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Abstract. OCL is a standard specification language, which will probably be 
supported by most software modeling tools in the near future. Hence, it is important 
for OCL to have a solid formal foundation, for its syntax and its semantic definition. 
Currently, OCL is being formalized by metamodels expressed in MOF, 
complemented by well formedness rules written in the own OCL. This recursive 
definition not only brings about formal problems, but also puts obstacles in language 
understanding. On the other hand, the OCL semantics metamodel presents quality 
weaknesses due to the fact that certain object-oriented design rules (patterns) were 
not obeyed in their construction. The aim of the proposal presented in this article is 
to improve the definition for the OCL semantics metamodel by applying GoF 
patterns and the dynamic metamodeling technique. Such proposal avoids circularity 
in OCL definition and increases its extensibility, legibility and accuracy. 

 

Keywords: OCL; formal semantics; dynamic meta modeling; design patterns. 

 

1 Introduction 

OCL (Object Constraint Language) [1] is a formal specification language, accepted as a 
standard by the OMG (Object Management Group). OCL is a three-valued Kleene-Logic with 
equality that allows for specifying constraints on graphs of object instances whose structure is 
described by UML class diagrams[2], thus extending the expressive capacity of such notation. 
OCL is intended to be a practical formalism, addressing software developers who do not have 
a strong mathematical background. For that reason, OCL deliberately avoids mathematical 
notation; instead of symbols it uses a programming language oriented syntax and attempts to 
hide concepts such as logical quantifiers.  
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A fundamental requirement for any formalism is that it should count with a rigorous definition 
of both its syntax and its semantics. The recently adopted OCL 2.0 specification provides a 
formal definition of the OCL semantics (see official OCL semantics, appendix A in [1]) 
following the denotational approach. Such semantics is based on set theory with the notion of 
an object model, which is basically a formalization of UML Class Diagrams [4]. OCL 
expressions are interpreted by functions over environments, in the classical way [3]. Another 
approach to specify the OCL semantics that can be found in the literature consists in defining 
an embedding of OCL into other logics [5]. 

These two approaches have succeeded in describing the evaluation of OCL constraints in a 
formal, non-ambiguous manner providing established technologies for abstract reasoning, 
automatic verification, execution, or simulation of models; however they are not especially 
suited for explaining the semantics to people with modest mathematical background. 

Due to the fact that the purpose of the semantics is to provide a common understanding of the 
formalism among its users, those mathematically rigorous definitions, which are not readable 
for a wide range of OCL users, are of little help. In the last years the academic community 
accepted that the semantics should be given in formalisms OCL users are familiar with, for 
example metamodeling. Adhering to this trend, the OCL 2.0 specification provides a semantics 
definition based on MOF metamodels (see chapter 10 of [1]) complemented by well 
formedness rules written in the own OCL. However, such circular definition not only gives 
rise to formal problems [6], but also puts obstacles in language understandings. Additionally, 
having into account the dynamic nature of semantics evaluation, it seems reasonable to think 
that dynamic meta-modeling techniques, rather than static meta-classes should be used to 
define the OCL semantics. 

Working towards the solution to this problem, we propose to create a clearer and simpler 
alternative definition for the OCL semantics by giving a dynamic meta-model which is 
specified using a simple form of UML collaboration diagrams and applying well established 
design patterns [7]. 

The paper is organized as follows; in Section 2 we present a summary of the current OCL 
semantics [1] to provide an adequate context to the reading of this proposal. Then, in section 3, 
we propose a new definition for the OCL semantics, based on the Dynamic Meta Modelling 
technique (DMM) [8] [9]. In section 4 we apply the Visitor pattern [7] on the semantics 
metamodels. Finally, in Section 5, we present conclusions and future works. 

2 OCL Specification Overview 

An OCL expression is defined in [1] as "an expression that can be evaluated in a given 
environment" Additionally the specification in [1] states that “evaluation of the expression 
yields a value". Taking it into account, the ‘meaning’ (semantics) of an OCL expression can be 
defined as the value yielded by its evaluation in a given environment.  

Figure 1 shows an overview of the UML based specification of the OCL syntax and semantics 
presented in [1].  
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Figure 1:  Overview of packages in the UML-based semantics 

 

Figure 2 shows the overview of the AbstractSyntax package, which defines the abstract syntax 
of OCL as a hierarchy of meta classes. On the other hand, Evaluations package defines the 
semantics of these expressions using also a hierarchy of meta classes where each one 
represents an evaluation of a particular kind of expression (see figure 3). The idea behind this 
representation is that each evaluation yields a result in a given environment, therefore, the 
semantics evaluation of an expression in a specific environment is given by associating each 
evaluation instance to an expression model (see figure 4). 

 

 
 

Figure 2: AbstractSyntax package overview 
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Figure 3: Evaluations package overview 

 

 
 

Figure 4: Semantics Evaluation of OCL expressions. 

 

The Evaluations package replicates the hierarchy of the abstract syntax. We believe that such 
duplication should be avoided since it hinders the legibility of the meta model and the 
efficiency in the development of automatics tools based on this semantics. We will expand on 
this issue in the next section. 

 

3 Semantics evaluation via Dynamic Meta Modeling 

In this section we extend the Abstract Syntax structure by defining a new operation which will 
give semantic meaning to syntax expressions by associating them with their corresponding 
values. 
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The standard maths semantics of OCL ([1] Appendix A) states:  

 

A context for evaluation is given by an environment τ = (σ, β) consisting of a system 
state σ and a variable assignment β: Vart → I(t). A system state σ provides access to 
the set of currently existing objects, their attribute values, and association links 
between objects. A variable assignment β maps variable names to values. 

Let Env be the set of environments τ = (σ, β). The semantics of an OclExp is a function 
I[[e]] : Env → I(t) which binds each syntactic expression e with a value in I(t). 

 

Using this maths semantics as a foundation, we define an operation evalOn() which is 
expected to represent I[[e]]:Env → I(t). EvalOn() takes an EvalEnvironment as input 
parameter and returns a Value (i.e., context OclExpression 
def:evalOn(env:EvalEnvironment):Value). This operation acts like a bridge 
between AbstractSyntax and Values packages replacing the whole Evaluations package (see 
figure 5).   

 

 
 

Figure 5: evalOn() over OclExpression structure. 

 

In addition, we believe that the best way to understand the semantics evaluation is by showing 
the evaluation process itself. By using only class diagrams to reflect the semantics evaluation, 
it is hard to reveal the latter process, because of the static nature inherent to these diagrams. 
Because of that, to completely understand all the process it is necessary to pay attention to the 
constraints established on these diagrams. In [1], these constrains are written in OCL with two 
negatives outcomes: 

� The expressibility and simplicity obtained by using UML in the semantics metamodel 
over the math one is lost because of the necessity of be aware of the constraints to fully 
understand the semantic. 
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� The constraints are written in OCL, so that the semantics of OCL is defined in terms of 
OCL itself! If someone didn’t understand OCL, they would neither understand these 
constraints (see for example the IterateExp semantics in [1]) 

Consequently, with the aim of producing a simple, precise and clear explanation, in this 
section we use sequence diagrams to visualize the distinct steps throughout the semantics 
evaluation of expressions. Each meta-class belonging to the Domain package will be replaced 
with a sequence diagram which states the concrete semantics and evaluation process of the 
corresponding syntactic construction. This approach is known as Dynamic Meta Modelling 
(DMM) [8] [9], and has been used in the semantics specification of UML elements (such as 
State Machines and Collaborations), but its use in OCL specification has not been explored 
before. 

Taking advantage of the classification proposed in [10] we categorize the OCLExpressions in:  
Atomic Expressions, Navigation Expressions, OCL Predefined Operations and Iterator 
Expressions, adding a “new” category to this list that we call OCL Language Expressions. In 
the following sections we show one or two particular expression for each category. 

 

3.1 Semantics of Atomic Expressions 
This category consists of expressions such as LiteralExp and VariableExp that do not have any 
subexpressions. 

Because of the simplicity of these two kind of expressions, we only show our DMM semantics 
for IntegerLiteralExp (I[[Integer]] = Z∪⊥  in figure 6) and VariableExp (I[[v]](r) = β(v)  in 
figure 7). A deeper discussion on these semantics can be found in [1]. 

   
 

Figure 6: AS and evalOn() over IntegerLiteralExp. 
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Figure 7: AS and evalOn() over VariableExp. 

 

3.2 Semantics of OCL Language Expressions 
This category consists of expressions such as LetExp and IfExp that are predefined 
constructions of the language. With the aim of highlighting the benefits obtained using this 
new “translation” of the maths semantics, we remark the differences between the standard 
UML based semantics and the semantics of a LetExp proposed in this paper. The standard 
UML based evaluation of a LetExp proposed in [1] is shown in figure 8. The diagram shows 
how the evaluation encapsulates the result value and the evaluation environment, although 
neither the evaluation method nor the structural constraints are specified on this diagram. 

  
Figure 8: Standard UML based semantic evaluation of a LetExp. 
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A simple analysis of the last diagram does not give us enough information about the semantics 
of a LetExp; it only gives us information about the static structure of the elements implied in 
this evaluation. In order to fully understand the previous diagram, we must study its well 
formed rules expressed in OCL itself. 

The Maths semantics of a LetExp as expressed in the Appendix A of [1] is shown in figure 9. 

 

I[[let v = e1 in e2]](τ) = I[[e2]](σ,β{v/ I[[e1]](τ)}) 

 

Figure 9: Standard Math based semantic of a LetExp. 

 

At this moment, we can translate this algorithm under the applicative order reduction into a 
sequence diagram (see figure 10). As a first step of evaluation, we evaluate the init expression 
(I[[e1]](τ), signal 2) to get a new evaluation environment which extends the previous one with 
the latter evaluation (β{v/ I[[e1]](τ)}, signals 3 and 4). Then, we evaluate the in expression in 
the new environment, and the value returned by this later evaluation is the result of the whole 
LetExp evaluation (I[[e2]](σ,β{v/ I[[e1]](τ)}), signal 5).  

 

 
 

Figure 10: Sequence diagram of a LetExp evaluation. 
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3.3  Semantics of  OCL Predefined Operations 
As defined in [10], expressions from this category are instances of the metaclass 
OperationCallExp where the called operation is a predefined one, such as +, =. 

Figure 11 shows the AS of these expressions. The semantics is given with a different scenario 
for each predefined operation. In particular we show the scenario corresponding to the maths 
semantics of equality operation in figures 12 and 13. 

 
Figure 11. AS of OperationCallExp 

 

 
 

Figure 12. Maths semantic of equality operation 
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Figure 13. evalOn() over equality operation 
 

3.4 Semantics of Navigation Expressions 
 OCL expressions of this category are instances of PropertyCallExp and 
AssociationEndCallExp. Such expressions are evaluated by ’navigating’ from the object, to 
which the source expression is evaluated, to that element in the object diagram, which is 
referenced by the attribute or association end. We focus our example in the PropertyCallExp, 
named AttributeCallExp in the maths semantics stated in [1]; this semantics can be seen in 
figure 14.  

 
 

Figure 14. Maths semantics of AttributeCallExp 
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Based on this semantics and using the AS of PropertyCallExp (figure 15) we construct the 
evalOn() as is shown in figure 16. The getCurrentValueOf() operation is a predefined 
operation over ObjectValue which returns either the value attached to the attribute name or 
OclUndefined if such value is not  found. 

 
Figure 15. AS of PropertyCallExp 

 

 
 

Figure 16. evalOn() over AttributeCallExp 

 

3.5 Semantics of  Iterator Expressions 
Iterator expressions are the predefined operation over any Collection in OCL: select(), reject(), 
forAll(), iterate(), exists(), collect()  or isUnique(). Since all these expressions can be expressed 
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by macros based on iterate(), it would be sufficient to refer for their semantics just to the 
semantics of iterate . 

We will remark the differences between the standard UML based semantics ([1]) and our 
specific semantics of an IterateExp. The semantics evaluation of an IterateExp as is expressed 
in [1] is shown in figure 17. Once again we face the problem that such static diagram does not 
transmit enough information about the semantics evaluation process and we have to appeal to 
the well formedness rules established on this diagram [1]; without these constraints we would 
be unable to completely understand the semantic process of an IterateExp. 

  Figure 17: Standard UML based semantic evaluation of an IterateExp. 
 

Even worse, such constraints try to explain how IterateExp works but lacks of correctness due 
to the fact that the IterateExp is defined  in terms of a ForAllExp wich is itself defined in terms 
of  IterateExp, as follows:  

The environment of any sub evaluation is the same environment as the one from its previous 
sub evaluation, taking into account the bindings of the iterator variables, plus the result 
variable which is bound to the result value of the last sub evaluation. 

context IterateExpEval inv:   
let SS: Integer = source.value->size() 
in if iterators->size() = 1  

then Sequence{2..SS}->forAll(i:Integer | bodyEvals-
>at(i).environment = bodyEvals->at(i-1).environment-
>replace(NameValueBinding(iterators->at(1).varName, 
source.value->asSequence()->at(i)))-
>replace(NameValueBinding(result.varName,bodyEvals->at(i-
1).resultValue ))) 
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else -- iterators->size() = 2 
Sequence{2..SS*SS}->forAll(i: Integer | bodyEvals-
>at(i).environment = bodyEvals->at(i-1).environment->replace( 
NameValueBinding( iterators->at(1).varName,source->asSequence()-
>at(i.div(SS) + 1)))->replace( NameValueBinding( iterators-
>at(2).varName,source.value->asSequence()->at(i.mod(SS))))-
>replace( NameValueBinding(result.varName,bodyEvals->at(i-
1).resultValue ))) 

Endif 
 

If the reader has not a previous knowledge on OCL, it is clear that the previous constraint is 
almost impossible to understand, and with the proper knowledge of the language, the reading 
and comprehensiveness of these constraints is a hard task to do. 

A summary of the math semantics is shown in figure 18 (see Appendix A of [1] for the full 
version), while figure 19 and figure 20 display the semantics expressed via sequence diagrams. 

 

 
I[[ e1 → iterate (v1;v2 = e2e3)]] (τ) = I[[ e1 → iterate’  (v1e3) ]] (τ’)  
 
Where  τ’ = (σ,β’)   and  τ’’ = (σ,β’’) 
            β’ := β{ v2 / I[[ e2]] (τ) } 
            β’’ := β’{ v2 / I[[ e3]] (σ,β’ {v1 / x1}) } 
 
and if e1 ∈ ExprSequence(t1), iterate’ is defined as: 
 
                                                      I[[ v2 ]] (τ’)  
 I[[ e1 → iterate’  (v1e3) ]] (τ’) =                        if   I[[ e1 ]] (τ’) = <> 
                                                          I[[ mkSequencet1 (x2 ,…, xn )  → iterate’  (v1e3) ]] (τ’’)   
                                                                             if   I[[ e1 ]] (τ’) = < x1 ,…, xn > 
 

Figure 18: Maths semantics of IterateExp 

The IterateExp evaluation is defined as follows: 

The first sub evaluation will start with an environment in which the result variable is bound to 
the init expression (initExp) of the variable declaration in which it is defined (β’:= β{ v2 / I[[ 
e2]] (τ) }, signals 2, 3 and 5 in  figure 19); then we proceed to evaluate the body with all 
iterator variables bound to the different combinations of the source (figure 17). The iterators 
binding (β’{v1/x1} in β’’:=β’{v2/ I[[e3]] (σ,β’ {v1 / x1}) }) is realized by CombinationGenerator 
(signals 7 and 8 in figure 20), under a ‘depth first search’  strategy. This strategy determines the 
number of sub evaluations over the body ( I[[ e3]] (σ,β’ {v1 / x1}) in β’’ := β’{ v2 / I[[ e3]] 
(σ,β’ {v1 / x1}) }; signal 9 figure 20); as last step, these sub evaluations will update the result 
variable (signals 10 and 11 in figure 20) which is returned as the result value of the whole 
evaluation process (I[[ v2 ]] (τ’), signal 12 in figure 19). 
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Figura 19: IterateExp semantics as sequence diagram. 

 
Figure 20: Body Evaluation of an IterateExp. 
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4 Applying the Visitor Pattern 

The OclExpression structure is not likely to change, and several operations might be defined 
(e.g. refactoring operations, semantics evaluation, code generation operations, etc.). 
Consequently, we consider that it is more appropriate to avoid polluting the static structure 
with these operations and then to apply the Visitor pattern [7], in order to keep it simple and 
clear (See figure 21). 

 
 

Figure 21: Visitor operation over OclExpression structure. 

 

Now we define a meta class named OclEvaluator which will replace evalOn() maintaining its 
functionality in one separate visit() operation for each non abstract syntactic class of the AS 
package. 

The evaluation environment now is known directly by the OclEvaluator and must be modified 
in a controlled way to avoid the side effect and maintain the query property (figure 22). 

 
Figure 22: OclEvaluator meta-model. 

 

With this approach, the semantics evaluation of an OclExpression is entirely carried out by 
OclEvaluator which associates AbstractSyntax package with Values packages (see figure 23). 
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As an example, in figure 24, we show how the operation evalOn() over a LetExp is modified to 
become adapted to the visitor pattern. 

 
Figure 23: OCL meta model using OclEvaluator 

 

 
Figure 24: LetExp semantics using OclEvaluator 
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5 Conclusion and Future Works 

OCL is an object property specification language, which is rigorous but simple and easy to 
use. Therefore, it becomes a very interesting option for the development of code verification 
and derivation tools.  

OCL addresses people with modest mathematical background. Thus the OCL semantics should 
be given in a simple formalism OCL users are familiar with, for example metamodeling 

In this article, we elaborate an alternative definition for the OCL semantics. This proposal re-
uses the OCL syntax metamodel, defines the relation between syntax and semantics through 
UML collaboration diagrams adhering to the Dynamic Metamodeling (DMM) approach. In 
this way, circularity on the OCL definition is avoided, and intuitive communication is 
increased. Besides, the OCL math semantics was used as a foundation and guidance for the 
semantics definition. Although math semantics could be tedious and hard to understand, and 
demands users with more academic background, we showed that it could be translated into 
sequence diagrams offering a more readable and simple semantics metamodel. 

On the other hand, the adequate performance of the tools supporting OCL [11] [12] strongly 
depends on the quality of language definition. To count on a well-defined syntax and 
semantics will result in benefits for such tools. Also, it is almost straightforward to translate 
this semantics into a programming language such as Java, because of the proximity between 
sequence diagrams and programming languages. 

Finally, we re-designed the OCL semantics metamodel by applying the ‘Visitor’  design 
pattern, which makes it easier the creation of new functionality over the OCL syntax structure 
and its integration into CASE tools. For example, concerning model transformations, it is 
possible to define OCL constraints transformations by adding a new “visitor” for the OCL 
syntax hierarchy.  In this sense, we are working on the redefinition of the ePlatero 
evaluator[13] following the proposal presented in this article in order to analyze the potential 
advantages regarding the different indicators, such as reliability, efficiency, modifiability, etc. 
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