholl,wdmeuter}@vub.ac.be

Abstract: With current programming languages programmers have to manually
keep track of device connectivity state changes while interacting with multiple part-
ners in an ambient environment. This leads to complex code which is hard to evolve
and maintain. We propose ambient contracts, a novel programming abstraction
which tracks connectivity states in order to react appropriately when failure occurs.
With ambient contracts the programmer no longer needs to be concerned about con-
nectivity state changes during interaction, which leads to cleaner code.

Keywords: contracts, ambient-oriented programming, multi-party interaction

1 Introduction

With the growing popularity of mobile network technology, we are also witnessing an explosive
growth in applications for mobile platforms. A new type of mobile application allows interac-
tions with other devices in the proximity; we call these type of applications ambient applications.
Due to the environment in which these applications are deployed, the required software engineer-
ing abstractions are significantly different from those needed for traditional applications:

The networks utilized, mobile ad hoc networks, are spontaneously formed when mobile de-
vices are collocated. As these networks are constantly in flux, ambient applications need device
and service discovery at the core of their programming model. The devices running such appli-
cations only have a limited wireless communication range, which causes frequent disconnections
and reconnections due to user mobility. Therefore device disconnections should be considered
the rule rather than the exception.

These properties do not map well to regular programming languages (like Java [Dow98])
which treat disconnections as fatal errors and assume communication references are stable [DVM+05].
This mismatch becomes even more pronounced when programmers attempt to communicate with
several partners at the same time in a multi-party interaction [HYC08].

Even current approaches for writing ambient applications do not support multi-party interac-
tion well: first of all, there are no facilities for discovering multiple services at once, the pro-
grammer has to write code to discover the multiple services separately. Moreover, relationships
between services (i.e. two services provided by the same device) have to be computed manually.
Finally, current programming languages can only track the connectivity of individual objects.
This lack of abstractions for dealing with multi-party interactions results in complex and un-
maintainable code. Before presenting our solution under the form of ambient contracts, we show
current shortcomings and derive requirements for ambient multi-party interaction abstractions.
∗ Funded by the Prospective Research for Brussels program of IWOIB-IRSIB, Belgium
† Funded by a doctoral scholarship of the IWT-Flanders, Belgium

1 / 6 Volume 28 (2010)

mailto:dharnie@vub.ac.be
mailto:cfscholl@vub.ac.be
mailto:wdmeuter@vub.ac.be

Ambient Contracts

2 Scenario

In this section the issues present in multi-party interaction are shown by means of a smart home
environment [HME+05]. Bob has a television and a sound system in his living room; as he
is also an important business person, he receives a lot of phone calls. This however, poses no
problems because his living room is a smart environment. When Bob receives a phone call, his
digital television will pause and/or his sound system will pause (he could be just listening to
his sound system). While this example is an extreme simplification of a multi-user interaction
pattern it already shows the difficulties of implementing multi-party interactions. Pseudo code for
implementing the example scenario in a high-level ambient programming language incorporating
single service discovery is shown in Figure 1.

1 state := [nil , nil]
2
3 discoveredTV(tv) {
4 state [0] := tv
5 when tv disconnects: { state [0] := nil }
6 when tv reconnects: { state [0] := tv }
7 }
8
9 discoveredSoundSystem(s) {

10 state [1] := s
11 when s disconnects: { state [1] := nil }
12 when s reconnects: { state [1] := s }
13 }
14
15 phoneRings() {
16 if (state [0] == nil && state[1] == nil) { /∗ do nothing ∗/ }
17 else if (state [0] != nil && state[1] == nil) { state [0]. send(”pause”) }
18 else if ...
19 }

Figure 1: Pseudo code implementing the smart environment scenario.

The implementation first creates two handlers (lines 3–13) which are called when a television
or a sound system is discovered. Each handler keeps track of the discovered objects by storing
a reference in the state array (lines 4 and 10). If the connection is lost the discovered object is
removed from the state array, and it is reinserted when the connection is reestablished (lines 5–6
and 11–12). The third handler (lines 15–19) handles the phone ring event: it uses the contents of
state and a chain of if-else-if statements to determine the appropriate reaction.

The issues mentioned in the introduction become apparent in this scenario: there is no support
for discovering and maintaining multiple services at once (lines 3–13). The programmer also
has to track their connectivity manually (lines 5–6 and 11–12). A large portion of the code
is dedicated to discovery and tracking state changes, while only a small portion of the code
is dedicated to the actual base functionality. In current systems it is not possible to specify
constraints on discovered objects, therefore Bob’s phone could start controlling a television in
another room by mistake. Moreover devices cannot refuse service once they have been offered
into the environment: if Alice is watching television and Bob receives a call in the office, the
television should be able to refuse Bob’s pause command.

Proc. CAMPUS 2010 2 / 6

ECEASST

3 Requirements
Now that the issues of multi-party interaction in an ambient environment are made apparent
by means of the smart environment scenario, we will present requirements for an appropriate
abstraction dealing with these issues.
R1: Discovering multiple objects at once

Currently, there is no language construct for declaratively discovering multiple objects at the
same time. As the scenario shows, the programmer has to address this by discovering objects
one by one and keeping track of their connectivity state. The complexity of this kind of stateful
discovery increases exponentially as the number of objects increases. Just as programming lan-
guages for writing ambient programs abstract the discovery of single objects, we need a language
construct which abstracts the discovery of multiple objects at the same time.
R2: Defining the impact of disconnections and reconnections

Not all disconnections are fatal: sometimes objects are not deemed “essential” for the contin-
uation of a multi-party interaction. This is the case in the scenario: if the TV disconnects we
still want the sound system to be paused. As the number of participants in a multi-party inter-
action grows, the code for properly handling disconnections and reconnections grows as well.
Unlike the discovery aspect disconnections and reconnections cannot be anticipated, so code for
handling them has to be repeated at each interaction point in the program. If this number is vari-
able, the set of essential objects must be able to grow or shrink dynamically. We need a way of
making this set explicit in multi-party interactions and handle disconnections and reconnections
accordingly.
R3: Describing relationships between objects in the environment

No object is an island: most objects are related to other objects. Programmers need to be
able to make relationships between objects explicit: for example, demanding that two objects are
in the same room or from the same device. In the scenario, if Bob has a home cinema system
which serves as both a sound system and a TV, it could receive the pause message twice. We
cannot express this kind of constraints with current programming languages because all object
discovery happens independently.
R4: Allowing objects to exercise access control

If an agent exports an object to the outside world, everyone can discover and use it. However,
there are a number of situations where controlling the access to exported objects is necessary.
For example, a resource-constrained system could allow only a certain amount of users simulta-
neously and refuse service to new clients. In our scenario, this would give the TV set the means
to refuse Bob’s commands if Alice is already watching it.

Currently no programming language meets all of these requirements. Given a system that does
meet the requirements, a programmer can express multi-party interactions without writing state-
ful discovery code himself and without managing disconnections and reconnections manually.
This would greatly improve the clarity and the maintainability of the code.

4 The Ambient Contract Model

In this section we formulate our solution under the form of a novel model called ambient con-
tracts. This model is inspired upon previous work called contracts [HHG90]. These contracts,

3 / 6 Volume 28 (2010)

Ambient Contracts

however, assume a non-distributed object-oriented setting: they do not meet the requirements
distilled above because they do not take into account the properties of an ambient environment.
Our model extends contracts in order to meet these requirements.

A contract describes a cooperation between a number of participants, where each participant
fulfills a well-defined role. A role is an abstract description of the operations a participant should
support and which constraints it should satisfy before it is added to the contract. Further, a
contract describes how to initially set up the roles and which invariants it should maintain once
the contract is initialized (for example, requiring that a participant is always present).

The two main themes in the requirements for multi-party interaction are object discovery and
handling connectivity state changes. With these themes in mind, we will explain how the ambient
contract model operates.

Figure 2: Diagram of ambient contracts

In Figure 2, we show the different phases
of the lifetime of an ambient contract: discov-
ery, initialization, maintenance and termina-
tion. An ambient contract starts in the dis-
covery phase, searching for remote services
which can fulfill the roles specified in the con-
tract. When the user’s device (a phone in this
example) discovers a remote service, it is put
in a pool of connected services (1). Its in-
terface is first compared to the interfaces re-
quired by the various roles in the ambient con-
tract. If the service “fits” in a certain role,
the ambient contract verifies the constraints
which need to be satisfied by this role. Any
relationship constraints (2) are also verified in this phase (R3). If all the constraints are met, the
newly discovered service service is requested (R4) to join the contract fulfilling this specific role.

The discovery phase lasts until all essential roles are filled in, at which point the contract enters
the initialization phase. In this phase, all participants are informed that the contract has started
and the implementation ensures that all invariants are satisfied. The contract then enters the
maintenance phase which allows the core logic of the contract to run. From the programmer’s
point of view, these phase changes all happen simultaneously (R1).

During the discovery and initialization phases, disconnections are not treated as errors. Once
the contract has entered the maintenance phase however, participants are notified if another par-
ticipant disconnects. The participant is then marked as disconnected (3). If it was part of the
“essential” set, the contract is said to be broken (R2) until the participant reconnects. A broken
contract does not allow any message to be sent to any of its participants until it is restored. This
restoration occurs if the original participant reconnects, but contract writers could also specify
that an equivalent object suffices or that no restoration is possible. If restoration is not possible
the contract enters the final termination phase, notifying participants and destroying the contract.

In the ambient contract model, the programmer no longer needs to be concerned about device
disconnections and reconnections: he can declaratively specify which services are required and
which ones are optional.

Proc. CAMPUS 2010 4 / 6

ECEASST

5 DEAL: an Ambient Contract Framework

In this section we present DEAL: a prototype implementation of the ambient contract model
using AmbientTalk [DVM+05], a high level ambient oriented programming language. To show
how ambient contracts enable multi-party interaction, the implementation of the scenario from
Section 2 using DEAL is shown in Figure 3.

1 def MuteWhenPhoneRings := contract: {
2 role: Phone supports: { ring () }
3 role: AudioDevice supports: { pause() }
4
5 def phone := required: one(Phone)
6 def devices := optional: many(AudioDevice).where({|ad| ad.room == phone.room})
7
8 invariant { after phone.ring () { devices .send(”pause”) } }
9 }

Figure 3: Implementing the scenario in Section 2 using DEAL

In the MuteWhenPhoneRings contract we define two roles (lines 2–3), each with a set of
operations that must be supported. We then use these roles to define the participants in the
contract: the first (line 5) states that exactly one Phone is necessary. The next (line 6) binds
all AudioDevices discovered in the environment to the variable devices, as long as they are in
the same room as the phone. This constraint is verified by the where clause, which evaluates
the passed function every time an AudioDevice is discovered (the discovered device is bound to
the ad variable). Finally, line 8 describes the invariant: after sending the ring() message to the
phone, all audio devices must receive the pause() message. Once the contract is defined, the
DEAL framework uses the given participant definitions and invariants to set up the appropriate
discovery, disconnection and reconnection handles.

All of the issues we described earlier are addressed by ambient contracts: first of all, ambient
contracts track state changes automatically, the programmer does not have to write discovery
code in a stateful way. Secondly, the required and optional statements on lines 5–6 explicitly
declare which objects are essential to the contract. If any of the audio devices disconnects, it is
removed from the devices set and the contract can continue. However, when the phone discon-
nects the contract is broken and all interaction stops until the phone is back in communication
range. The third issue (imposing constraints on communication partners) is addressed by line 6:
the implementation uses the where syntax to express a relationship between the phone and the
audio devices. This relationship also implies an order in which the participants of the contract
must be discovered; the DEAL framework takes care of this by not adding audio devices to the
devices set until the phone has entered the contract. Finally, it is not possible to start control-
ling the wrong device by accident because the implementation negotiates with objects in the
environment before adding them to a contract.

Using DEAL, the programmer can incrementally develop ambient applications by evolving
contracts along with his applications. For example, he could start with a naive ambient contract
which assumes all participants always stay in range, then he could start shrinking the set of
essential participants and adding code to maintain the invariants.

5 / 6 Volume 28 (2010)

Ambient Contracts

6 Conclusion

In this paper we argument that current programming languages do not offer abstractions for
dealing with multi-party interaction in mobile ad hoc networks. Some of the issues arising
when dealing with multi-party interactions also arise when communicating with a single part-
ner in the ambient, like discovering an object in the environment and managing its disconnec-
tions and reconnections. Solutions for single-party interactions in existing languages like Am-
bientTalk [DVM+05] do not translate straightforwardly to multiple partners. In certain cases it
is possible to transform a multi-party interaction into a series of single-party interactions but, as
Honda et al. note [HYC08], this is not always possible. Moreover expressing such multi-party
interaction as a series of single-party interactions is often extremely difficult, even more so when
the parties communicate over unreliable networks.

We propose ambient contracts: a novel language construct which allows programmers to
declaratively specify a heterogenous group of objects which are discovered in the ambient envi-
ronment, enforce invariants, and intelligently handle disconnections and reconnections. Ambient
contracts are modular and extensible thereby encouraging code reuse and separation of concerns.

We consider ambient contracts and its prototype implementation DEAL as a first step towards
a solution for dealing with multi-party interactions. Future work will focus on refining our
solution. Currently it is not possible to respond differently to disconnections depending on the
contract’s state. Inspiration will be drawn from context-aware application frameworks where
the behavior of the application is modified depending on the context [HHS+02]. This work
is currently being validated by comparing the use of ambient contracts to equivalent manual
implementations.

Bibliography

[Dow98] T. Downing. Java RMI: remote method invocation. IDG Books Worldwide, Inc.
Foster City, CA, USA, 1998.

[DVM+05] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, W. De Meuter. Ambient-
Oriented Programming. In OOPSLA ’05: Companion of the 20th annual ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and appli-
cations. ACM Press, 2005.

[HHG90] R. Helm, I. Holland, D. Gangopadhyay. Contracts: specifying behavioral composi-
tions in object-oriented systems. ACM SIGPLAN Notices 25(10):169–180, 1990.

[HHS+02] A. Harter, A. Hopper, P. Steggles, A. Ward, P. Webster. The anatomy of a context-
aware application. Wireless Networks 8(2):187–197, 2002.

[HME+05] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, E. Jansen. The gator tech
smart house: A programmable pervasive space. Computer, pp. 50–60, 2005.

[HYC08] K. Honda, N. Yoshida, M. Carbone. Multiparty asynchronous session types. ACM
SIGPLAN Notices 43(1):273–284, 2008.

Proc. CAMPUS 2010 6 / 6

	Introduction
	Scenario
	Requirements
	The Ambient Contract Model
	DEAL: an Ambient Contract Framework
	Conclusion

