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De-/Re-constructing M odel Transfor mation L anguages

Eugene Syriani and Hans Vangheluwe

McGill University, School of Computer Science, Montréahr@da
{esyria,hvi@cs.mcgill.ca

Abstract: The diversity of today’s model transformation language&esat hard
to compare their expressiveness and provide a frameworiktenoperability. De-
constructing and then re-constructing model transfoimnatinguages by means of
a unigue set of most primitive constructs facilitates btk thus introduca-Core,

a collection of primitives for model transformation. Comipig T-Core with a (pro-
gramming or modelling) language enables the design of moale$formation for-
malisms. We show how basic and more advanced features frastingxmodel
transformation languages can be re-constructed us@w e primitives.

Keywords: Transformation primitives, multi-paradigm model transhation

1 Introduction

A plethora of different rule-based model transformationgiaages and supporting tools exist
today. They cover all (or a subset of) the well-known esséifidiatures of model transforma-
tion [SV094d: atomicity sequencingbranching looping non-determinismrecursion paral-
lelism, back-tracking hierarchy, andtime For such languages, the semantics (and hence imple-
mentation) of a transformation rule consists of the appad@rcombination of building blocks
implementing primitive operations such as matching, rémgj and often a validation of con-
sistent application of the rule. The abovementioned esdeetitures of transformation lan-
guages are achieved by implicitly or explicitly specifyifrule scheduling”. Languages such
asATL [JKO€], FUJABA [FNTZ0Q, GReAT [AKK T06], MoTif [SV094, VIATRA [VBO07], and
VMTS [LLMCO6] include constructs to specify the order in which rules ggliad. This often
takes the form of a control flow language. Without loss of gelity, we consider transformation
languages where models are encoded as typed, attributehlsgra

The diversity of transformation languages makes it hardthenone hand, to compare their
expressiveness and, on the other hand, to provide a frarkdarointeroperability {.e., mean-
ingfully combining transformation units specified in diéat transformation languages). One
approach is to express model transformation at the levelriafitive building blocks. De-
constructing and then re-constructing model transfownathinguages by means of a small set
of most primitive constructs offers a common basis to comphae expressiveness of transfor-
mation languages. It may also help in the discovery of ngadsibly in domain-specific, model
transformation constructs by combining the building begknew ways. Furthermore, it allows
implementers to focus on maximizing the efficiency of thanitives in isolation, leading to
more efficient transformations overall. Lastly, once restaucted, different transformation lan-
guages can seamlessly interoperate as they are built oartiee@imitives. This use of common
primitives in turn allows for global as well as inter-ruletimpization.
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Figure 1: Thel-Core module

We introduceT-Core, a collection of transformation language primitives fordabtransfor-
mation in Sectior2. Section3 motivates the choice of its primitives. Sectidrshows how
transformation entities, common as well as more esotesic,be re-constructed. Sectiérde-
scribes related work and Sectiérdraws conclusions and presents directions for future work.

2 De-constructing Transformation L anguages

We propose here a collection of model transformation piest The class diagram in Figuie
presents the modulgCore encapsulating model transformation primitivdsCore consists of
eight primitive constructsRrimitive objects): avatcher, Iterator, Rewriter, Resolver, Rollbacker,
Composer, Selector, andSynchronizer. The first five areRulePrimitive elements and represent
the building blocks of a single transformation unitCore is not restricted to any form of speci-
fication of a transformation unit. In fact, we consider oRhgConditionPatterns andPostCondi-
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tionPatterns. For example, in rule-based model transformation, thestommation unit is aule.
ThePreConditionPattern determines its applicability: it is usually described watkeft-hand side
(LHS) and optional negative application conditions (NAQsRIso consists of &ostCondition-
Pattern which imposes a pattern to be found after the rule was appiied usually described
with a right-hand side (RHSRulePrimitives are to be distinguished from ti@ntrolPrimitives,
which are used in the design of the rule scheduling part oftidwesformation language. A
meaningful composition of all these different constructsiComposer object allows modular
encapsulation of and communication betw@emitive objects.

Primitives exchange three different types of messagescket, Cancel, and Exception. A
packetrt represents the host model together with sufficient infoionafior inter- and intra-rule
processing of the matcher.thus holds the current model (graph in our cagaph, the match-
Set, and a reference to theurrent PreConditionPattern identifying aMatchSet. A MatchSet
refers to acondition pattern and contains the actual matches as well as a refeteicematch-
ToRewrite. Note that eactMatchSet of a packet has a unique condition, used for identifying
the set ofmatches. A Match consists of a sub-graph of thyaph in 7T where each element is
bound to an element igraph. Some elementdNpdes) of the match may be labelled awots,
which allows certain elements of the model to be identified passed between rules. A cancel
message is meant to cancel the activity of an active primitive elein@specially used in the
presence of &elector). Finally, specific exceptiong can be explicitly raised, carrying along the
currently processed packat(7t, is used to represent the empty packet).

All the primitive constructs can receive packets by invgkeither theimpacketin, nextin, suc-
cessln, or failln methods. The result of calling one of these methods setsiindtipe in success
or failure mode as recorded by tiSuccess attribute. Cancel messages are received from the
cancelln method. Next, we describe in detail the behaviour of theediffit methods supported
by the primitive elements. A complete description can betbin [S\V094.

21 Matcher Algorithm 1 Matcher.packetin(71)

M <« (all) matches otondition found in rT.graph
TheMatcher finds all possible matches of tiendition 7 (coniion M) < mmatchSets then
pattern on the graph embedded in the packet it receivege
from its packetin method. The transformation mod- _ dai‘f‘d“"”di“"”v“") to rematchSets
eller may optimize the matching by setting thedAll TLcurrent « condition
attribute tofalse when he a priori knows that at most isSuccess <M # 0
one match of this matcher will be processed in the overun 1t
all transformation. The matching also considers the pivapping (if present) of the current
match ofrr. After matching the graph, thdatcher stores the different matches in the packet as
described in Algorithml. Some implementations may, for example, parametrizé/itieher by
the condition pattern or embed it directly in theatcher. The transformation unitse(g.,rules)
may be compiled in pre/post-condition patterns or integatebut this is a tool implementation

issue which we do not discuss here.

2.2 Rewriter

As described in Algorithn®, the Rewriter applies the required transformation for ésndition
on the match specified in the packet it receives frorpdt&etin method. That match is consumed
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by theRewriter: no other operation can be further appliedlgorithm 2 Rewriter.packetin(7)
on it. Some validations are made in tRewriter to verify,  if mis invalid then

for example, thatt.current.condition = condition.pre or isSuccess « false
exception «— X (71)

that no error occurred during the transformation. In our ap- return n
proach, a modification (update or delete) of an element @“L‘f condition pre.M) € 7zmatchsets
{M| <C0nd|t|0n pre M> c T matChSetS} is automat|ca||y apply transformanon oM.matchToRewrite

propagated to the other matches, if applicable. if transformation failedhen
isSuccess « false

2.3 lterator exception « X (1)
return 1

The lterator chooses a match among the set of matches c¢fd if

thecurrent condition of the packet it receives from fiack- ff;ﬂ,gggﬂgﬁg: ?\f:f shlodry

etin method, as described in Algorith The match is isSuccess « true

chosen randomly in a Monte-Carlo sense, repeatable usifg"™" ™

sampling from a uniform distribution to provide a reprodilej fair sampling. When itaextin
method is called, thierator chooses another match as long as the maximum number ofdtesat
maxIterations (possibly infinite) is not yet reached, as described in Atgar 4. In the case of

multiple occurrences of klatchSet identified byrt.current, thelterator selects the lasflatchSet.

Algorithm 3 Iterator.packetin(1) Algorithm 4 Iterator.nextIn(71)

if (rt.current,M) € m.matchSets then if (rt.current,M) € mmatchSets and remiterations > 0 then
chooseme M chooseme M
M.matchToRewrite <— m M.matchToRewrite <— m
remiterations <— maxlterations — 1 remiterations < remiterations — 1
isSuccess «+ true isSuccess <« true
return return 7T

else else
isSuccess « false isSuccess <« false
return return 1

end if end if

24 Resolver

Algorithm 5 Resolver.packetIn(7)
The Resolver resolves a potential conflict between for all conditionc € {c|(c,M) € mmatchsets} do
matches and rewritings as described in Algorithm ' edemaMachesonly and ¢=reurrent then
For the moment, th&esolver detects conflicts in a  endif

simple conservative way: it prohibits any change to for al matchme M do
P y P y 9 if mhas adirty nodethen

other matches in the packet (check tbirty nodes). if customResolution(17) then
However, it does not verify if a modified match is still isSuccess « true
valid with respect to its pre-condition pattern. The s f dermutResolution(r) then
externalMatchesOnly attribute specifies whether the isSuccess < true
conflict detection should also consider matches from dseret”r” T
its match set identified by.current or not. In the case isSuccess « false
of conflict, a default resolution function is provided exception < X (m)
but the user may also override it. end if
end if

end for

2.5 Rollbacker end for

isSuccess « false
TheRollbacker is only used to provide back-tracking exception « x(m)

capabilities to its transformatiomle. Consequently, — 4™ ™

Proc. GT-VMT 2010 4/14



@ ECEASST

it is used as a recovery point that allows backward recovepacketse.g.,by means of check-
pointing. Thepacketin method establishes a checkpoint of the received packethanextin
method restores the last checkpoint to roll-back the packis$ previous state. Again, a maxi-
mum number of iterations can be specified.

Algorithm 6 Rollbacker.packetin(7) Algorithm 7 Rollbacker.nextin(71)
establish() if (rtcurrent,M) € m.matchSets and remlterations > O then
remlterations <— maxiterations — 1 remlterations <— remlterations — 1
isSuccess « true isSuccess «+ true
return 1T return 1
elseif remiterations > 0 then
7T < restore()

remlterations <— remlterations — 1
isSuccess « true
return 7T
else
isSuccess « false
return 7T
end if

2.6 Sdector

The Selector is used when a choice needs to be made between multiple pgukeessed con-
currently by different constructs. It allows exactly ongloém to be processed further. When its
successln (or failin) method is called, the received packet is stored isltgess (or fail) collec-
tion, respectively. Note that, unlike the previous desilnethods, it is only when theelect
method in Algorithm8 is called that a packet is returned, chosen frarecess. The selection
is random in the same way as in therator. When thecancel method is invoked, the two col-
lections are cleared and a cancel mess@aggreturned where thexclusions set consists of the
singletonrt.current (meaning that operations of the chosendition should not be cancelled).

2.7 Synchronizer

TheSynchronizer is used when multiple packets processed in parallel neeel sgichronized. It
is parametrized by the numbertbfeads to synchronize. This number is known at design-time.
Its successIn andfailln methods behave exactly like those of thelector. The Synchronizer is

in success mode only if all threads have terminated by newveking failln. Themerge method
“merges” the packets isuccess, as described in Algorithr. A trivial default merge function
is provided by unifying and “gluing” the set of packets. Nekeless, it first conservatively
verifies the validity of the received packets by prohibitimgerlapping matches between them.
If it fails, the user can specify a custom merge function.sTdnoids the need for static parallel
independence detection. Instead it is done at run-time laedransformation modeller must
explicitly describe the handler. One pragmatic use of tlbait®n is, for instance, to let the
transformation run once to detect the possible conflictsthed the modeller may handle these
cases by modifying the transformation model.
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E

Algorithm 8 Selector.select()

Algorithm 9 Synchronizer.merge()

if success # 0 then
7T+ choose fromsuccess
isSuccess « true
elseif fail # 0 then
7t + choose fromnfail
isSuccess « false
ese
T Ty
isSuccess «+ false
exception < X (7t)
end if
success < 0
fail < 0
return 7T

2.8 Composer

if [success| = threads then
if customMerge() then
7T < the merged packet isuccess
isSuccess < true
success < 0
fail < 0
return 7T
elseif defaultMerge() then
7T+ the merged packet isuccess
isSuccess <+ true
success + 0
fail <+ 0
return 7t
else
isSuccess «+ false
exception < X (7t)
return T
end if
elseif |success| + [fail| = threads then
7T+ choose fromnfail
isSuccess «+ false
return 7t
else
isSuccess «+ false
exception < X (7t)
return T,
end if

The Composer serves as a modular encapsulation interface of the elermeitésprimitives list.
When one of itgpacketin or nextin methods is invoked, it is up to the user to manage subsequent
method invocations to its primitives. Nevertheless, whamdancelln method is called, the
Composer invokes thecancelln method of all its sub-primitives. This cancels the curretitom

of the primitive object by resetting its state to its initethte. Cancelling happens only if it is
actively processing a packatsuch that the current condition ofis not in¢ .exclusions, whereg

is the received cancel message. In the casevadteher, since the current condition of the packet
may not already be set, thancelln also verifies that the condition of tdatcher is not in the
exclusions list. The interruption of activity can, for iaste, be implemented as a pre-emptive
asynchronous method call edincelin.
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3 T-Core: aminimal collection of transformation primitives

In the de-construction process of transformation langsi&gte a collection of primitives, ques-
tions like “up to what level?” or “what to include and what teckude?” arise. The proposed
T-Core module answers these questions in the following way.

In a model transformation language, the smallest transttom unit is traditionally theule.

A rule is a complex structure with a declarative part and agrajonal part. The declarative
part of a rule consists of the specification of the ridey(, LHS/RHS and optionally NAC in
graph transformation rules). HowevarCore is not restricted to any form of specification let
it be rule-based, constraint-based, or function-basefadi) some languages require units with
only a pre-condition to satisfy, while other with a pre- andast-condition. Some even allow
arbitrary permutations of repetitions of the two.ThCore, either aPreConditionPattern or both

a Pre- and aPostConditionPattern must be specified. For example, a graph transformation rule
can be represented TCore as a couple of a pre- and a post-condition pattern, whereatter |
has a reference to the former to satisfy the semantics ohteefaceK (in theL <+ K — R
algebraic graph transformation rules) and be able to pertbe transformation. Transformation
languages where rules are expressed bidirectionally anragibns are supported iRCore as
long as they can be represented as pre- and post-condititamnsa

The operational part of a rule describes how it executes:s ©heration is often encapsu-
lated in the form of an algorithm (with possibly local optizations). Nevertheless, it always
consists of anatching phasei.e., finding instances of the model that satisfy the pre-condlitio
and of atransformation phasd.e., applying the rule such that the resulting model satisfies the
post-condition. T-Core distinguishes these two phases by offeringlaicher and aRewriter as
primitives. Consequently, th@atcher’s condition only consists of a pre-condition pattern arel th
Rewriter then needs a post-condition pattern that can access tlepdition pattern to perform
the rewrite. Combinations dfiatchers andRewriters in sequence can then represent a sequence
of simple graph transformation rulesatch-rewrite-match-rewrite Moreover, because of the
separation of these two phases, more general and comptetdranation units may be built,
such asmatch-match-matchr match-match-rewrite-rewriteThe former is a query where each
Matcher filters the conditions of the query. The latter is a nestingrahsformation rules. In
this case, however, overlapping matches between diffaviatthers and then rewrites on the
overlapping elements may lead to inconsistent transfoomsir even non-sense. This is why a
Resolver can be used fror-Core to safely allowmatch-rewritecombinations.

The data structure exchanged betw&ealore RulePrimitives in the form of packets contains
sufficient information for each primitive to process it asdébed in the various algorithms in
Section2. TheMatch allows to refer to all model elements that satisfy a pre-@wrd pattern.
The pivot mappings allow elements of certain matches to hmdbdo elements of previously
matched elements. The pivot mapping is equivalent to pggsirameters between rules as will
be shown in the example in Sectidrl. TheMatchSet allows to delay the rewriting phase instead
of having to rewrite directly after matching.

Packets conceptually carry the complete model (optimineplémentation may relax this)
which allows concurrent execution of transformations. Bhkector and theSynchronizer both
permit to join branches or threads of concurrent transftions. Also, having separated the
matching from the rewriting enables to manage the matchestenresults of a rewrite by fur-
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ther operators. Advanced features such as iteration oviipleumatches or back-tracking to a
previous state in the transformation are also support@eCiore.

SinceT-Core is a low-level collection of model transformation priméi, combining its prim-
itives to achieve relevant and useful transformations magive a large number of these prim-
itive operators. Therefore, it is necessary to provide atgimng” mechanism. Th€omposer
allows to modularly organizé-Core primitives. It serves as an interface to the primitives i en
capsulates. This then enables scaling of transformatiaitisdm T-Core to large and complex
model transformations designs.

T-Core is presented here as an open module which can be extendedghhinheritance for
example. One could add other primitive model transfornmabailding blocks. For instance,
a conformance check operator may be useful to verify if tisailting transformed model still
conforms to its meta-model. It can be interleaved betwegneseces of rewrites or used at the
end of the overall transformation as suggesteKid$*09]. We believe however that such new
constructs should either be part of the (programming or fiagglanguage or the tool in which
T-Core is integrated, to keep-Core as primitive as possible.

4 Re-constructing Transfor mation L anguages

Query Language Sequential Transformation Language
Sequence Sequence
Branch Branch
Loop Loop
] —— ] ——— i ————
| L |
1 Matcher Rewriter Iterator Selector Rollbacker 1 1 Matcher Rewriter Iterator Selector Rollbacker 1
| L |
| L |
| | Composer Resolver Packet | Synchronizer Cancel | | Composer Resolver Packet | Synchronizer Cancel |
| L |
| L |
| | PreConditionPattern PostConditionPattern Exception 1 | | PreConditionPattern PostConditionPattern Exception 1
Lo ———— - el e - — - Teorel
@) (b)
MoTif-Core
StoryDiagram
DEVS
ActivityDiagram
e ——
AT e C 1
1 | |Matcher | Rewriter Iterator Selector Rollbacker 1
1 Matcher Rewriter Iterator Selector Rollbacker : 1 |
| 1 |
1 1 1 | Composer Resolver Packet | Synchronizer Cancel 1
| | Composer Resolver Packet | Synchronizer Cancel | | |
1 L I 1
| 1 | | PreConditionPattern PostConditionPattern Exception [ |
| PreConditionPattern PostConditionPattern Exception 1 1
1 S TCore
Lo ——-— Teorel
(©) (d)

Figure 2: Combiningr-Core with other languages allows to re-construct existing and lae-
guages

Having de-constructed model transformation languagescimilaction of model transforma-
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tion primitives makes it easier to reason about transfaondanguages. In fact, properly com-
bining T-Core primitives with an existing well-formed programming or netithg language al-
lows us to re-construct some already existing transfoondinguages and even construct new
ones BV094. Figure2 shows some examples of combinations-@fore with other languages.
Figure2(a)and Figure2(b) combine a subset atCore with a simple (programming) language
which offerssequencingbranching andlooping mechanisms (as proposed in Béhm-Jocapini's
structured program theorerfBJ64). We will refer to such a language as &BL language
The first combination only involves thdatcher and itsPreConditionPattern, Packet messages
to exchange, and theomposer to organize the primitives. The§eCore primitives integrated
in an SBL language lead tocaery languageSince only matching operations can be performed
on the model, they represent queries where the resultingep&olds the set of all elements
(sub-graph) of the model (graph) that satisfy the desiredcpnditions. Including otheFCore
primitives such as thRewriter promotes the query language to a transformation langudage. F
ure 2(b) enumerates the necessarore primitives combined with an SBL language to design
a complete sequential model transformation language.aRmg the SBL language by another
one, such as UML Activity Diagrams in Figugc), allows us to re-construct Story Diagrams
[FNTZ0Q, for example, since they are defined as a combination of UNLiviky and Collab-
oration Diagrams with graph transformation features. Otlmenbinations involving the whole
T-Core module may lead to novel transformation language with etf@eandling and the no-
tion of timed model transformations when combined with ite-event modelling language
[SV094.

We now present the re-construction of two transformatiaiuiees using the combination of
an SBL language witli-Core as in Figure2(b).

4.1 Re-constructing Story Diagrams

In the context of object-oriented reverse-engineering FtIABA tool allows the user to spec-
ify the content of a class method by means of Story DiagramsSta@y Diagram organizes
the behaviour of a method
with activities and transi-
tions. An activity can be
a Story Pattern Or astate- E A ] [Eed
ment activity. The former v~y |} s
consists of a graph trans- ﬁ '
formation rule and the lat-

ter is Java code. Figurg Figure 3: TheFUJABA doSubDemo transformation showing far-
shows such a story dia-all Pattern and twostatement activities

gram taken from thedo-

Demo method example inANTZ0(. This snippet represents an elevator loading people on a
given floor of a house who wish to go to another level. The mlthe pattern is specified in a
UML Collaboration Diagram-like notation with objects anskaciations. Objects with implicit
types €.9.,this, 12, andel) areboundobjects from previous patterns or variables in the context
of the current method. Thgtory Pattern 6 is afor-all Pattern. Its rule is applied on all matches
found looping over the unbound objectsd.,p4, andl4). The outgoing transition labelleshch

6

levels T levels [this.choice]

this.step = this.step + 1

this.choice = random(0,3)

[each time]

9/14 Volume 29 (2010)



De-/Re-constructing Model Transformation @

time applies statement 7 after each iteration offthell Pattern. This activity allows the pattern
to simulate random choices of levels for different peopléhaelevator. When all iterations have
been completed, the flow proceeds with statement 8 reachttehyansition labelleénd. The
latter activity simulates the elevator going one level up.

load makeChoice

T ” P
1 (this) (this)

=y [rome | [roee ] [vowa ] )]
] levels levels levels levels

waitsAt | ) . B ) s B PostMatch(1).choice := random(0,3)

1 at at

‘Person‘ | ‘ Level }—{Elevatcr}T{ Level ‘ ‘ Level }—{Eleva‘or}T{ Level ‘ nextStep
! (1) " (14) -~
! ein wantsTo (this)
| == PreMatch(1) i >

®4) PostMatch(1).step := PreMatch(1).step + 1

Figure 4: The thre#oTif rules for thedoSubDemo transformation

We now show how to re-construct this non-triviaj .
) . Algorithm 10 makeChoiceC.packetin(71)

story diagram transformation from an SLB language :

i X i . T <— makeChoiceM.packetIn(71)
combined withT-Core. An instance of that combi- if not makeChoiceM.isSuccess then
nation is called ar-Core model. First, we design iijUfgessHalse
the rules needed for the conditions of rule primi- g4 ifu "
tives. Figure4 describes the three necessary rulegr« makeChoicel.packetin(r)
corresponding to the three Story Diagram activi-'" "% nakeCholcel isSuccess then
ties. We use the syntax ofioTif [SV09 where return 7
the central compartment is the LHS, the compartdf _

. . 7T <— makeChoiceW.packetIn(71)
ment on the right of the arrow head is the RHSif not makecChoicew.isSuccess then
and the compartment(s) on the left of dashed lines ifjﬂfﬁess”alse
are the NAC(s). The concrete syntax for representzy,q it
ing the pattern elements was chosen to be intuitivelyfw makeChoiceR packetin(r) A

. if not makeChoiceR.isS| then
close enough to thEUJABA graphical representa- " gl "™
tion. Numeric labels are used to uniquely identify return 7
different elements across compartments. Element3®'f

. R iIsSuccess <+ true
with an alpha-numeric label between parentheses deeurn 7
note pivots. A right-directed arrow on top of such a
label depicts that the model element matched for this patégment is assigned to a pivot
(e.g.,p4 andl4). If the arrow is directed to the left, then the model elemmiatched for this
pattern element is bound to the specified pieog(this andel).

The T-Core model equivalent to the originalbSubDemo transformation consists of @om-
poser doSubDemoC. It is composed of twa@omposers loadC andnextStepC each containing a
Matcher, an Iterator, a Rewriter, and aResolver. The packetin method ofdoSubDemoC first
calls the corresponding method lohdC and then feeds the returned packet to phaeketin
method ofnextStepC. This ensures that the output packet of the overall transdtion is the
result of first loading all the’erson objects and then moving the elevator by atep. make-
ChoiceC andnextStepC behave as simple transformation rules. Tipeitketin method behaves
as specified in Algorithni0. First, the matcher is tried on the input packet. Note thatcbn-
ditions of the matchermakeChoiceM and nextStepM are the LHSs of rulesnakeChoice and
nextStep, respectively. If it fails, the composer goes into failureda and the packet is returned.

Then, the iterator chooses a match. Subsequently, theteewtiempts to transform this match.
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Note that the conditions of the rewriteraakeChoiceW Algorithm 11 loadC.packetin(7D
and nextStepw are the RHSs of rulesnakeChoice and T ToadM pagketin() -

nextStep, respectively. If it fails, an exception is thrown and if not ioadM.isSuccess then

the transformation stops. Otherwise, the resolver verifies isSuccess « false

the application of this pattern with respect to other maetcheendrﬁturn "

in the transformed packet. The behaviour of the resolution « loadi packetin(m)

function will be elaborated on later. Finally, on a successf *"etuede
resolution, the resulting packet is output and the composer  issuccess « true

is put in success modeloadC is the composer that emu- endrﬁur” m

lates thefor-all Pattern of the example. Algorithmil spec- 1T < loadW.packetin(7)
ifies that behaviour. After finding all matches witsadm if not loadW.isSuccess then
(whose condition is the LHS and the NAC of rutead), the 'f;ﬂfﬁes,f%false

packet is forwarded to the iterattradl to choose a match.  endif

. . . . . 7T < loadR.packetIn(71)
The iteration is emulated by a loop with the failure mode ;i oadr issuccess then

of loadl as the breaking condition. Inside the lodgadw isSuccess « false
rewrites the chosen match ak@ddR resolves possible con- drﬁf”r” T
flicts. Then, the resulting packet is sentntakeChoiceC to 7T makeChoiceC.packetin(7)
fulfil the each time transition of the story digram. After that, 77« loadl.nextin(m)

L. . end while
the nextin method ofloadl is invoked with the new packet t0 csyccess « true
choose a new match and proceed in the loop. return 1

Having seen the overailCore transformation model, let
us inspect how the differemesolvers should behave in order to provide a correct and complete
transformation. The first rewriter calledlisadR and the first time it receives a packet is when
a transformation is applied on one of the matche®adM. Therefore each match consists of
the same-ouse (since it is a bound node), twavels, anElevator, and the associations between
them. On the other hanthadw only adds &erson and links it to aLevel. Therefore the default
resolution function ofoadR applies successfully, since no matched element is modifiedsn
the NAC violated in any other match. The next resolvemikeChoiceR which is in the same
loop asloadR. There, theHouse is conflicting with all the matches in the packet accordinth®
conservative default resolution function. Note thatkeChoiceM finds at most one match (the
boundHouse element). HowevemakeChoiceW does not really conflict with matches found in
loadM. We therefore specify a custom resolution functiomfiakeChoiceR that always succeeds.
The same applies forextStepR. base

1O

—
(broken) (unbroken)

4.2 Re-constructing amalgamated rules

In a recent paper, Rensink et al. claim that Repotting the
Geraniumsexample is inexpressible in most transformation fqr—
malisms RKQ9]. The authors propose a transformation language \j/
that uses an amalgamation scheme for nested graph tralasfor(bmken)(um\ﬁ;) ww/

tion rules. As we have seen in the previous example, nesting

transformation rules is possible MCore and will be used to Figure 5: The transformation
solve the problem. It consists ofpotting all flowering gerani- rules for theRepotting Gera-

ums whose pots have crackddgure5 illustrates the two nestedniumsexample
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graph transformation rult_es mvolvc_ed_ gnd Algorithd? Algor ithm 12 baseC. packetin(7D)
demonstrates the composition of primitiVe&Core elements Y ———

encoding these ruleshaseM (with, as condition, the LHS if not baseM.isSuccess then

of rule base) finds all broken pots containing a flowering  isSuccess « false

geranium, given the input packet containing the input graphgndrﬁwm "

The set of matches resulting in the packet are the combinailetruedo

. . . . . 7T < basel.packetIn(71)
tion of all flowering geraniums and their pot container. From if not basel isSuccess then

then on starts the loop. Firdtasel chooses a match. If one isSuccess « true

is chosenpaseW transforms this match arghseR resolves o drﬁ“”” m

any conflicts. In this cas®aseW only creates a new unbro- 7+ basew.packetin(m
ken pot and assigns pivots. TherefobaseR’s resolution if not baseW.isSuccess then

. . isSuccess « false
function always succeeds. In fact, the resolver is not retede  qurn

here, but we include it for consistency. TiheerC composer end if

i . . 7T <— baseR.packetIn(7)
encodes thénner rule which finds the two bound pots and ¢ | i cer isSuccess then

moves a flourishing flower in the broken pot to the unbroken issuccess « false

one. In order to iterate over all the flowers in the broken pot, endrﬁf”r” n
theinnerC.packetin method has the exact same behaviour as 7« innerc.packetin(m

loadC.packetin in Algorithm 11, with the exception of not T« baseM.packetin(m)
if not baseM.isSuccess then

calling a sub-composer (likenakeChoiceC). Note that an isSuccess < true
always successful custom resolution function iforerR is return 7t
required. After th&Resolver successfully outputs the packet, . o'

theinner rule is applied. Then (and alsotiisel had failed)
baseM.packetln is called again with the resulting packet. The loop ends whebaseM.packetin
method call inside the loop fails, which entaiksseC to return the final packet in success mode.

5 Related work

The closer work to our knowledge i¥JBB0Y. In the context of global model management,
the authors define a type system offering a set of primitieesniodel transformation. The
advantage of our approach is thaCore is a described here as a module and is thus directly
implementable. We have recently incorporatedore with an asynchronous and timed mod-
elling language $Vv094 which allowed us to re-implement the two examples in Sectias
well as others. Also, the approach describedMdgB09, does not deal with exceptions at all.
Nevertheless, their framework is able to achieve highdeotransformations, which we did not
consider in this paper.

The GP graph transformation languagklP0§ also offers transformation primitives. They
however focus more on the scheduling of the rules then orutae themselves. Their scheduling
(control) language is an extension of an SBL language. Oproggh is more general since
much more complex scheduling languageg{(,allowing concurrent and timed transformation
execution) can be integrated witkCore. Although it performs very efficiently, the application
area ofGP is more limited, as it can not deal with arbitrary domainesfie models.

Other graph transformation tools, suchV@aTRA [VBO07] andGReAT [AKK T06], have their
own virtual machine used as an API. In our approach, sincetingtive operations are mod-
elled, they are completely compatible with other existingdel transformation frameworks.
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6 Conclusion

In this paper, we have motivated the need for providing actithn of primitives for model trans-
formation languages. We have defirie@Gore which precisely describes each of these primitive
constructs. The de-construction process of model tramsftion languages enabled us to re-
construct existing model transformation features by cainlgi T-Core with, for example, an
SBL language. This allowed us to compare different modeisfiarmation languages using a
common basis.

Now that these primitives are well-defined, efficiently iexplenting each of them might lead
to more efficient model transformation languages. Also fédture work, we would like to in-
vestigate howr-Core combined with appropriate modelling languages can exgteger trans-
formation constructs. We would also like to investigatetfar on the notion of exceptions and
error handling in the context of model transformation.
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