
Electronic Communications of the EASST

Volume 29 (2010)

Proceedings of the
Ninth International Workshop on

Graph Transformation and
Visual Modeling Techniques

(GT-VMT 2010)

Specifying and Generating Editing Environments for Interactive
Animated Visual Models

Torsten Strobl and Mark Minas

13 pages

Guest Editors: Jochen Küster, Emilio Tuosto

Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer

ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Specifying and Generating Editing Environments for Interactive
Animated Visual Models

Torsten Strobl1 and Mark Minas 2

1 Torsten.Strobl@unibw.de
2 Mark.Minas@unibw.de

Computer Science Department
Universität der Bundeswehr München

85577 Neubiberg, Germany

Abstract: The behavior of a dynamic system is most easily understood if it is
illustrated by a visual model that is animated over time. Graphs are a widely ac-
cepted approach for representing such dynamic models in an abstract way. System
behavior and, therefore, model behavior corresponds to modifications of its repre-
senting graph over time. Graph transformations are an obvious choice for specify-
ing these graph modifications and, hence, model behavior. Existing approaches use
a graph to represent the static state of a model whereas modifications of this graph
are described by graph transformations that happen instantaneously, but whose du-
rations are stretched over time in order to allow for smooth animations. However,
long-running and simultaneous animations of different parts of a model as well as
interactions during animations are difficult to specify and realize that way. This pa-
per describes a different approach. A graph does not necessarily represent the static
aspect of a model, but rather represents the currently changing model. Graph trans-
formations, when triggered at specific points of time, modify such graphs and thus
start, change, or stop animations. Several concurrent animations may simultane-
ously take place in a model. Graph transformations can easily describe interactions
within the model or between user and model, too. This approach has been integrated
into the DIAMETA framework that now allows for specifying and generating edit-
ing environments for interactive animated visual models. The approach is demon-
strated using the game Avalanche where many parallel and interacting movements
take place.

Keywords: animated visual language

1 Introduction

Visual modeling is already one of the most useful techniques for describing complex systems.
There is the need for many different, also domain-specific visual languages, each appropriate
for dedicated purposes. Meta-tools like DIAGEN/DIAMETA [Min06], GenGED [Erm06] or
AToM3 [LV02] help specifying such languages and generating corresponding editors.

However, visual languages are not limited to static models. When modeling dynamic systems,
dynamic models can be used to simulate the system and help understanding it. Smooth anima-
tions can even improve this visual comprehension. Suitable visual languages for animations span

1 / 13 Volume 29 (2010)

mailto:Torsten.Strobl@unibw.de
mailto:Mark.Minas@unibw.de


Generating Editors for Interactive Visual Languages

Figure 1: Existing approach: before GT (a), after GT (b) and animated scene (c)

formal/mathematical models like petri nets, educational languages like Alligator Eggs [SM09]
and even highly interactive programming languages like the Alternate Reality Kit [Smi86].

It is a common approach to use graphs for representing such models in an abstract way. The
model is changed by transforming the underlying graph via graph transformations (GT). Exist-
ing techniques associate each graph (the graph before and after the GT) with a static model and
therefore static visualization. An example in the domain of conveyor systems is shown in Fig-
ure 1. While (a) shows the graph and its visual representation before the GT, (b) shows them
afterwards. In order to avoid a jumping parcel in the visualization, the instantaneous GT can be
stretched over time and a smooth animation is applied to the state transition (c).

This approach comes along with some obvious problems. If the system behavior includes
multiple, independent animations in different parts of the model at the same time, specification
becomes difficult. The problem becomes even more complicated if multiple animations overlap
in time or if interactive environments shall be realized that way. As an instance consider the
conveyor system where the container may move, too, and those movements might be triggered
by user interactions. If such a user interaction takes place while a parcel is on its way as shown
in Figure 1c, the system should immediately stop the conveyor with the parcel at the current
position. However, this situation cannot be represented by the chosen graph.

This paper describes another approach: graphs represent the currently changing model and
GTs are used to start, stop and modify animations. The rest of the paper is structured as follows:
Section 2 describes Avalanche as a motivating example. Section 3 introduces the abstract ani-
mation system, which serves as abstract formal system of the described approach in Section 4
using GTs. As an example, Section 5 shows an application of this approach in order to specify
Avalanche. Section 6 outlines related work, and Section 7 concludes the paper.

2 Avalanche

Originally, Avalanche is a board game for two and more players. It was republished by different
publishers and is available under different names and variants. For this paper, we concentrate
on the main game mechanics and ignore objectives and other gaming aspects. The following
paragraphs describe an Avalanche variant that is suitable as an exemplary dynamic system.

Proc. GT-VMT 2010 2 / 13



ECEASST

Figure 2: Avalanche board Figure 3: Avalanche pieces

The board of the game is an inclined plane. On this plane, there are multiple lanes, which
are directed top-down. However, lanes can be interrupted by switches. Switches are placed in
between two adjacent lanes. In this area, there is no border between left and right lane, and the
switch can be tilted freely to the left or right. Shifted to one side, the switch can block the direct
top-down way of the corresponding lane. Figure 2 shows an exemplary Avalanche board.

The game is played by putting marbles on the start (top) of a lane. After putting a marble
there, it rolls down along the lane. Figure 2 (a) shows a position where a marble can be brought
into play, and the marble starts rolling. While rolling down, a marble can be stopped by a switch
that is facing the marble’s lane (b). Rolling along the opposite lane, the marble hits the bottom of
the switch, and therefore tilts the switch to the other side like in (c). This feature can be used for
releasing a marble that has been stopped by the switch. After this marble has been released, it
continues to roll along its lane, as shown in (d). In this concrete situation, the switch is lying on
the left side afterwards1. If a marble hits another marble that has been stopped by a switch like
in (e), the rolling marble changes the lane, continues rolling, and releases the other, previously
blocked marble. Finally, when a marble reaches the end (bottom) of its lane as shown in (f), it is
removed from the board.

Each Avalanche board consists of four types of building blocks (see Figure 3): Start (starts
each lane; marbles can be placed there), Straight (straight lane), Switch (can block rolling mar-
bles and can be switched by rolling marbles; each switch can be in the left or right position), and
End (end of each lane; marbles are taken out of the game there).

1 Depending on the Avalanche variant, it is also possible that the released marble immediately triggers the switch
again. If this is the case, the switch would be lying on the right side afterwards.

3 / 13 Volume 29 (2010)



Generating Editors for Interactive Visual Languages

3 Abstract Animation Systems

The Avalanche game is a continuous dynamic system. In order to describe its behavior, it is a
common approach to look on it as a discrete event system with specified events for the collision
of marbles with switches, putting new marbles on the field, etc. In the time between these
events, the marbles are moving over the board, which can be illustrated by an animated visual
model. This section formalizes abstract animation systems (AASs), a particular kind of event-
oriented systems, which is especially suited for interactive and animated visual languages. It
is an abstraction of the animation approach using graphs and GTs described in the following
sections.

The idea of defining a visual animated model by an AAS is to specify a state-transition-system
that performs state transitions triggered by events at certain points in time. The visual represen-
tation of a model is determined by the current state of the state-transition-system and the current
time. That means, the visual representation just depends on the (continuously) proceeding time
between two consecutive state transitions. State transitions are triggered by events. Events may
have an external source, e.g., the user placing a marble at a Start piece. These external events

may happen at any time. Other events, called internal events, happen because of the current
state after a certain span of time. For instance, if a switch starts switching from right to left, the
switch will hit its left border after a fixed span of time. For this purpose, an event Switching-

CompleteLeft is triggered, which stops the switching (cf. Section 5). Models usually consist of
different parts, each of them with more or less independent behavior (e.g., an Avalanche board
with several switches and marbles). States and events must appropriately reflect this composite
structure.

In the following, AASs are introduced more formally. Let T represent the absolute time. For
each point in time t ∈ T , let ω > t and let T

ω = T ∪ {ω}. For any set X , the power set of X is
denoted by P(X).

Definition 1 An abstract animation system is a tuple A = (S,E, Ẽ,s0,δ ,τ,ε). S is the set of

states and s0 is the initial state, s0 ∈ S. E is the set of all events, whereas Ẽ ⊆ E is the set

of internal events. E \ Ẽ denotes the set of external events. δ is the state transition function,
δ : S × E × T → P(S). τ and ε describe the occurrence of internal events, τ : S → T

ω and
ε : S → P(Ẽ). Each of these sets may be uncountably infinite.

The abstract animation system A is started in state s0 at some point in time t0. The execution
of A is expressed by the chronology of occurred states; state changes are triggered by occurring
events (internal and also external) at certain points in time. Each execution can be described by
a trace

s0
e1−→
t1

s1
e2−→
t2

s2
e3−→
t3

· · · ei−→
ti

si

ei+1−→
ti+1

· · ·

of assumed states s0,s1,s2, . . . ∈ S. In each case, at the point in time ti (i > 0), event ei occurs
and triggers the state transition from si−1 to si ∈ δ (si−1,ei, ti). Either ei ∈ ε(si−1), i.e., ei is an
internal event, then ti = τ(si−1), or ei ∈ E \ Ẽ, i.e., ei is an external event, then ti ∈ [ti−1,τ(si−1)].

This definition of state transitions reflects the motivation of AASs at the beginning of this
section: If the state-transition-system is in a certain state, an internal event will happen after a

Proc. GT-VMT 2010 4 / 13



ECEASST

certain span of time. This is reflected by function ε and τ . However, an external event may hap-
pen at any time, i.e., possibly before the scheduled internal event. The external event triggers a
state transition, and the previously scheduled internal event may be re-scheduled again, specified
by functions δ , ε , and τ .

Following the motivation at the beginning of this section, the visual representation of an ani-
mated visual model with an AAS A is a visualization function I : S×T → R where R represents
all possible graphical illustrations. Given a trace s0

e1−→
t1

s1
e2−→
t2

s2 · · · of A, the visual representa-

tion of the model at any point in time t is I(s, t) where s is the current state at t, i.e., s = si for an
appropriate i such that t ∈ [ti, ti+1).

4 Animations using Graphs and Graph Transformations

The AAS formalism has been introduced to clarify the concepts determining the behavior of
visual animated models. It can be used for describing an animated system like Avalanche, but
it is less suited for actually specifying concrete animated languages. Instead, we use the widely
spread approach of typed graphs for internally representing visual models. Existing meta-tools
like DIAMETA [Min06], which are based on this approach (we do not distinguish plain graphs
from hypergraphs here), then allow for generating editing environments from the visual language
specifications. These tools already represent the static structure of a visual model by typed
attributed graphs; the visual representation of a model is just a view of this graph. We now
augment these graphs such that they also represent the current model state according to the
notion of AASs. The visualization function, as described in the previous section, again provides
a view of the graph. However, it must take the continuously proceeding time into account when
determining the visual representation of the animated model.

Because graphs are used for representing the AAS state, state transitions correspond to graph
modifications. GTs are an obvious choice to perform and specify these modifications. In order
to realize the state transition function δ of the AAS using GTs, each event (type) is associated
with a particular set of graph transformation rules. Whenever an event occurs, especially if this
is an external event sent to the system, the associated rules are selected for application in order
to change the graph and state of the system, resp. If an event carries additional information, e.g.,
the Start piece where the user has placed a new marble, this information must be passed as a
partial embedding morphism to the selected GT rules.

While external events are generated outside (e.g., by user interaction) and sent to the system
by selecting appropriate GTs, scheduling internal events must be calculated by the animated
system based on its state, i.e., functions ε and τ must be specified. This is done in the following
way: Instead of directly calculating the next internal event and the point in time when it has to be
triggered, this is done for each part of the whole system. The next scheduled internal event then
is just the one of all calculated events that happens first. For instance, when several marbles are
rolling, each marble will eventually hit a blocked marble, will be blocked by a switch, change
a switch state, or disappear when arriving at an End piece. For each of these events, one can
easily compute the point in time when this event happens as long as no other event happens first,
changing the system state. However, since we are interested in the first of these events only when
calculating ε and τ , we need not consider situations when events influence other events. Hence,

5 / 13 Volume 29 (2010)



Generating Editors for Interactive Visual Languages

calculation of the next internal events can be realized as follows: Whenever a new AAS state is
reached, i.e., when the graph is changed, a list of all possible internal events for each part of the
system is computed. Only that event is selected that will happen first. This implicitly realizes
ε and τ . If there is no unique first event, one of them is chosen nondeterministically. When the
event is triggered at the scheduled point in time, or if an external event happens earlier, the graph
will be modified, i.e., a state transition is performed, and the next internal event will be computed
again.

As already described, triggering an external or internal event actually means performing a GT;
a partial morphism selects where the GT is applied. For external events, the partial morphism is
selected by the external source, e.g., by selecting the Start piece where the user places a marble.
For an internal event, however, the partial morphism must have been determined when the event
has been “scheduled” after the last graph modification. So far, we have not yet discussed how
these internal events get calculated. Actually, event (types) are associated with graph patterns
together with additional application conditions, i.e., positive and negative application conditions
as well as conditions on node and edge attributes as well as the current time. Each pattern de-
scribes situations, in which this event type occurs. Therefore, the list of all possible internal
events is found by searching for all embeddings of each of these patterns satisfying their appli-
cation conditions. An additional evaluation rule, called time calculation rule, computes the point
in time when the event will happen. The results of this rule are used to select the first scheduled
internal event. The associated embedding determines where the event takes place. Hence, the
left-hand side of the GT rule specifying the effect of the event must consist of the same pattern
that specifies the event and whose embedding has already been found when scheduling the event.

In summary, the specification of an internal event type consists of a graph transformation rule
with application conditions and a related time calculation rule. An external event type can be
specified with a rule only.

We have extended our meta-tool DIAMETA [Min06] such that not only static visual languages
can be specified, but also animated visual languages following the ideas described above. DIA-
META allows for generating editing environments for visual animated models from such speci-
fications. The DIAMETA framework is now aware of events, and it manages an event queue that
is used to determine the next internal events. This event queue is actually built up and updated
in a smart way based on changes of the graph model.

The specification of events in DIAMETA is not restricted to single GT rules. Graph transfor-
mation programs, which may consist of several rules, are used instead. The application of these
rules is controlled by additional control programs which, e.g., may specify a sequence of rules
or use more complex control operators like apply as long as possible [Min02]. The availability
of complex control programs allows for the specification of arbitrarily powerful GT transforma-
tions although each single GT rule is just a simple SPO rule with optional negative application
conditions.

5 Specification of Avalanche

This section outlines how visual animated models of Avalanche are specified in DIAMETA. One
purpose of the described specifications was generating an editing environment which is able to

Proc. GT-VMT 2010 6 / 13



ECEASST

Figure 4: Avalanche editor screenshot

(a) build Avalanche boards and (b) play the game including the possibility to put marbles onto
the Avalanche board and watch the progress of the system. A screenshot of the resulting editor
is shown in Figure 4. An animated example can be found online2.

Typed, attributed hypergraphs are used for representing models, i.e., animated diagrams. Each
model component is represented by a hyperedge that visits the nodes representing the compo-
nent’s attachment points. Model hypergraphs also contain relation edges (binary hyperedges),
that stand for relationships between components, and further hyperedges (called animation edges

in the following) that are used for the representation of animation states only. More details about
the usage of hypergraphs for the specification of visual languages (except hyperedges represent-
ing animation states) can be found in [Min06].

The Avalanche model components are the ones shown in Figure 3 with the hyperedge types
start, end, switch, straight and marble. Figure 5 shows an example Avalanche board and its
model hypergraph. Each component is associated with its component hyperedge, which is de-
picted by a filled rectangle each. Nodes are drawn as small circles. For instance, the switch

hyperedge is connected to individual nodes via connectors (“tentacles”) 0 to 3. The four nodes
represent the top-left, top-right, bottom-left and bottom-right corners of the switch. Each of
them can be connected to another model component. Connections between model components
are represented by binary at topbottom relation hyperedges. They are depicted by fat arrows.
Additional edge types are used for animation edges representing the animation state, e.g., edge
types switched to or switching to. The switched to edge connects the first switch node with the

2 http://www.unibw.de/inf2/DiaGen/animated

7 / 13 Volume 29 (2010)



Generating Editors for Interactive Visual Languages

(detailed)

end end

marble start

start

straight

switch

at_topbottom

at_topbottom switched_to

at_topbottom at_topbottom

at_topbottom

at_topbottom

started_at

0 0

0 0

0

0

1

0 1

2 3

0

1

Figure 5: Avalanche board and corresponding hypergraph

second one if the right lane is blocked by the switch. If the left lane is blocked, the edge con-
nects these nodes the other way around. Analogously, the switching to edge indicates that the
particular lane is not blocked yet, but the switch is currently moving in order to block the lane
afterwards. There are also different edge types representing a marble’s state as explained later.

Furthermore, each component hyperedge has the layout attributes x and y for the position of
the represented diagram component. Finally, hyperedges which can be animated (resp. their
corresponding components) contain an attribute tc. It is used for storing the point in time when
attributes of the hyperedge or its state have been modified lastly.

Static components and their visual appearance can be specified like in static DIAMETA. For
animated components, the specification is slightly different. There are two types of animations
which are represented by a subgraph: a rolling marble and a shifting switch. Figure 6 shows
two concrete graph examples which represent these animations: (a) represents a switch which is
currently shifting from left to right. The switching to edge is an animation edge that represents
the shifting state of the switch. The shifting animation has started at 20000 ms, which is indicated
by attribute tc. (b) represents a marble which is rolling. This animation has started at 3000 ms
when the marble was at position (110,10). The started at edge is again an animation edge which
specifies the animation state. The edge is not necessary for static diagrams, but it rather indicates
the component where the marble was located when the animation started.

By using these attributes and animation edges, the animated appearance for a component de-
pending on the proceeding time t can be specified. For example, instead of drawing the marble
at the static position (x,y), the position for each animation frame is calculated using the time
difference t − tc and a linear (or accelerated) movement. Further details about required constants
(e.g., rolling speed of the marble, acceleration, relation points for positions) are omitted here.

So far, the described specification is sufficient for editable models with basic animations like
rolling marbles or shifting switches. However, interaction between model elements or user in-
teraction during animation have not been considered yet. In order to specify the Avalanche

behavior, the following internal and external events are specified. Please note that some events

Proc. GT-VMT 2010 8 / 13



ECEASST

marble

x = 110
y = 10
tc = 3000 ms

switch

x = 100
y = 50
tc = 20000 ms

a b

start

x = 100
y = 0

0

0

started_at

0 1

switching_to

2 3

Figure 6: Hyperedges of animated components

straight

switch

ps

switch

pe

0

1

0

2
at_topbottom

1

3

0

2

1
at_topbottom

3 at_topbottom

Figure 7: Example path

must be specified for the left and right side of switches separately3. Because the specification of
both sides is analogous, rules for the right side are omitted.

• External events:

– PutMarble: The user selects a start component in order to place a marble there.

• Internal events:

– MarbleStopLeft: A rolling marble hits the top of a switch (tilted to the left) and is
blocked.

– ReleaseMarble: A marble, blocked by a switch, is released and starts rolling down
because the switch does not block the lane any more.

– MarbleSwitchingLeft: A rolling marble hits the bottom of a switch (tilted to the right)
and initiates the shifting of the switch; during this shifting process, the switch cannot
block marbles or be shifted again.

– SwitchingCompleteLeft: A shifting switch reaches its final destination after it has
started shifting from the right to the left side.

– MarbleChangeLaneLeft: A rolling marble starts changing the lane because it hits
another marble that is blocked by a switch tilted to the left.

– ChangeLaneCompleteLeft: A marble reaches its new lane after it has started chang-
ing its lane from the left to the right side.

– RemoveMarble: The marble reaches the end of the lane and is removed from the
board.

In the rest of this section, these events are described. Figure 8 shows the event specifications
by GT rules4 and, for internal events, time calculation rules (indicated by the Time keyword).
3 DIAMETA actually supports more generic specifications that cover both sides, but they are too technical and less
suited for presentation in this paper.
4 Please note that these events are actually specified using single GT rules; the specification of Avalanche does not
require complex graph transformation programs as event specifications.

9 / 13 Volume 29 (2010)



Generating Editors for Interactive Visual Languages

PutMarble (external event)

SwitchingCompleteLeft (internal event)

m:marble

s:start

+++

+++

+++

m.tc := t
m.x := s.x + C1
m.y := s.y + C2

Actions:

sw.tc := t

Time:

Actions:

sw.tc + C5

sw:switch

MarbleStopLeft (internal event)

m.tc := t
m.y := sw.y + C3

Time:

Actions:

m.tc + (sw.y - m.y + C3) / C0
(marble with constant speed)

m:marble

x = s.x + C
y = s.y + C
tc = t

sw:switch

- - -
+++

MarbleSwitchingLeft (internal event)

sw.tc := t

Time:

Actions:

m.tc + (sw.y - m.y + C4) / C0
(marble with constant speed)

m:marble

x = s.x + C
y = s.y + C
tc = t

sw:switch

+++
- - -

RemoveMarble (internal event)

Time: m.tc + (e.y - m.y + C9) / C0
(marble with constant speed)

m:marble

x = s.x + C
y = s.y + C
tc = t

e:end

- - -

- - -

- - -

- - -

ReleaseMarble (internal event)

Time:

m:marble

x = s.x + C
y = s.y + C
tc = t

- - -

NAC

n1 n1

+++

Actions:

MarbleChangeLaneLeft (internal event)

Time:
m.tc + (sw.y - m.y + C6) / C0
(marble with constant speed)

m:marble

x = s.x + C
y = s.y + C
tc = t

sw:switch

m.tc := t
m.y := sw.y + C6Actions:

+++
- - -

ChangeLaneCompleteLeft (internal event)

Time: m.tc + C8

m:marble

x = s.x + C
y = s.y + C
tc = t

sw:switch

m.tc := t
m.x := sw.x + C7Actions:

+++- - -

- - -
+++

+++

(immediately if match is found)

m.tc := t

0

0

started_at

2 3

0 1

switched_to

switching_to

0started_at

2 3

0

blockedpath_down

1

switched_to

0started_at

2 3

0

path_down

1switched_to

switching_to

0

started_at

0

path_down

0

switched_to
blocked started_at

2 3

0

path_down

1

blocked

0

change_tostarted_at

2 3

0 1

0

started_atchange_to

Figure 8: Avalanche Event Specifications

DIAMETA actually uses a different, primarily textual syntax; the syntax in Figure 8 is used for
illustration only. It shows the GT rule within one box: parts which are removed by the rule
are drawn in red and marked with “- - -”, and parts which shall be added are drawn in green
with “+++”. Attribute modifications are illustrated by expressions within a separate Actions box.
Please note that some expressions make use of constants starting with letter C; these constants
represent specification details, e.g., rolling speed, relation points for positions, etc.

The external event PutMarble is triggered by the user who selects a start component and calls
an operation called PutMarble (by clicking the corresponding button in the Avalanche editing

Proc. GT-VMT 2010 10 / 13



ECEASST

environment). The selected start component is then used for defining a partial match for the
pattern of the graph transformation rule specified for PutMarble. The result of the rule is a
created marble, which starts rolling down the lane.

SwitchingCompleteLeft is a simple internal event. Events of this type occur for each switch

edge with a switching to animation edge as shown in the pattern, i.e., for each switch which is
currently shifting from the right to the left side. The time of the corresponding event is deter-
mined by a simple formula indicating that the switch has reached the final destination after a
constant amount C5 of time. Hereby, the value in attribute tc represents the point in time when
the corresponding switch started shifting (triggered by event MarbleSwitchingLeft, see below).
As a result, the switching to edge is replaced by a switched to edge.

MarbleStopLeft is a more complex event specification because it has to describe a rolling
marble hitting a blocking switch in the marble’s lane. The lane can go through a number of
start, straight, and switch components. In the event specification, this is represented by a dashed
arrow indicating a path within the model hypergraph. The path is actually an arbitrary sequence
of at topbottom(0,1), switch(0,2), switch(1,3), or straight(0,1) elements. Thereby, the numbers
in parenthesis specify the hyperedge tentacles the path must follow: the first number specifies
the ingoing tentacle and the second one specifies the outgoing tentacle when following the path
through hyperedges. An example path is shown in Figure 7: the path starts at node ps and ends
at node pe. In a matching scenario of MarbleStopLeft, the marble edge must be linked to ps via
the started at edge, and pe is the node of the first outgoing tentacle of switch edge sw.

The time of the event MarbleStopLeft is calculated based on the distance between the rolling
marble and the switch. As a result of this event, the marble looses its started at relation and
receives a blocked edge instead, which indicates the marble being blocked by the switch. More-
over, the marble’s static position is set to the position of the switch.

Event MarbleSwitchingLeft is similar and also makes use of path expression path down de-
scribed above. The switch, however, does not block the rolling marble’s lane, indicated by the
switched to edge having the opposite direction of the one in event MarbleStopLeft. If this event
occurs, the marble continues rolling normally, but it also shifts the switch. The switch state is
changed by replacing the switched to edge by a switching to edge, now being associated with
the opposite side/lane. Nevertheless, the switch is not considered blocking this lane yet. The end
of this shifting phase will trigger a new SwitchingCompleteLeft event (see above).

The event ReleaseMarble can occur directly after a MarbleSwitchingLeft (or MarbleSwitch-

ingRight, resp.) event. The ReleaseMarble event does not specify a time calculation rule and,
therefore, is applied immediately as soon as a match is found. It releases a blocked marble if the
switch does not block the according lane any more. The marble then starts rolling down again,
indicated by the animation edge started at.

The internal event MarbleChangeLaneLeft handles the case that a rolling marble hits a blocked
marble. The rolling marble then changes its lane, which is indicated by a change to edge linked
to the switch node of the opposite side. This changing process ends as soon as event Change-

LaneCompleteLeft occurs after a constant amount of time. The marble then continues rolling
down again, however in the switch’s other lane.

Finally, event RemoveMarble occurs as soon as a marble reaches the end of its lane. The
marble and the associated started at edge are removed then.

11 / 13 Volume 29 (2010)



Generating Editors for Interactive Visual Languages

6 Related Work

Another approach of simulating and animating visual languages is described in [Erm06]. How-
ever, the described methods come along with some of the issues mentioned in the introduction of
this paper. The resulting animations are self-running movies, and amalgamated graph transfor-
mation rules are already required for the specification of less complex examples like animated
petri nets, for instance.

The described abstract animation system is similar to timed event systems and, therefore, also
to DEVS [ZPK00]. However, abstract animation systems omit some specific features like ac-
ceptance stated (compared to timed event systems in general) or output function (compared to
Atomic DEVS). On the other hand, the intention of abstract animation systems is that system
states can be visualized in an animated way, and state changes start, stop, and change these ani-
mations. It allows for an easier specification of systems which must be animated and illustrated.

In [SH08] Atomic and Coupled DEVS are used as a formalism for the implementation of
dynamic systems applying graph transformations. However, the work is focused on DEVS as
semantic model for programmed GTs rather than animations. It depends on GTs consuming time
and on special control structures within the DEVS model in order to support parallel executions
and interruptions.

Section 5 shows that there is a need for a time attribute like tc within graph vertices for
many types of animation. This attribute can be compared with an attribute chronos introduced
in [GHV02] which describes an approach of graph transformation with time. The shown trans-
formations utilize logical clocks, which are also represented by the mentioned vertex attribute.

Another, but similar approach, though not based on GTs, is shown in [EVV09]. This work
describes a transformation system enriched by parameters like duration, repetitions and focuses
on the visual notation of such rules.

The idea of states describing animation and behavior of graphical objects is a common ap-
proach. The term animation state has also been described in [Vit05] where it represents a state
in which corresponding object attributes are changing with regard to animations. The work also
shows how animations and the behavior of object can be described by a visual language based
on UML2 statecharts.

7 Conclusions

The specification of animated visual languages based on graphs has been limited with regard
to simultaneous, independent animations and interactivity yet. The described approach enables
dynamic, animated and interactive models using existing graph and graph transformation tech-
niques. After minor extensions, the existing meta-tool DIAMETA is able to generate editing
environments for interactive animated visual models like Avalanche.

However, the way from a complex dynamic system to an event-oriented and graph-based sys-
tem still is a challenging task. Right now, we are investigating additional techniques in order to
specify dynamic systems on a higher level, which is less formal and also diagrammatic. Result-
ing diagrams shall help deriving graph-based specifications and visualizations then. Also tool
support for some of the described methods still lacks usability, e.g., visualization and time cal-

Proc. GT-VMT 2010 12 / 13



ECEASST

culation rules must be written by hand. Animation patterns for common animation types would
be desirable, and also a physics engine or other frameworks could be used in order to simplify
specification of particular kinds of animated visual languages.

Bibliography

[Erm06] C. Ermel. Simulation and Animation of Visual Languages based on Typed Algebraic

Graph Transformation. PhD thesis, Tech. Univ. Berlin, Fak. IV, Books on Demand,
Norderstedt, 2006.

[EVV09] J. Eduardo Rivera, C. Vicente-Chicote, A. Vallecillo. Extending visual modeling lan-
guages with timed behavioral specifications. In IDEAS 2009: Proc. 12th Iberoameri-

can Conf. on Req. Engineering and Software Environments. Pp. 87–100. 2009.

[GHV02] S. Gyapay, R. Heckel, D. Varró. Graph Transformation with Time: Causality and
Logical Clocks. In ICGT ’02: Proc. 1st Int. Conf. on Graph Transformation. LNCS
2505. Pp. 120–134. Springer-Verlag, 2002.

[LV02] J. de Lara, H. Vangheluwe. AToM3: A Tool for Multi-formalism and Meta-modelling.
In FASE ’02: Proc. 5th Int. Conf. on Fundamental Approaches to Software Engineer-

ing. LNCS 2306. Pp. 174–188. Springer-Verlag, 2002.

[Min02] M. Minas. Concepts and Realization of a Diagram Editor Generator Based on Hyper-
graph Transformation. Science of Computer Programming 44(2):157–180, 2002.

[Min06] M. Minas. Generating Meta-Model-Based Freehand Editors. In Proc. of the 3rd Int.

Workshop on Graph Based Tools (GraBaTs’06), Satellite of ICGT’06. Electronic
Communications of the EASST 1. 2006.

[SH08] E. Syriani and H. Vangheluwe. Programmed Graph Rewriting with DEVS. In Appli-

cations of Graph Transformations with Industrial Relevance: 3rd Int. Symp., AGTIVE

2007. LNCS 5088. Pp. 136–152. 2008.

[SM09] T. Strobl, M. Minas. Implementing an Animated Lambda-Calculus. In Workshop on

Visual Languages and Logic, Satellite of VL/HCC’09. CEUR Workshop Proceed-
ings 510. 2009.

[Smi86] R. B. Smith. The Alternate Reality Kit: An Animated Environment for Creating Inter-
active Simulations. In Proc. of the 1986 IEEE Computer Society Workshop on Visual

Languages. Pp. 99–106. 1986.

[Vit05] A. Vitzthum. SSIML/Behaviour: Designing Behaviour and Animation of Graphical
Objects in Virtual Reality and Multimedia Applications. In Proc. Seventh IEEE Int.

Symp. on Multimedia (ISM’05). Pp. 159–167.

[ZPK00] B. Zeigler, H. Praehofer, T. G. Kim. Theory of Modeling and Simulation. Academic
Press, January 2000.

13 / 13 Volume 29 (2010)


	Introduction
	Avalanche
	Abstract Animation Systems
	Animations using Graphs and Graph Transformations
	Specification of Avalanche
	Related Work
	Conclusions

